
19

False-Positive Probability and Compression Optimization
for Tree-Structured Bloom Filters

YONGQUAN FU, National Key Laboratory for Parallel and Distributed Processing; College of Computer
Science, National University of Defense Technology
ERNST BIERSACK, Caipy

Bloom filters are frequently used to to check the membership of an item in a set. However, Bloom filters face
a dilemma: the transmission bandwidth and the accuracy cannot be optimized simultaneously. This dilemma
is particularly severe for transmitting Bloom filters to remote nodes when the network bandwidth is limited.
We propose a novel Bloom filter called BloomTree that consists of a tree-structured organization of smaller
Bloom filters, each using a set of independent hash functions. BloomTree spreads items across levels that
are compressed to reduce the transmission bandwidth need. We show how to find optimal configurations
for BloomTree and investigate in detail by how much BloomTree outperforms the standard Bloom filter or
the compressed Bloom filter. Finally, we use the intersection of BloomTrees to predict the set intersection,
decreasing the false-positive probabilities by several orders of magnitude compared to both the compressed
Bloom filter and the standard Bloom filter.

CCS Concepts: � Mathematics of computing → Probabilistic algorithms; � Theory of
computation → Data structures and algorithms for data management; Database query process-
ing and optimization (theory);

Additional Key Words and Phrases: Set query, Bloom filter, tree, compression, genetic algorithm

ACM Reference Format:
Yongquan Fu and Ernst Biersack. 2016. False-positive probability and compression optimization for tree-
structured Bloom filters. ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 4, Article 19 (September 2016),
39 pages.
DOI: http://dx.doi.org/10.1145/2940324

1. INTRODUCTION

1.1. Motivation

With the development of geo-distributed applications, it is often necessary to check
whether a set contains a specific item, or whether multiple sets have shared items.
For example, CDNs need to locate the requested objects stored in the cache servers
or to synchronize the objects in different cache servers [Maggs and Sitaraman 2015],
database systems need to perform semi-join operations to compute the shared items
among remote nodes [Fang et al. 1998], peer-to-peer applications locate replicas from
remote users [Cheng and Liu 2009], or enterprise networks deduplicate identical files
among hybrid clouds [Eppstein et al. 2011; Fu et al. 2013].

This work was supported by the National Natural Science Foundation of China under Grant No. 61402509.
Authors’ addresses: Y. Fu, National Key Laboratory for Parallel and Distributed Processing; College of
Computer Science, National University of Defense Technology, 410073, Sanyi Road, Changsha, Hunan
Province, China; email: yongquanf@nudt.edu.cn; E. Biersack, CAIPY, 06560 Valbonne, France; email: erbi@
e-biersack.eu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2376-3639/2016/09-ART19 $15.00
DOI: http://dx.doi.org/10.1145/2940324

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.

http://dx.doi.org/10.1145/2940324
http://dx.doi.org/10.1145/2940324


19:2 Y. Fu and E. Biersack

A Bloom filter (BF) is a compact data structure answering set queries. The Standard
Bloom Filter (SBF) represents the set of items by randomly hashing each item into k
locations of a bit array, where k denotes the number of hash functions. To test whether
an item belongs to a set, we compute the locations of this item with the same set of
hash functions and test whether these bits are all set to one: If yes, then the item
is considered to be in the set; otherwise, the item is said to be not contained in the
set. Furthermore, we can approximate the union and intersection of multiple sets
efficiently with a SBF: applying bitwise “AND” (“OR”) operations over two or multiple
SBFs yields a new Bloom filter representing the intersection (union) of corresponding
sets. The Bloom filter incurs a certain false-positive (FP) probability, since the hash
locations corresponding to a particular item may be already set to one by other items.
However, a Bloom filter never has false negatives, that is, it will never occur that an
item is hashed to the bit array, but the query fails to report the existence of this item.
To control the false-positive probability, the size of the BF must grow linearly with the
number of items in the set.

The BF has been extensively used as a static data structure for set queries in one
site, while with the proliferation of cache servers in CDNs, summarizing the content
in different cache servers is important to locate the closest cache that has the re-
quested object [Maggs and Sitaraman 2015]. Unfortunately, each cache server may
store millions of objects and the cache contents may vary dynamically; consequently,
each cache server needs to periodically exchange the summary with the other servers.
As a result, representing the summary as a BF and transferring the whole BF without
compression may be expensive. In this case, using a Compressed Bloom Filter (CBF)
may decrease the transmission cost [Mitzenmacher 2002]. The CBF usually has only
two hash functions, which significantly degrades accuracy compared to the standard
Bloom filter with an optimal number of hash functions. As a consequence, there is a
gap that BloomTree tries to bridge.

However, the SBF has an interesting dilemma: Given a fixed-size bit array, select-
ing the optimal number of hash functions that minimizes the FP probability makes
compression ineffective, while using fewer than the optimal number of hash functions
increases the compression efficiency but degrades the FP probability. To simultaneously
optimize the false-positive probability and compression efficiency, we need to keep the
percentage of bits set to one as small as possible. Unfortunately, there exists little room
for optimization, as the bit locations set to one are completely determined by uniform-
random hash functions: The power of two choices [Lumetta and Mitzenmacher 2007]
and the partitioned hashing [Hao et al. 2007] try to overlap as many bit locations that
have already been set to one as possible for incoming items. To that end, they don’t
use the same hash functions for each item. This approach decreases the FP probability
only marginally, since biasing towards specific bits is difficult, as every hash function
selects positions uniformly at random from the whole bit array. Further, when we select
different hash functions for each item in a filter, the union and intersection of BFs are
no longer valid, as an item may be mapped to different bit locations at different BFs.

1.2. BloomTree

We have designed and implemented a novel tree-structured BF called BloomTree that
bypasses the performance dilemma by simultaneously decreasing the average FP prob-
ability and optimizing the transmission cost. While tree-structured BFs have been
proposed previously, they all have regular degrees, that is, each internal vertex has
the same number of descendants except the leaf vertices in the bottom level, which
unnecessarily limits the design space. Further, due to the difficulties in deriving the
false-positive probability of the set-membership query, parameter optimization for tree-
structured filters is still an open problem. We address both issues in this article.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:3

Fig. 1. A logical structure of a three-level BloomTree instance. The numbers of hash functions for the filters
in the first, second, and third levels are 2, 2, and 1, respectively.

A BloomTree is logically a tree of BFs that implements the set-membership query,
as shown in Figure 1. We can compute the intersection of two BloomTrees efficiently,
like the SBF, in order to find the common items in two sets that are represented by
these BloomTrees.

Structure: Each node in the BloomTree is an SBF. For each bit of a node at the ith
level, where i < d, there exists a descendent node at level (i +1). As a result, the degree
of each internal vertex depends on the length of the filter, which varies across levels
(see Figure 1).

Insert: We recursively insert an item into the BloomTree in a top-down approach.
First, at the root of the tree, we insert the item into the SBF and record the hash
locations. In the example shown in Figure 1, the root SBF has two hash functions. For
a given item y, the hash locations in the root filter are the first and third bits. These
two bits correspond to two descendent filters (1) and (3) at the second level. For each of
these descendent filters, we recursively insert the item into these SBFs at the second
level. Then, we continue the same insertion procedure recursively until we complete
the insertion in the descendent filters (1, 1), (3, 1), (2, 3), and (3, 3) at the third level.

Query: Similar to the insertion process, we recursively test the existence of the item
in a top-down approach. We first test whether this item is hashed into the root SBF.
If so, we select the descendent BFs of the hash locations in the root level and query
the descendants. If any of these traversed filters indicates that the item is not in the
set, the query process terminates and returns a negative answer immediately. This
is because each filter is a standard BF that never causes false negatives. Otherwise,
when each of these descendent filters claims the item to be in the set, we recursively
query the descendants in the next level. For example, to query the set membership of
the item y in Figure 1, we calculate the hash locations for y in the first level, which are
all ones. As a result, we continue the query on the next level. For y, the descendants in
the second level are (1) and (3). Querying the item y on (1) and (3) returns true. Next,
we recursively select the descendants of (1) and (3), which are (1, 1), (3, 1), (2, 3), and
(3, 3). All of these filters claim that y is in the set. Therefore, the BloomTree claims
that the item y is in the set.

False Positives: An item is said to be in the set if and only if all visited BFs report
that the item is in the set. An FP event in the BloomTree occurs for a membership query
if and only if the visited BFs all report that an item is in the set, although this item

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:4 Y. Fu and E. Biersack

was never inserted. By ensuring the independence of the false-positive events among
participating filters, the overall false-positive probability amounts to the product of
the FP probabilities of the participating filters. As a result, BloomTree reduces the FP
probability exponentially as the tree grows.

Compression: The BloomTree can be efficiently compressed, similar to the com-
pressed BF, by separately applying arithmetic coding on the bit array representing all
filters of one level. We use a pointerless bit array to store the BloomTree in the main
memory and compute the hash values with the double-hashing method [Kirsch and
Mitzenmacher 2008].

The tree structure provides novel opportunities to optimize the FP probabilities by
improving the locality of the hash locations of the data items, which, in turn, reduces
the false-positive probability. In Section 5, we derive the FP probability of BloomTree
and analyze its sensitivity with respect to the key parameters, namely, the size of
the SBFs and the number of hash functions. In Section 6, we optimize the parame-
ters of BloomTree to balance the FP probability and compression efficiency using two
different approaches: an exhaustive search method that enumerates every possible con-
figuration and a Genetic algorithm [Goldberg 1989]–based method that evolves toward
optimized parameters within a fixed number of rounds. While the exhaustive search
always finds the optimal parameters, its time complexity increases exponentially in the
number of levels. The Genetic algorithm achieves close-to-optimal results with a fixed
time complexity. Therefore, we recommend the Genetic algorithm to obtain optimized
parameters for BloomTrees with d ≥ 3 levels.

We performed extensive experiments to compare BloomTree with the relevant data
structures proposed in the literature. Our results confirm that BloomTree obtains a
significantly better trade-off between FP probability and the transmission bandwidth.

In summary, this article makes the following contributions:

—We present BloomTree, a compact tree-structured organization of BFs that simulta-
neously optimizes the FP probability and transmission size.

—We propose a framework to tune the accuracy of the BloomTree filter, balancing the
accuracy and transmission size of BloomTree.

—We carry out extensive experiments using synthetic datasets and a real-world trace
to confirm that BloomTree finds a better trade-off between the FP probability and
compression efficiency than state-of-the-art techniques.

The rest of the article is organized as follows. Section 2 summarizes the most rel-
evant studies that optimize the standard BF. Section 3 states the problem studied
in this article. Section 4 presents an overview of BloomTree. Section 5 analyzes the
distribution of the FP probabilities of BloomTree. Section 6 optimizes BloomTree in
terms of transmission bandwidth and FP probability. Section 7 shows the sensitivity of
the FP probabilities as we vary the parameters of BloomTree. Next, Section 8 reports
on an extensive performance comparison between BloomTree and related approaches.
Section 9 presents our conclusions and discusses future work. Table I lists the key
notations used throughout the article.

2. RELATED WORK

BFs and their variants have been extensively studied; it is beyond the scope of this
article to survey all of them. We report only the studies most relevant to our own.

2.1. Accuracy-Oriented Optimization

The FP probability of the BF should be controlled to provide a correct response for
most set queries. The standard BF uses uniform-random hash functions, therefore,
the percentage of ones in the bit array is determined by the hash functions used. In

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:5

Table I. Notations Used in BloomTree

I bit array
m number of items
k number of hash functions
Pb probability of a false positive before the BF is constructed
Pa posterior FP probability after the BF is built
n number of items that has been inserted
nmax upper bound on the number of items inserted
d number of levels of a BloomTree instance
mi length of the bit array of a filter at the ith level (i ≥ 1)
ki number of hash functions of a filter at the ith level (i ≥ 1)
ρ1 bits per item in the first level
MBT storage size of a BT instance
WBT transmission size of a BT instance

Lumetta and Mitzenmacher [2007], an optimized group of hash functions is selected
for each new item so that the percentage of ones of the filter does increase very slowly.

To decrease the computing overhead, the partitioned hashing [Hao et al. 2007] first
randomly partitions items into a set of disjoint groups, then optimizes the hash func-
tions for each group of items via an exhaustive search process. Unfortunately, experi-
ments [Lumetta and Mitzenmacher 2007; Hao et al. 2007] show that the improvement
is marginal, as every hash function maps the item to a random bit over the whole bit
array. Worse yet, the partitioned hashing no longer allows for union and intersection op-
erations, since the same item may not be mapped to the same set of bit locations at two
filters. To control the FP probability of the multicast-group query over the BF, Li et al.
[2011] propose selecting different numbers of hash functions for different multicast-
address groups. As a result, different groups see a different query accuracy, which is not
suitable for general settings in which queries are expected to see a consistent accuracy.
Our work improves the accuracy for the general set queries.

2.2. Access Time–Oriented Optimization

The access time involves the time to compute the hash values and the time to read and
set the bit values. To decrease the access time, we should control both components.

The shifting Bloom filter (ShBF) [Yang et al. 2016] trades off between memory con-
sumption and processing speed using a flat filter. ShBF encodes the auxiliary informa-
tion of an item into a location offset in the standard BF. The double-hashing method
[Mitzenmacher and Vadhan 2008] generates a family of independent hash functions
using two hash functions as the seeds.

Putze et al. [2009] maintain a bank of equal-size BFs, in which each filter is stored
into one cache block in order to decrease cache misses. In fact, this structure can be
seen as a two-level BloomTree: at the first level, an all-one bit array with one hash
function routes each item to one BF at the second level. On the other hand, our work
proposes a general tree-structured BF. In Putze et al. [2009], each query involves only
one filter, and the FP probability of a query amounts to that of the selected BF. Our work
develops a multilevel tree-structured filter in which multiple BFs collectively encode
the existence of an item. Therefore, the FP probability of the query process for our work
is much lower since it amounts to the product of the FPs of all BFs participating in the
query.

2.3. Transmission Efficiency–Oriented Optimization

To reduce the overhead when transmitting a BF, we can compress the BF before sending
it. The CBF [Mitzenmacher 2002] trades off a significantly larger memory size for a

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:6 Y. Fu and E. Biersack

Table II. Comparison of Related Tree-Structured Filters

Parameter
Purpose Topology Storage False positive Query Compress optimize

Ficara et al.
[2008]

Counting
BF

2-ary tree A bank of
bit arrays

no closed-form
equation

traverse a
directed
acyclic
graph

no no

Koloniari
et al. [2011]

Duplicate
detection

2-ary tree A bank of
bit arrays
plus
pointers

the FP
probability of
any filter

traverse a
chain of
filters

no no

Alexiou et al.
[2013]

Range
interval
query

2-ary tree Two bit
arrays

the FP
probability of
the leaf vertex

traverse a
chain of
filters

no no

Yoon et al.
[2014]

Key-
value
query

kl-ary tree,
kl ≥ 2

A bit array the product of
the FP
probability of a
chain of filters

traverse a
chain of
filters

no no

Crainiceanu
and Lemire
[2015];
Solomon and
Kingsford
[2015]

Summary
BFs

varying
degree tree

B+ tree the probability
that at least
one leaf filter
reports an FP
event

traverse a
chain or
subtree of
filters

no no

BloomTree
(our work)

Set query varying
degree tree

A bit array the product of
the FP
probabilities of
all traversed
filters

traverse a
subtree of
the filters

yes yes

smaller transmission size: A CBF that achieves the same FP probability as an SBF
allocates more bits per item, but uses fewer hash functions than an SBF. Therefore,
after the insertion of n elements, the bit array I of a CBF will have few bits set to one
and many bits that remain set to zero, which can be compressed before transmission.

As discussed earlier, Putze et al. [2009] stores a bank of BFs in cache blocks. To
compress the storage space of the filter, Putze et al. [2009] represent the BF using a
sorted list of the hash values. Moreover, it needs to store an index data structure for
the compression, while our work compresses the tree-structured filter layer by layer
using the arithmetic coding without additional storage costs.

2.4. Tree-Structured Optimization

We summarize the key design choices of existing tree-structured filters and discuss
our work for comparison in Table II. We can see that only our work performs the
parameter optimization, while existing work leaves this as an open problem. Parameter
optimization is nontrivial due to the randomized FP probability of the query process.
Further, existing work sets the same degree for all vertices in the tree, which simplifies
the implementation, but unnecessarily narrows down the design space. Our work uses
different degrees across levels to significantly decrease the overall FP probability.

The Blooming tree [Ficara et al. 2008] constructs a binary tree of BFs as an alterna-
tive to the counting BF. A Blooming tree has L+ 2 levels for inserting n items that are
built level by level, where the level i + 1 has as many blocks of bits as the number of
ones in level i. The final level L + 2 is composed of an array of counters for recording
the insertions and deletions of items.

Being designed to support the key-value query, Yoon et al. [2014] (denoted as BTree)
is logically structured as a d-ary complete search tree, but is stored in a flat bit array.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:7

For a (key, v) pair, there exists one unique path from the root vertex to the vth leaf
vertex, where each vertex in the path hashes the key into its bit array. BTree meets an
FP event when each of the vertices in the traversed chain has aFP event. A vertex in
BTree needs to check d sets of hash functions for a query; if the hash locations using
any set of hash functions are all set to one, then the vertex has an FP event. Therefore,
the FP probability of a vertex amounts to the probability of the union of the FP events
caused by d sets of hash functions. While in BloomTree, each vertex has only one group
of hash functions, which avoids the accumulation of the FP probabilities in BTree.

Koloniari et al. [2011] detects duplicated events among geo-distributed sites using
a binary tree of filters in which the ancestor–descendant link is represented using a
pointer. The query process starts from a leaf and traverses towards the root vertex,
yielding a chain-structured query process. An FP event occurs whenever any vertex in
the chain incurs an FP event. In contrast, we minimize the FP probability to be the
product of a subtree of all filters that participate in the query process.

Alexiou et al. [2013] represents range intervals using a binary-tree structured filter.
Each vertex represents a subinterval of its ancestor with a small-sized BF. The query
process starts at the root, and routes recursively across levels to the descendant that
contains the input. The FP probability amounts to the probability that a leaf node is
set to true. The tree topology of Alexiou et al. [2013] is encoded independently from the
bit values, and uses two bit arrays to represent the tree structure: a bit array encoding
the binary tree topology via a breath-first order and a bit array representing the true
or false state of all leaf vertices. In our work, the queried filters and the links form a
subtree with varying degrees. Moreover, the FP probability of a query amounts to the
product of those of all queried filters. Further, we represent the tree structure and the
bit values of all filters in the same bit array, avoiding the overhead to index the tree
topology.

Bloofi [Crainiceanu and Lemire 2015] summarizes a large number of geo-distributed
BFs using a hierarchical structure. The leaves of Bloofi correspond to the BFs that
represent a set of items that are created and maintained independently by different
owners. The ancestor node of the leaves amounts to the union of these leaves based on
the bitwise OR operation. The bitwise OR operation yields a BF having the same size
and same set of hash functions with these leaves and preserves the bits that are set to
one in these leaves. As a result, an FP event at the leaves is preserved in their ancestor
filters and a query returns an FP event as long as any of Bloofi’s leaves incurs an FP
event. BloomTree, on the other hand, decouples the FP events across levels. Further,
Crainiceanu and Lemire [2015] propose a Flat-Bloofi structure to exploit the bit-level
parallelism in the processor. A Flat-Bloofi array organizes 64 BFs into a packed-integer
array, in which each 64-bit integer corresponds to the first bit of 64 BFs. For L BFs,
Crainiceanu and Lemire [2015] need to create � L

64� Flat-Bloofi arrays. Consequently,
when L is not divisible by 64, a fraction of bits will be padded with zeros.

The sequence BTree (SBT) [Solomon and Kingsford 2015] summarizes a number of
BFs using a tree structure for sequence-based queries. The leaves in the tree represent
sequencing experiments using the BF, while the internal node amounts to the union
result of its descendants based on the bitwise-OR operation. We can see that the SBT
and Bloofi [Crainiceanu and Lemire 2015] have a similar structure. Consequently, in
the SBT, the FP events are also correlated across levels.

The LSH forest [Bawa et al. 2005] supports the similarity search using a set of prefix
trees. The LSH forest organizes multiple-dimensional points into multiple binary prefix
trees. In each prefix tree, the leaf represents a point in the metric space. Each point
is assigned a label that is created using a number of independent hash functions. The
label of each leaf determines the logical path from it to the root. While in the BloomTree,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:8 Y. Fu and E. Biersack

the querying or insertion process selects layerwise descendants based on the hashing
locations of the item.

3. STANDARD BLOOM FILTER

3.1. Introduction

We now present the background on the Standard Bloom filter and show how to deter-
mine its optimal configuration. Let an item in a set be represented by an item (e.g., a
160-bit hash string) from a universe U = [

0, u). The Bloom filter [Bloom 1970] supports
approximate membership queries with a compact data structure, by testing whether
an item is hashed to a bit array. A standard Bloom filter (SBF) BF holds these items
with a bit array I of m bits. Further, we assume that there exist a group of k inde-
pendently random hash functions h1, . . . , hk with the range 1, . . . , m. The bit array is
initially set to zeros. For inserting an item y into the filter, we first obtain k indexes
in the bit array I by hashing the key y with these k hash functions; then, we set the
bits indexed by these k bit locations to one. For testing whether a key z is stored in the
filter, we calculate k indexes by hashing z with the aforementioned k hash functions
similar to the insertion, and return “The item z is stored in the filter” if all k bits are
set to one in the bit array.

3.2. False-Positive Probability

3.2.1. Membership Query. BFs allow for false-positive events, that is, returning true to
a membership query for an item that is not in the set. The false positives are due to
hash collisions in which the hash positions of a key that is not in the set have all been
set to 1 by other keys hashed into the BF.

False-Positive Probability. Researchers have developed balls-and-bins-based for-
mulas for tuning the parameters of a BF [Broder and Mitzenmacher 2003; Tarkoma
et al. 2012]. Suppose that we insert n items into the BF; the probability that a bit is
one approximates

1 − (1 − 1/m)nk ≈ 1 − e−nk/m (1)

The probability Pb that k bit locations that are computed by hashing a given item k
times are simultaneously one can be approximated by

Pb ≈ (1 − e−nk/m)k (2)

Furthermore, for convenience, let a constant ρ = m/n. Then, we have Pb = (1 − e−k/ρ)k.
Broder and Mitzenmacher [2003] show that the optimal number k of hash functions

that minimizes Pb is given by

k = (ln 2)
m
n

= ρ ln 2. (3)

Then, we calculate the minimum FP probability Pb as

(0.5)k ≈ 0.6185ρ. (4)

Since Pb can be calculated without actually hashing items into the BF, Pb is also called
the a priori FP probability [Hao et al. 2007]. Several studies independently reveal a
large mismatch between the a priori formulas and the empirical FP probabilities,
especially when the length of the BF is small compared to the number of inserted
items [Bose et al. 2008; Christensen et al. 2010]. In fact, Pb only gives a strict lower
bound for the real FP probability. Unfortunately, the time complexity of the derived
correct formulas is too high to be practically applied to optimize the parameters.

Posterior False-Positive Probability. A simpler, yet powerful, metric is the poste-
rior FP probability [Hao et al. 2007]. Let the filled factor f of the bit array I denote the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:9

percentage of bits set to one. Given an item z randomly sampled from the universe of
items, each bit location computed by hashing the item z with one of k hash functions is
uniformly distributed in the whole bit array. As a result, any bit out of k hash locations
for item z is set to one with probability f . Accordingly, k bits are simultaneously set to
one with a probability

Pa = f k. (5)

Pa is called the posterior FP probability, since the filled factor f is known only after
we insert items into the BF [Hao et al. 2007; Christensen et al. 2010; Bose et al. 2008].
Recent work [Hao et al. 2007; Christensen et al. 2010; Bose et al. 2008] confirms the
correctness of this metric for characterizing the accuracy of the BF. Therefore, Pa is
often used to empirically quantify the BF’s accuracy.

In this article, we use the posterior FP probability to quantify the accuracy of
BloomTree, while the a priori FP probability Pb incurs large approximation errors,
as shown in the Appendix.

3.2.2. Set-Intersection Query. Let SA and SB denote two sets of items stored at two
remote users A and B. The set intersection SAB of two sets SA and SB is defined as the
intersect of two sets SA ∩ SB such that, for s ∈ SAB, s ∈ SA and s ∈ SB both hold. The
intersection of Bloom filters (IBF) are commonly used to perform the join operations of
multiple databases [Fu and Wang 2012; Fu et al. 2014].

The IBF amounts to the bitwise “AND” results of two bit arrays of the same length.
Each bit of the IBF is computed as the bit-wise “AND” value at the same locations in
BFs SBF(A) or SBF(B). Therefore, the number of ones in the IBF are usually smaller
than that in SBF(A) or SBF(B), that is, lower FPs.

For two filters of the same length and the same number of hash functions, the bitwise
AND operation over two filters yields a new filter that preserves the bit values of items
in the set intersection and approximately cancels the bits of items that are out of the
set intersection. We can see that the accuracy of the intersected filter depends on the
probability to cancel out the bits of items that are out of the set intersection.

3.3. Problem Model

We now formulate the problem model that we tackle in this article. We first analyze
the trade-off between the FP probability and the bandwidth overhead when using
compression. By how much a BF can be compressed depends on the probability p ∈
[0, 1] that a bit in the array is zero [Mitzenmacher 2002]. When p = 0.5, then the
entropy of the bit array is at its maximum and no compression gain can be achieved.
This is the case for the SBF, when it uses the optimal number of hash functions
according to Equation (3). The closer p gets to either one or zero, the higher the potential
for compression. We plot the evolution of the FP probabilities and the compression
efficiency of the BF as we vary the number of hash functions. We compress the bit
array as suggested by Mitzenmacher [2002].

As shown in Figure 2, we see that when the SBF achieves its minimal FP prob-
ability, there are no compression gains. However, if we accept higher values for the
FP probability, the compression gain can be significant. This leads us to the following
observation.

Definition 3.1 (BF Dilemma). Choosing the optimal number of hash functions for
a BF minimizes the FP probability, but fails to decrease the transmission size; while
decreasing or increasing the number of hash functions as compared to the optimal
number of hash functions decreases the transmission size after compression, but in-
creases the filter’s FP probability significantly.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:10 Y. Fu and E. Biersack

Fig. 2. The compressed efficiency WI/MI and the posterior FP probability Pa as a function of the number k
of hash functions, where WI denotes the transmission size after compression, MI represents the storage size
in memory. We fix the number ρ of bits per item to be 8, in which case the optimal number of hash functions
amounts approximately to 	8 ln 2
 = 5 by Equation (3).

This dilemma shows the inherent limitations of optimizing the trade-off between
the bandwidth and the FP probability for SBF. To overcome this dilemma, our key
insight is the following: if we fix the number k of hash functions, the FP probability is
determined by the percentage of ones, that is, filled factor, in the bit array. Minimizing
the filled factor requires us to map items into bits that have already been set to one.
As a result, to minimize the FP probability, we must increase the locality of mapping
items to the bit array, so that the hashing locations of new items are biased toward bit
locations already set to one. Unfortunately, biasing the mapping is difficult for the SBF
that maps items to a flat-structured bit array, since every hash function provides only
uniform-random numbers.

To overcome this problem while keeping the simplicity of the BF, we must transform
the flat structure of the filter to a hierarchical tree that maps items to proximity regions
in the bit array so that the filled factors of many proximity regions increase slower than
for the SBF, which leads to a lower FP probability and better compression efficiency,
on average.

4. BLOOMTREE

Having presented the optimization dilemma for the BF, we next present in detail the
design of BloomTree. First, we present the basic ideas of BloomTree. Then, we present
the storage structure and the compression gains. Next, we show how to speed up the
insertion and the querying process based on a multithread implementation. Then, we
present an efficient approach to generate the hash functions. Finally, we present an
intersection operation for BloomTree to accurately estimate the set intersection.

4.1. Overview

Our work aims to solve the BF dilemma when trying to optimize both the FP probability
and compression efficiency. For this, we use coordination among small-sized BFs based
on multilevel filters: an item is assumed to be in the set only when all filters that
participate in the query process claim that this item is in the set. As a result, the overall
FP probability is significantly decreased. We adopt a novel hierarchical organization of
the BF and a layer-wise compression to trade off between the FP probability and the
bandwidth consumption.

A BloomTree has d levels of BFs that are organized as a tree. The root of the tree is
an SBF in the first level. For each bit in an SBF at level i (i < d) that is set to one,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:11

Fig. 3. A three-level BloomTree instance. The numbers of hash functions for the filters in the first, second,
and third levels are 2, 2, and 1, respectively.

a descendent Bloom filter is appended at level (i + 1). The ith level is also called the
ancestor level for the (i + 1)th level. The level d is called the leaf level.

Generally, we represent a BloomTree as a tuple: {nmax, d, ρ1, k1, mi,i>1, ki,i>1}, where
nmax denotes the maximal number of items to be inserted, d represents the depth of
the BloomTree, ρ1 denotes the ratio between the number of bits and the number of
items in the first-level filter, k1 is the number of hash functions of the filter in the first
level, mi,i>1 is the size of the filter in the second and higher levels, and ki,i>1 denotes
the number of hash functions of the filter in the second and higher levels. We enforce
each layer’s filters to be of the same length for ease of computation, since varying the
sizes of each filter exponentially expands the search space of the BloomTree.

4.2. BloomTree Stored as an Array

We present a novel layout of the BloomTree as a bit array, achieving constant access
time to each bit in the tree. A logical BloomTree is physically stored into a bit array.
We represent a complete BloomTree in Figure 3, in that each bit of a Bloom filter in
an ith level has a descendent BF at the (i + 1)th level, where the index i ∈ [1, d − 1].
We do not need to preserve the ancestor–descendent links, but rather compute them
on-the-fly (see Section 4.2). The key idea is to store each of these BFs into the bit array
in breadth-first order. As a result, the storage structure of the BloomTree is identical
to that of the SBF.

We represent a BloomTree using a bit vector I of size MBT (I) = ∑d
i=1

∏i
j=1 mj . To

keep the ancestor–descendent relations among filters in the data structure without
pointers, we lay out filters of a BloomTree via the breadth-first order. Specifically, the
set of filters at the ath level are placed ahead of all filters in the ≥ (a + 1)th levels. For
filters at a level, the filters are placed from the left side to the right side.

The breadth-first order storage yields a simple approach to address each filter. For
the first-level BF, its bit array corresponds to the subarray I[1 : m1]. For the ath level
(for a > 1), there are a total of

∏a−1
i=1 mi filters. The leftmost BF of the ath level starts

from the (
∑a−1

i=1
∏i

j=1 mj + 1)th bit in I. The rightmost BF of the ath level ends at the∑a
i=1

∏i
j=1 mjth bit in I. The bth (for b ∈ [1,

∏a−1
i=1 mi]) BF at the ath level spans the

range

I

⎡
⎣
⎛
⎝a−1∑

i=1

i∏
j=1

mj + (b − 1) ma + 1

⎞
⎠ :

⎛
⎝a−1∑

i=1

i∏
j=1

mj + bma

⎞
⎠
⎤
⎦ . (6)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:12 Y. Fu and E. Biersack

Fig. 4. The compressed ratios of compressing each individual BF in the tree (ByBF) and compressing
all filters of one level in the tree (ByLevel), which is calculated as the ratio between the array size after
compression and that before compression. For (a), we set nmax = 10,000, d = 3, m1 = 10,000, k1 = 6, m2 = 4,
k2 = 3, m3 = 3, k3 = 3. For (b), we set nmax = 10,000, d = 4, m1 = 10,000, k1 = 6, m2 = 4, k2 = 4, m3 = 4, k3 =
3, m4 = 5, k4 = 2.

4.3. Compressing the BloomTree

The bit array of the BloomTree can be compressed before being transmitted across
the network, since the bits that are set to ones are biased toward a subset of bits. For
example, from Figure 3, we see that in the second and third level, many filters have
all-0 bits or all-1 bits. Therefore, in each level, the percentage of bits reversed from 0
to 1 at each vertex varies significantly. As a result, the whole level can be efficiently
compressed.

There are two approaches to compress the BloomTree via the arithmetic coding
algorithm [Mitzenmacher 2002]: (i) ByLevel—we compress the bit array storing all
filters of one level, since we contiguously allocate the storage space of filters in the
BloomTree; (ii) ByBF—we compress the bit array of each BF.

From Figure 4, we see that compressing each individual BF in the tree decreases
much more required space than compressing the filters of each level altogether, since
items are mapped into the BFs in a nonuniform fashion. Consequently, many BFs in
one level are approximately all zeros or all ones, as shown in Figure 8(a) and 8(b).

However, in the case of ByBF, the sender needs to carefully delimit each compressed
BF so that the receiver can decompress and reconstruct the original bit array. These
delimiters must be transmitted to the receiver. As there are

∏d
a=1

∏a−1
i=1 mi filters in the

BloomTree, where m0 = 1, we need
∏d

a=1
∏a−1

i=1 mi − 1 delimiters, which is prohibitively
high. For the ByLevel approach, we need only (d − 1) delimiters. Therefore, we choose
ByLevel compression.

The space being reduced using the level-wise compression varies with different levels.
For a three-level BloomTree, the compressed ratio decreases from 0.9 to 0.4 as we
increase the number n of items from 2,000 to 10,000. This is because the average filled
factors of the second and the third levels reach close to one with an increasing number
of items. As a result, we are able to compress more space using the arithmetic coding.
For a four-level BloomTree, the compressed ratio is larger than 0.8 for n ≥ 4,000; this
is because the average filled factors of the third and fourth levels are still around 0.5
for n ≥ 4,000. Therefore, the levelwise compression reduces the required space by only
a small amount. On the other hand, the small average filled factor implies that the
average FP probability of the BloomTree is quite low.

We can derive the optimal size of a levelwise compressed BloomTree using the arith-
metic coding as follows:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:13

THEOREM 4.1. Let d denote the depth of the BloomTree. Let mi be the length of the
filter in the ith level, where i ∈ [

1, d
]
. Let H (p) = −plog2 p − (1 − p) log2 (1 − p) be the

binary entropy function. Let fa,b be the filled factor of the bth filter BF(a, b) in the ath
level. A BloomTree of d levels can be compressed using the arithmetic coding to make
its size WBT :

WBT =
d∑

a=1

⎛
⎜⎝
(

a∏
i=1

mi

)
H

⎛
⎜⎝1 −

a−1∏
j=1

mj∑
b=1

fa,b/
a−1∏
j=1

mj

⎞
⎟⎠
⎞
⎟⎠. (7)

We can see that, in order to maximize the compression benefit, the sum of the filled
factors of all filters in the same level should be either close to zero or one.

4.4. Speeding up Insertion and Querying Operations for BloomTree

Checking for the presence of an item in a standard BF is fast, while inserting or
querying an item in the BloomTree requires, on average, five times more time than for
the SBF, since we need to sequentially traverse many BFs across levels (for a detailed
comparison, see Section 6.4.2).

Fortunately, we can exploit the independence between different subtrees to speed
up the insertion and querying processes if we insert or query the item in different
subtrees concurrently. A well-known trick [Mitzenmacher and Vadhan 2008; Jeffrey
and Steffan 2011] to speed up an m-bit BF with k1 independent hash functions is that
each hash function corresponds to a disjoint interval of m

k1
consecutive bits. We can hash

the item into k1 disjoint bit arrays (partitions) of size m
k1

concurrently using different
hash functions. An item is assumed to be in the set when all partitions indicate that this
item is in the set. The partitioned BF has asymptotically the same FP probability as
the original one that shares the bits for all hash functions [Mitzenmacher and Vadhan
2008].

In our case, we can partition the BloomTree with k1 hash functions in the first level
into k1 partitions as follows. First, we partition the root filter into k1 disjoint intervals
of m1

k1
consecutive bits. Second, we use each of these k1 partitioned bit arrays as the

root filter of a new BloomTree. Third, we organize the BFs in the higher layers of
this new BloomTree based on the original ancestor-descendant relationships in the
unpartitioned BloomTree. Consequently, we obtain k1 independent BloomTrees, as
shown in Figure 5.

An insertion or a query can be executed concurrently for each of these partitions.
When the number of partitions exceeds the number of threads, we can map the parti-
tions to different threads uniformly at random.

Insertion: The insertion in each partition is a top-down process, as shown in Sec-
tion 1.2. We first hash this item into the root filter of that partition and record the
corresponding hash location. Next, we select the descendent filter of the first-level
hashing location and insert this item into this descendent filter at the second level.
Then, we recursively insert this item into each level. For example, in Figure 5, in the
second level, we insert y into (1) in the first partition and into (4) in the second parti-
tion; in the third level, we insert y into the descendants of (1), that is, (1, 1) and (3, 1),
in the first partition, and the descendants of (4), that is, (3, 4) and (2, 4), in the second
partition.

Query: The querying process in each partition follows the same recursive querying
procedure as for the nonpartitioned BloomTree (see Section 1.2). If all partitions claim
that the queried item is in the set, then the queried item is considered to be in the set;
otherwise, the queried item is not in the set. For example, in order to query the item
y in the two partitions, we need to traverse the set of filters (0), (1), (1, 1), and (3, 1)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:14 Y. Fu and E. Biersack

Fig. 5. The partitioned BloomTree for Figure 3. We partition the root filter in Figure 3 to two arrays.
Then, we construct two subtrees whose root filters correspond to these two partitioned arrays. The ancestor–
descendant links in the higher layers are the same as those in Figure 3. We insert an item to each of these
partitioned subtrees concurrently.

Fig. 6. The average time to insert and query 10,000 items on the BloomTree. We set d = 3, ρ1 = 1, m2 = 4,
m3 = 3, k1 = 12, k2 = 3, and k3 = 2 for the BloomTree.

in the first partition, and (0′), (4), (3, 4), and (2, 4) in the second partition. We can see
that all of these filters claim that y is in the set; therefore, the partitioned BloomTree
returns that the item y is in the set.

To evaluate the speedup obtained by partitioning, we have performed experiments on
a MacBook Pro Intel Core i7 with Quad-core and 16GB memory that allows us to vary
the number of concurrent threads from one to four. In order to balance the workload
among threads from one to four, we set the number k1 of hash functions to 12 for the
first level. We can see that as long as the number of threads is smaller than 5, different
threads can always have the same number of BloomTree partitions.

The experiment is repeated ten times, and we plot in Figure 6 the average time
required to insert and to query 10,000 items in the BloomTree. We see that the average
insertion and querying time decrease proportionally with the number of threads.

Having stated the structure of the BloomTree, we next present how to implement
the hash functions for each SBF in the tree. Then, we introduce the intersection of the
BloomTree to support the accurate and efficient set-intersection query.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:15

4.5. Generating Independent Hash Functions for Each Filter

Up to now, we assumed that we choose independent hash functions for each BF in each
level since we need to decouple the FP events of different BFs; otherwise, querying mul-
tiple filters may not help decrease the FP probabilities. The independence means that
all hash functions of the different BFs are drawn from the universe of the hash-function
family, in which each hash function Hi maps an item xi from some universe U to a num-
ber yi that is selected uniformly at random over the entire range, for i ∈ [

1, k
]
, where k

denotes the total number of hash functions of all BFs. Specifically, let P(Hi(xi) = yi) be
the probability that the hash function Hi maps xi to yi. The independence implies that
P(H1(x1) = y1

∧ · · ·∧ Hk(xk) = yk) = ∏k
i=1 P(Hi(xi) = yi).

As all BFs in the BloomTree need to use independent hash functions, the total
number of required hash functions increases exponentially as the number d of levels
increases. Consequently, the hashing evaluation must scale well.

We generate the hash functions for different Bloom filters based on the double-
hashing approach [Kirsch and Mitzenmacher 2008; Hao et al. 2007], which creates
a large set of hash functions using the linear combination of two random hashing
functions. Kirsch and Mitzenmacher [2008] have provided a theoretical analysis of
this approach. The double-hashing approach has been a popular choice to efficiently
generate hash functions [Hao et al. 2007; Cha et al. 2010; Zhou et al. 2015]. Our
experiments in Appendix B.4 have shown that the BloomTree using the double-hashing
approach performs almost the same as that with the independent hashing functions.

Deciding how many hash functions in each filter is orthogonal to the double-hashing
method. Selecting a smaller number of hash functions for a filter slows down the
process to fill up the bit array with ones, but also decreases the number of filters that
participate in the query process. Since the FP probability amounts to the product of
the FP probabilities of all participating filters, decreasing the number of participating
filters may increase the FP probability.

The double-hashing method generates a sequence of independent hash functions
using only two CRC hash functions via a polynomial function:

H{ci ,i∈[1,k]}(x) = h1(x) + ci × h2(x), (8)

where i ∈ [1, k], x represents an item, ci denotes the ith coefficient, and h1, h2 represents
two independent hash functions, respectively. Kirsch and Mitzenmacher [2008] proved
that varying ci leads to a set of hash values with good uniform randomness.

For each item y, we cache the two hash values v1 = h1(x) and v2 = h2(x) calculated
by the standard hashing algorithms. Therefore, the hashing algorithms are called only
twice for any item.

Let χa,b denote the set of coefficients of deriving hashing values by Equation (8) for
BF(a, b). We see that the set of hash values for an item x can be computed by {H{χa,b}(x)}.
We next calculate disjoint sets χa,b of coefficients for the BF BF(a, b) as follows:

—For the top-level filter BF(1, 1), let its coefficients be χ1,1 = [1, k1].
—For the filter BF(a, b) at the ath level (a > 1), let the set of coefficients χa,b be

χa,b =
[

a−1∑
i=1

mi−1ki + (b − 1) ka + 1,

a−1∑
i=1

mi−1ki + bka

]
, (9)

where b ≤ ∏a
i=1 mi−1, m0 = 1.

It is trivial to see that the set of coefficients for different filters are disjoint among each
other. The overall hashing computational complexity for querying or inserting items is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:16 Y. Fu and E. Biersack

Fig. 7. The intersection of two BloomTrees BT1 and BT2. The intersection of BT1 and BT2 is represented
by BT1 ∩ BT2.

reduced to

2 × Hash + O (1) ≈ O (Hash), (10)

where Hash denotes the complexity of calculating one hash value by standard hashing
algorithms, such as the CRC function.

4.6. Intersection of BloomTrees

We next show how to insect BloomTrees to estimate items that are common to two sets.
Querying the set intersection with individual BloomTree instances incurs a failure

probability that amounts to the FP probability of a BloomTree, while estimating the set
intersection via the intersection of BloomTrees is able to reduce the failure probability
after the intersection operation of two BloomTrees since there are fewer ones in the
bit arrays. Intuitively, a bit location in the intersection of a BloomTree is set to one
by either some item that is in the set intersection or two items that are not in the set
intersection. However, the latter case rarely occurs, as items not in the set intersection
are usually mapped to some different branches in the tree due to the uniform hashing
across levels. Therefore, most ones in the intersection of the BloomTree are set by the
set intersection. Take, for example, Figure 7: the bits that are set to one by the set
intersection {y} are preserved at the intersection BloomTree BT1 ∩ BT2. For the bits
set by items z only in BT1 and those by x only in BT2, most of these bits are changed
to zeros in BT1 ∩ BT2.

In order to compute the intersection of BloomTrees, we need to ensure that the same
item will be inserted into the same set of filters and for each filter at the same position.
To that end, for two BloomTrees, we choose the same length of the bit arrays and
apply the same set of hash functions for each pair of filters at the same location in two
BloomTrees.

We can estimate the set intersection via the intersection of BloomTrees similar to the
intersection of standard BFs. Take two sets SA and SB stored in two remote nodes, which
are represented by two BloomTrees BT1 and BT2 that have the same parameters, that
is, the same level d, size mi, and the number ki of hash functions of SBFs in each level i.
We see that the hash functions are the same for the same position in two BloomTrees.
As a result, the same item will be inserted into the same set of filters; for each filter
at the same position in the tree, the same item is always hashed into the same bit
locations. As a result, we compute the intersection of BFs at the same position in two
BloomTrees BT1 and BT2 and reorganize these intersected filters as a new BloomTree
according to the same positions of corresponding filters, which leads to the BloomTree
BT 1 ∩ BT 2.

Figure 7 plots an example of the intersection of two three-level BloomTrees between
Peer 1 with items y and z and Peer 2 having an item y. The all-zero SBFs are omitted

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:17

for brevity. We compute the intersection of BT1 (Figure 7(a)) and BT2 (Figure 7(b))
BT1∩BT2, as shown in Figure 7(c). We then query BT1∩BT2 with the set {y, z} or {y, x},
respectively, and treat the items reported in the set by BT1 ∩ BT2 as the estimated set
intersection. The same approach also holds for computing the set intersection for more
than two sets.

5. FP PROBABILITY OF BLOOMTREE

Having introduced the design of the BloomTree, we next analyze the FP probability of
a BloomTree instance.

5.1. Derivation of the FP Probability

Thanks to the tree-style insertion process, items are spread across a small number of
filters, where each filter will receive fewer items across levels accordingly. We can see
that, at each level, an item is not hashed to the whole bit array of that level, but only to
a subset of bits in that level. Further, some of the bits set for a given item have common
prefixes through the tree, so those bits that are set to one tend to be more clustered
than in the case of a flat Bloom filter. Accordingly, the set of bits set to one is biased
toward a subset of bits than the whole bit array. As a result, the FP probability per
filter can be controlled. Meanwhile, we still use the uniform-random hash functions for
each bit array, which keeps the simplicity of Bloom filters.

An FP event occurs for a membership query if and only if the visited BFs all report
that the item is in the set, that is, each BF queried on the tree reports an FP event for this
item. BloomTree uses independent hash functions for each SBF in the BloomTree. As
a result, the occurrences of FP events between different SBFs are explicitly decoupled,
and we can use multiple BFs to collaboratively detect the FP events. Therefore, the
FP probability of a BloomTree amounts to the product of the FP probabilities of the
queried SBFs.

We use the posterior FP probability to accurately model the distribution of the
BloomTree’s FP probability. Our experiments show that the a priori FP-probability
framework for SBF is not suitable for the BloomTree due to large errors (see Ap-
pendix A). Accordingly, the posterior FP probability of the BloomTree amounts to the
product of the posterior FP probabilities of the queried BFs.

Example of the FP probability of a set query: For Figure 3, we first calculate
the hash positions for the item y in the first level. We find that the first and third bits
are both set to one, implying that the item y is hashed into the top-level filter. For
two descendent filters (1) and (3) in the second level, we next test whether the item y
is hashed into these two filters. Assume that the bit locations are all set to one, that
is, the item is hashed into (1) and (3). We then select the descendants of the filters
(1) and (3), that is, filters (1, 1), (3, 1), (2, 3), and (3, 3), and test whether the item y is
hashed into them. If all visited filters report that the item y is hashed into them, then
the BloomTree claims that the item y is in the set. The posterior FP probability of the
query amounts to the product of the posterior FP probabilities of each of the traversed
filters, that is,

0.36︸︷︷︸
Firstlevel

× (0.44 × 1)︸ ︷︷ ︸
Secondlevel

× (0.33 × 0.33 × 0.33 × 0.33)︸ ︷︷ ︸
Thirdlevel

≈ 0.0019.

5.2. Computing the FP Probability of BloomTree

We next define the posterior FP probability of the BloomTree. We can clearly see that
the FP probability of the BloomTree depends on the set of selected BFs. An FP event
occurs when an item that is not in the set is claimed to be in the set by each SBF that is
queried. As discussed in Section 5.1, the FP events of different SBFs on the BloomTree

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:18 Y. Fu and E. Biersack

are independent of each other because of the independent hash functions; the FP
probability of the BloomTree can be computed as the product of the FP probability of
all participating BFs during the query process.

Let a BloomTree BT represent a set of n items. Given an incoming item y /∈ S, the
posterior FP probability Pa (BT , y) for querying the item y can be recursively written
as

Pa (BT , y) = Pa(R(BT ))
∏

BTy∈ST (R(BT ).h(y),BT )

Pa(BTy, y), (11)

where the function R(BT ) returns the root filter of the BloomTree instance BT , the
function ST () returns a set of new BloomTrees with roots as the descendent filters of
bits indexed by R(BT ).h (y), and the function h() computes the set of indexes for an
item y with the hash functions for a Bloom filter. From Equation (11), we can see that
the posterior FP probability depends on the set of selected BFs at each level.

Solving Equation (11) requires recursively multiplying the posterior FP probabilities
of returned filters by these two functions. The recursive function terminates at the leaf
filters since these leaves no longer have descendants.

To represent the central trend of the distributions of the FP probabilities, we compute
the geometric mean value Pa of the FP probabilities since it is well known that the geo-
metric mean is more robust than the arithmetic mean, while the latter is significantly
influenced by a few values that are much larger than the other values:

Pa (BT ) = Nb

√√√√ Nb∏
j=1

Pa(BT , xj), (12)

where xj ∈ S̃, the set S̃ represents a set of sampled items over the universe, and Nb
denotes the number of samples (Nb = 5000 by default).

Further, in Appendix B, we analyze the distribution of the numbers of items per
filter. We show that the number of items generally follows the Poisson distribution.

5.3. Empirical Distribution of the Filled Factors

Having shown that the posterior FP probabilities are random variables, we next present
the distributions of the filled factors, that is, the percentage of ones in the bit array,
across different filters in the BloomTree. The filled factor of a filter amounts to the
probability of mapping an item to a bit that has been set to one by a perfectly random
hash function.

We create BloomTree instances, then insert 10,000 items into each BloomTree. We
insert each item into the BloomTree with the perfectly random hash functions. Then,
we calculate the number of items and the filled factor of each filter. We finally compute
the complementary cumulative distribution functions (CCDF) of these two metrics for
filters at each level, which are plotted in Figures 8(a) and 8(b).

From Figure 8(a), we see that the tree structure decreases the number of items
hashed into a filter as we move toward the leaf level. As at each level i, there exists one
descendent filter at each bit of a filter BF(x, i) of size mi, the number of items mapped
to a bit of BF(x, i) amounts to 1

mi
times of the number of items inserted into the filter

BF(x, i).
In Appendix B, we provide a Poisson distribution–based approximation of the

expected number of items across filters in the BloomTree, which matches well with
the empirical distribution of the number of items in different filters in Appendix B.4.
Unfortunately, we cannot derive the exact number of items in each filter using a
closed-form function.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:19

Fig. 8. The CCDFs of the number of items, the filled factors of BFs, and the product of the posterior FP
probabilities defined by Equation (13) at each level in the BloomTree. We set n = nmax = 10,000, d = 4, ρ1 =
1, k1 = 4, mi,i>1 = 4, ki,i>1 = 2.

We see that items at each level are nonuniformly distributed. Different filters at the
same level may receive a different number of items. This is due to the tree-structured
mapping of items: each item is only mapped to a subtree of filters at each level depend-
ing on the ancestor filters in the tree, instead of all filters of the whole tree.

Further, since we cannot control the ratio between the number of items and the
length of the Bloom filter for levels l ≥ 2, the number of items, inserted into a BF, could
be larger than a filter’s length. As a result, some filters can be filled up with all ones.

We next plot the distributions of filled factors of filters at each level, as shown in
Figure 8(b). We see that the filled factors at each level vary significantly because of the
skewed distributions of items hashed into each filter.

5.4. Levelwise Posterior FP Probability

Having shown that filled factors are nonuniformly distributed, we next plot the poste-
rior FP probability of the BloomTree by levels. For a BloomTree instance, we enumerate
the possible paths of querying an item across different levels. Given an item y, we cal-
culate the product of posterior FP probabilities of involved BFs at each level i:

Pa (BT , y, i) =
∏
{ly,i}

Pa(BF(ly,i, i)), (13)

where {ly,i} denotes the set of indexes of involved BFs in level i. Each product value
of one query path across the tree provides one sample of the possible posterior FP
probability of the BloomTree.

From Figure 8(c), we see that the product of FP probabilities decreases by orders of
magnitude with increasing levels. This is because the number of BFs involved in each
membership queries increases exponentially with increasing number of levels, while
the posterior FP probability of each BF decreases quickly since we use the same BF
size for all levels ≥2.

For the same configuration of the BloomTree as in Figures 8(a), 8(b), and 8(c), we
now look at the coefficient of variance (CoV) of the posterior FP probabilities per level.
The CoV is computed as the ratio between the standard deviation and the geometric
mean. The CoV values of the levelwise products of the posterior FP probabilities of set
queries are 0.95, 4.38, and 40.06 for the second, third, and fourth level, respectively.
This means that the products of the FP probabilities vary much more significantly with
increasing levels, as we already saw in Figure 8(c).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:20 Y. Fu and E. Biersack

6. OPTIMIZING THE BLOOMTREE

Having empirically evaluated the BloomTree’s FP probabilities, we next propose to
optimize the BloomTree.

6.1. Challenges

Finding optimized parameters for BloomTree is challenging due to the following
reasons:

—The size and the number of BFs are integers, which makes the optimization objective
belong to an integer-programming problem. Minimizing the posterior FP probability
while keeping the transmission bandwidth under certain bounds is a multiobjective
nonlinear integer-programming problem [wikipedia.org 2016a], which is NP-hard in
general.

—The number of items in each BF follows the Poisson distribution as shown in Ap-
pendix B and is not strictly independent among different BFs, due to the negative
dependence [Dubhashi and Ranjan 1998] between the number of items of the BFs
that share the same ancestor in the tree structure.

—The posterior FP probability and the compressed size do not have closed form ex-
pressions; therefore, both must be approximated using simulations.

6.2. Optimization Framework

Assuming that the hash functions map items to bit locations uniformly at random,
then no matter whether an item is synthetic or real, its hashing locations will be
drawn uniformly at random in each SBF in the BloomTree. As a result, the expected
geometric FP probability and the expected compressed size of the BloomTree that is
constructed using synthetic items should match those of the BloomTree that is built
using the same number of real items from the set unknown in advance. Therefore,
we next optimize the expected geometric FP probability and the expected compressed
size using the BloomTree that are created using synthetic items drawn uniformly at
random from the universe. In Section 8.2.5, the trace-based experiments confirm the
effectiveness of the optimized parameters.

Our main objective is to trade off the posterior FP probability and the transmission
size. Further, we would like to consume less bandwidth than the SBF with the optimal
number of hash functions and the same FP probability.

Given a configuration x, where x = (mi, ki) for i ∈ [1, d], let Pa(BT (x)) be the pos-
terior FP probability of the BloomTree. Let WBT (BT (x)) be the transmission size of
the BloomTree after compression. As the hash locations computed for each filter may
lead to different branches in the hierarchical structure, we see that the FP probability
and bandwidth are both random variables. Consequently, let {(BT (x))} be N indepen-
dent BloomTree instances that are created by inserting nmax items that are drawn
uniformly at random from the universe. We approximate the posterior FP probability
Pa(BT (x)) with the geometric-mean FP probability Pa({BT (x)}) of Equation (12), the
bandwidth WBT (BT (x)) with the approximated bandwidth W BT ({(BT (x))}) computed
as WBT ({(BT (x))}) = 1

N

∑N
j=1 WBT (BTj(x)).

We determine the optimal number of hash functions for SBF based on Equation (3)
in order to minimize its FP probability. We compute the storage size of the standard
Bloom filter that has the same FP probability as that of the BloomTree as

WSBF({(BT (x))}) = nmax log0.6185 Pa({(BT (x))}) (14)

based on Equation (4), since no space can be compressed for an SBF with the optimal
number of hash functions [Mitzenmacher 2002].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:21

Then, we formulate a multiobjective optimization objective that minimizes the geo-
metric FP probability Pa({(BT (x))}), the compressed size W BT ({(BT (x))}), and the ratio
W BT ({(BT (x))})
W SBF ({(BT (x))}) between the bandwidth of the compressed BloomTree and that of the SBF.
The parameter space � includes any combinations of integers for the BFs in each level.
A solution x is said to dominate another solution x′ (x ≺ x′) if and only if

—Pa({(BT (x))}) < Pa({(BT (x′))}) and
—W BT ({(BT (x))}) < W BT ({(BT (x′))}) and
— W BT ({(BT (x))})

W SBF ({(BT (x))}) <
W BT ({(BT (x′))})
W SBF ({(BT (x′))})

hold simultaneously.
We can see that there exist sets of solutions that cannot improve any one objective of

{Pa({(BT (x))}), W BT ({(BT (x))}), W BT ({(BT (x))})
W SBF ({(BT (x))}) } without making another one of these ob-

jectives increase, that is, they are not dominated by any other solutions [wikipedia.org
2016b]. Generally, we define the Pareto-front solutions � as

� = { X ∈ X : { X′ ∈ X : X′ ≺ X, X′ �= X} = ∅}. (15)

6.3. Algorithm

Having formulated the multiobjective optimization framework, we introduce two meth-
ods to find the optimal parameters. The first approach is based on the exhaustive search
method that enumerates the entire parameter space. The second approach is based on
the Genetic algorithm [Goldberg 1989] that evolves toward the optimal parameters.

6.3.1. Exhaustive Search. In order to find all Pareto-front solutions, a simple approach is
to exhaustively evaluate the parameters in the search space. We set the total number of
rounds to the upper bound of the search space. At each round, we perform the following
steps:

—Select a vector x of parameters for the BloomTree that has not been evaluated.
—Create a number N (N = 500 by default) of random BloomTree instances using

synthetic items that are drawn uniformly at random from the universe.
—Calculate the averaged geometric posterior FP probability Pa({(BT (x))}) of the

BloomTree instances.
—Calculate the average compressed size W BT ({(BT (x))}) of the BloomTree instances.
—Compute the ratio between the average compressed size W BT ({(BT (x))}) and the

storage size of the SBF with the optimized number of hash functions and the FP
probability being Pa({(BT (x))}).

—Record Pa({(BT (x))}), W BT ({(BT (x))}), and W BT ({(BT (x))})
W SBF ({(BT (x))}) and the corresponding pa-

rameter vector x into a hash table.
—If all parameter combinations have been considered, calculate all Pareto-front points

using the records stored in the hash table and stop.

As the parameter space theoretically consists of all integers, it is practically impos-
sible to enumerate all parameter combinations. Based on the sensitivity evaluation of
the parameters in Section 7.7, we can prune the parameter space as follows:

—C1: For the first level, we limit the number of hash functions to k1 ∈ [2, 8], while the
ratio ρ1 between the size of the first-level filter and the maximum number nmax of
items is given as the input parameter.

—C2: For the second and higher levels, we limit the length mi of the BF to mi ∈ [2, 8]
and the number ki of hash functions to ki ∈ [1, 4] for i ∈ [2, d].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:22 Y. Fu and E. Biersack

We can see that the recommended parameters in Section 7.7 are subsets of the intervals
bounded by the constraints C1 and C2.

6.3.2. Genetic Algorithm. Having stated the exhaustive search process, we present a
Genetic algorithm [Goldberg 1989]-based approach that maintains a population of can-
didate BloomTree parameters and selects more fit candidate parameters stochastically
in multiple rounds.

We represent the candidate (called genetic representation in the Genetic algorithm
terminology) as a vector of double-precision numbers X = [m2, · · · md, k1, k2, · · · kd]. For
a two-level BloomTree, there are three variables in X, while for a d-level BloomTree,
there are 2d−1 variables. We limit the range of each variable based on the constraints
C1 and C2 stated earlier. We minimize the same multiobjective function as that in the
exhaustive search approach.

We implement the Genetic algorithm using the MATLAB “gamultiobj” toolbox.
We maintain at most 15 candidates in each round, while the maximum number of
optimization rounds is 100. Meanwhile, the optimization also terminates if the average
relative change of the best-fit objective over 50 rounds is not larger than a threshold
(10−4 by default).

6.3.3. Evaluation. We next compare the performance of the exhaustive search method
and the Genetic algorithm.

Experimental Setup: We generate synthetic items from a universe U of 64b num-
bers. Each item is uniformly sampled from this universe. We then construct empty
BloomTree instances. Next, we hash the set of items into the BloomTree instances and
calculate the posterior FP probability of the BloomTree. According to the membership
query process of the BloomTree, each query must iterate over a subtree of Bloom filters
across the ancestor-descendent links in a BloomTree instance. For the top level, we
select k1 bits that are set to one uniformly at random. Then, for each descendent filter
of these k1 bits, we recursively query the descendants. We terminate at the bottom
level. Finally, the posterior FP probability of a BloomTree amounts to the product of
posterior FP probabilities of these filters. We calculate the geometric-mean posterior
FP probability of each BloomTree instance by Equation (12).

We choose the two-level BloomTree as a case study. We set the ratio ρ1 between the
length of the bit array of the first-level filter and the number nmax of items to one.
We set the maximum number nmax of items to 10,000. We set the number n of items
in the synthetic set to be nmax by default. The average FP probability of a BloomTree
increases with increasing number n of items, since we set more bits to one at each level.
As a result, when n = nmax, the BloomTree has the largest average FP probability.
Therefore, our experiments show the upper bound of the FP probability. Varying the
ratio n

nmax
changes the FP probabilities, but the same conclusion still holds.

Results:
(i) Exhaustive Search: We first study the trade-off between the transmission band-

width and the FP probability of the parameter space, as shown in Figure 9(a). We
see that the Pareto-front solutions achieve better trade-offs than the non-Pareto-front
solutions. For example, we can use less than 4b per item to keep the geometric FP
probability smaller than 0.1, while the SBF with the optimal number of hash functions
needs at least 5b per item in order to keep the same FP probability.

We next compare the trade-offs between the FP probability and the ratio between
the BloomTree’s bandwidth and the SBF’s bandwidth. From Figure 9(b), we see that
the Pareto-front solutions reduce the bandwidth by more than a half compared to the
SBF. Consequently, BloomTree is able to obtain better trade-offs than the optimal SBF.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:23

Fig. 9. The whole set of solutions and the Pareto-front solutions for the exhaustive search process. Let the
score be the ratio between the bandwidth of the BloomTree and that of the SBF with the same geometric FP
probability. We set the maximal set size nmax to 10,000, d to 2, and ρ1 to 1.

Fig. 10. The Pareto-front solutions of the Genetic algorithm and the exhaustive search process. We set the
maximal set size nmax to 10,000, d to 2, and ρ1 to 1.

(ii) Genetic algorithm: Having presented the performance of the exhaustive search
algorithm, we next study the trade-offs found by the Genetic algorithm. As the exhaus-
tive search algorithm obtains the optimal Pareto-front solutions for the whole param-
eter space, we plot the Pareto-front solutions of the exhaustive search as the baseline
performance. Figure 10 shows the trade-offs between the FP probability and the band-
width and those between the FP probability and the ratio between the BloomTree’s
bandwidth and the SBF’s bandwidth. The Genetic algorithm finds fewer Pareto opti-
mal solutions than the exhaustive search because the Genetic algorithm stochastically
creates candidate solutions in each round, which does not guarantee the completeness
of the solutions.

Although the exhaustive search method finds more Pareto-front solutions, it does
not scale well, as it needs to evaluate 7 · (7 · 4)d−1 = 7 · 28d−1 parameter combinations.
For example, the number of parameter combinations (iteration rounds) is 196 for d
= 2, 5488 for d = 3, and 153664 for d = 4, while the Genetic algorithm’s worst time

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:24 Y. Fu and E. Biersack

Table III. Some Optimal Configurations for BloomTree

d ρ1 m2 m3 m4 m5 k1 k2 k3 k4 k5 Pa
WBT

WC BF

WBT
WSBF

WBT
MBT

MBT
nmax

HBT
HSBF

T Q
BT

T Q
SBF

2 0.5 3 − − − 6 1 − − − 0.84 0.33 0.39 0.096 1.5 6 2.36
3 0.5 4 3 − − 5 3 2 − − 0.21 0.43 0.55 0.21 8.5 25 6.20
4 0.5 5 3 3 − 6 3 2 2 − 1.02 ×10−5 0.67 0.71 0.51 33 8.25 5.93
5 0.5 4 4 2 3 6 3 3 1 2 2.01 ×10−12 0.93 0.90 0.67 74.6 6.15 5.46
2 1 4 − − − 6 3 − − − 0.38 0.38 0.49 0.20 4.88 12 3.53
3 1 4 3 − − 6 3 2 − − 0.0026 0.59 0.69 0.50 16.6 7.5 4.46
4 1 4 4 5 − 6 3 3 2 − 2.55×10−22 0.91 0.85 0.87 98.6 1.86 2.50
5 1 2 4 2 7 4 1 3 1 1 5.37 ×10−13 1.35 1.30 0.55 139 1.1 1.13

Note: The size n of the itemset is set to nmax = 108. ρ1 = m1
nmax

. Let MBT , WBT denote the storage size

and the transmission size of a BloomTree instance, respectively. Let Pa be the geometric-mean posterior
FP probability of the BloomTree. Let WC BF and WSBF be the transmission sizes of the CBF and SBF
instances. Let HBT and HSBF be the total numbers of hash functions for BloomTree and SBF that are
evaluated for a query process, respectively. Let T Q

BT and T Q
SBF be the average time to insert an item for

BloomTree and SBF, respectively.

complexity is fixed. Therefore, we recommend the exhaustive search method for d = 2
and the Genetic algorithm for d ≥ 3 levels.

6.4. Optimal BloomTree Configurations

We next report some optimized parameters. We compare the transmission size and
querying speed for BloomTree, the SBF and the CBF [Mitzenmacher 2002]. For a fair
comparison, we create CBF and SBF instances whose geometric-mean posterior FP
probabilities amount to those of the BloomTree instances. The bandwidth of the SBF
amounts to the size of its bit array, while the bandwidth sizes of CBF and BloomTree
amount to their sizes after compression.

The optimized parameters are summarized in Table III. For each row in the table, we
show the mean posterior FP probabilities for BloomTree, the ratios between BloomTree,
SBF, and CBF using the following ratios:

— WBT
WC BF

: the ratio of the bandwidth of BloomTree and that of the CBF.
— WBT

WSBF
: the ratio of the bandwidth of BloomTree and that of the SBF.

— WBT
MBT

: the ratio of the bandwidth of BloomTree and the storage size of the BloomTree.
— HBT

HSBF
: the ratio of the number of hash functions that are evaluated for a query process

for BloomTree and that for the SBF with the optimal number of hash functions.

— T Q
BT

T Q
SBF

: the ratio of the average time to query an item in BloomTree and that in the

SBF with the optimal number of hash functions.

6.4.1. False-Positive Probability versus Transmission Size. The results shown in Table III
indicate that:

(1) BloomTree’s average FP probabilities decrease exponentially with increasing
levels. BloomTree’s accuracy is determined by close-to-leaf Bloom filters. The filters
in the middle levels of the BloomTree serve as the selector to choose SBFs close to
the leaves. Increasing the number d of levels means that an exponential number
of close-to-leaves Bloom filters are added to the membership queries. Therefore,
BloomTree has exponentially decreasing FP probabilities as the depth d increases.

(2) The transmission size required for transmitting the BloomTree is around 20% to
80% lower than its storage size. For d ≤ 4, the BloomTree reduces the transmission

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:25

size by around 20% to 50% compared to the SBF, and by 9% to 67% compared to the
CBF. BloomTree can be compressed efficiently, since there are plenty of zeros in the
bottom level in the BloomTree. The BFs of the middle- portions of a BT are usually
filled up fast with ones, which leads to a higher compression gain. The SBF cannot be
compressed since we use the optimal number of hash functions. CBF can be efficiently
compressed since only two hash functions are used.

(3) Increasing ρ1 from 0.5 to 1 decreases BloomTree’s FP probabilities by several orders
of magnitude, but slightly decreases the size saving of BloomTree. Increasing ρ1 yields
larger first-level bit arrays. When we fix the number nmax of items, the filled factor of
the first-level filter decreases and the numbers of items inserted into each descendent
branch decreases.

From Table III, the parameters of BloomTrees for ρ1 = 0.5 and 1 are similar; there-
fore, the filled factors of most filters in the BloomTree will be decreased. As a result,
BloomTree’s FP probabilities decrease with increasing ρ1 from 0.5 to 1.

We can see that BloomTree’s saved transmission size over SBF and CBF decreases
when we change ρ1 from 0.5 to 1 since, for ρ1 = 1, the BloomTree’s storage increases
by several times.

(4) Increasing the number d of levels decreases the transmission size saving of
BloomTree From Table III, we see that the ratios WBT

WC BF
and WBT

WSBF
increase as the depth

d increases. BloomTree with d = 5, ρ1 = 1 is poorer than CBF and SBF. This is be-
cause the size of the middle-portion filters in BloomTree is only 2b to 4b; these filters
are quickly filled with all ones with an increasing number of items. As a result, FP
probability of the BloomTree is dominated by the bottom-level BFs, and increasing the
number of layers causes more bits in the middle portion of the BloomTree to be useless
in controlling the FP probabilities.

6.4.2. Speed Comparison. We next compare the access time between BloomTree and
SBF. Generally, the access time consists of two components: (i) hashing time, that
is, the time to compute the hashing locations; and (ii) memory access time, that is, the
time to set or query the hashing bits.

—Hashing time: For the double-hashing mechanism, we only need two hash seeds to
generate multiple hash functions. As a result, the hashing time consists of the time
�2 to create two hashing seeds and that of generating the hash functions. Let � � �2
be the average time to calculate one different hash value using the hash seeds. Then,
we can represent the hashing time for BloomTree and SBF as follows:{

TBT (Hash) = �2 + HBT · �

TSBF (Hash) = �2 + HSBF · �
, (16)

where HBT represents the number of hash functions in BloomTree and HSBF denotes
the number of hash functions in the SBF.

—Memory access time: As the hash function maps the elements to bit locations that
are selected uniformly at random from the whole bit array, there exists little locality
between different hashing values. Therefore, the memory access time can be approx-
imated as the product of the number of unique hash functions and the average time
Tbit to manipulate 1b. The memory access time TBT (Memory) of BloomTree with
HBT hash functions and that TSBF (Memory) of SBF with HSBF hash functions can
be represented as {

TSBF (Memory) ≈ HSBF · Tbit

TBT (Memory) ≈ HBT · Tbit
. (17)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:26 Y. Fu and E. Biersack

Having presented the components of the access time, we next compute the ratio of
the access time of the BloomTree and that of the SBF:

SpeedRatio = TBT (Hash) + TBT (Memory)
TSBF (Hash) + TSBF (Memory)

≈ HBT · Tbit + �2 + HBT · �

HSBF · Tbit + �2 + HSBF · �
, (18)

which can be rewritten as

HBT · (Tbit + �) + �2

HSBF · (Tbit + �) + �2
=

HBT + �2
Tbit+�

HSBF + �2
Tbit+�

= HBT + ψ

HSBF + ψ
, (19)

where ψ = �2
(Tbit+�) . We can see that ψ is a constant and is generally greater than one,

since the hash function’s time complexity is higher than that of accessing a bit in the
memory [Broder and Mitzenmacher 2003; Putze et al. 2009]. By dividing the number
HSBF in the numerator and the denominator of the rightmost equation in Equation (19),
we have that

SpeedRatio =
HBT
HSBF

+ ψ

HSBF

1 + ψ

HSBF

= 1 +
HBT
HSBF

− 1

1 + ψ

HSBF

. (20)

We make several observations based on Equation (20):

—Sublinear increment: The SpeedRatio increases in a sublinear rate as we increase
the ratio HBT

HSBF
between the number of hash functions of the BloomTree and that of

the SBF, since the denominator 1 + ψ

HSBF
is greater than one;

—Phase transition: When the SBF has a few hash functions, that is, HSBF is much
smaller than ψ , we see that the denominator 1 + ψ

HSBF
dominates the SpeedRatio. As

a result, the SpeedRatio increases marginally as the ratio HBT
HSBF

increases. In contrast,
when HSBF is close to ψ , we see that the numerator dominates the SpeedRatio;
therefore, the SpeedRatio increases sublinearly as the ratio HBT

HSBF
increases.

From Table III, we see that the number of hash functions of the BloomTree is 1.1 to
25 times larger than that of the SBF. This is because the number of hash functions that
are evaluated in the query process for the BloomTree increases exponentially with the
depth d, while the SBF chooses a fixed number of hash functions.

Further, the query time of the BloomTree is about 1.13 to 6.2 times larger than that of
the SBF, since the BloomTree evaluates more hash functions than the SBF and makes

more accesses to memory than the SBF. Moreover, the SpeedRatio T Q
BT

T Q
SBF

experiences a

phase transition when the number of levels increases from 2 or 3 to 4 or 5: When d =
2 or 3, the SpeedRatio is much smaller than the ratio HBT

HSBF
, but it is comparable to the

ratio HBT
HSBF

for d = 4 or 5. This is because the number HSBF of hash functions for the
SBF is smaller than 10 when d = 2 or 3, but increases by a factor of two to seven when
d = 4 or 5.

7. PARAMETER SENSITIVITY

We next evaluate the sensitivity of the BloomTree’s accuracy with respect to the pa-
rameter settings using the same experimental setup as in Section 6.3.3.

7.1. Scalability of the BloomTree

We first evaluate the dynamics of the FP probabilities of the BloomTree as we vary the
number n = nmax of items of the BloomTree. We fix other parameters for the BloomTree

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:27

to be constant: d = 4, ρ1 = 0.5, k1 = 6, mi,i>1 = 4, and ki,i>1 = 2. We compute the
geometric-mean probability of the BloomTree at each tested number n.

From Figure 11(a), we see that, for a varying maximum number nmax of the items
to be inserted into the BloomTree, the FP probability does not vary too much. This is
expected since the expected numbers of items across filters are approximately constant.

First, the expected number of items inserted into each bit in the first level amounts
to k1

ρ1
according to Equation (22) in Appendix B.1, where k1 denotes the number of hash

functions in the first level and ρ1 denotes the ratio between the number n of items and
the size of the first-level filter. Since we fix k1 and ρ1, the expected number of items in
each bit of the first-level filter is constant.

Second, since we fix the size and the number of hash functions of the filters in the
second and higher levels, the expected number of items inserted to the filters in the
second and higher levels recursively depends on the expected number of items inserted
to each bit in the first level according to Appendices B.2 and B.3. Since the latter is
constant, we can see that the former is also approximately constant. As a result, the
expected FP probability of the BloomTree does not vary too much with an increasing
number of items.

Having confirmed that BloomTree is able to consistently control the FP probability
as we vary the number of items, we next fix the number of items to 10,000 and evaluate
how the posterior FP probabilities of the BloomTree vary as we change its parameters.

7.2. Depth d of BloomTree

We start by evaluating BloomTree’s performance by varying its depth d. Figure 11(b)
plots the posterior FP probability of BloomTree when we increase the depth d from two
to seven. We see that the FP probability of BloomTree instances drops exponentially
and the decreasing rate becomes even larger as the depth d increases. Although the
number of SBFs participating in the membership queries increases exponentially with
increasing levels, the FP probability of SBFs decreases with increasing levels, since
the BFs have the same lengths from the second to the leaf levels.

7.3. Ratio ρ1 between the Size of the Top-Level Filter and the Number n of Items

We then characterize the BloomTree’s posterior FP probability as we vary the ratio ρ1
between the length of the first-level BF and the number of items. From Figure 11(c),
we see that the BloomTree’s FP probability decreases exponentially with increasing ρ1,
since larger ρ1 decreases the number of bits set to ones for the first-level BF, which then
reduces the FP probability of descendent SBFs of the top level. The FP probability for
d < 4 decreases more quickly than that of the three-level BloomTree since the former
has more SBFs than the latter for participating in the membership queries. We set the
default ratio ρ1 to be 0.5 for the following experiments.

7.4. Size mi,i>1 of SBFs in ≥ 2 Levels

We next test the BloomTree’s FP probability as we change the length of SBFs in level
2 and higher. Setting different parameters for different levels or even different SBFs
in the same level is feasible, as we discussed in Section 6.2.

Figure 11(d) shows that the BloomTree’s posterior FP probability decreases expo-
nentially when we increase the BF size mi,i>1 from two to ten. Although the number of
SBFs participating in the membership queries does not change since we fix the num-
ber of hash functions for each BF, SBFs in ≥2 levels reduce their FP probabilities as
we enlarge the bit arrays of these SBFs. As a result, the BloomTree’s FP probability
decreases quickly.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:28 Y. Fu and E. Biersack

Fig. 11. The geometric-mean posterior FP probabilities of BloomTree as we vary a parameter at a time. By
default, we set nmax = n, d = 4, ρ1 = 0.5, m1 = 0.5 ∗ nmax, k1 = 6, mi,i>1 = 4, and ki,i>1 = 2.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:29

7.5. Number k1 of Hash Functions

We then vary the number of hash functions for the first-level BF to see whether the
BloomTree is able to keep low FP probabilities with a small number of hash func-
tions. We confirm that from Figure 11(e). The four-level BloomTree reaches the lowest
FP probability by using four to six hash functions, while the three-level BloomTree
steadily increases the FP probability with increasing hash functions. This is because a
large number k1 of hash functions causes the SBFs of the other levels to be filled with
many ones, yielding much higher FP values for these SBFs. While for the four-level
BloomTree, a too small k1 value yields a small number of SBFs responsible for answer-
ing the membership queries, since it uses too few filters for answering the queries.

7.6. Number ki,i>1 of Hash Functions

We have seen that the FP probability of the BloomTree decreases exponentially as the
BF size mi for levels i ≥ 2 increases. We now fix the BF size mi,i>1 and study the FP
probability of the BloomTree when we vary the number ki of hash functions for SBFs
at levels i ≥ 2.

From Figure 11(f), we see that the FP probability of the BloomTree with three
levels decreases with increasing ki,i>1, while for a BloomTree with four levels, the FP
probability first drops when increasing ki,i>1 from one to two and then increases as in
the case of the three-level BloomTree. For the three-level BloomTree, most SBFs in the
second and third levels have more than 50% of the bits set to one after changing ki,i>1
from one to two, as the BF size mi,i>1 is only four; for the four-level BloomTree, the
number of SBFs at the leaf level increases exponentially when increasing ki,i>1 from
one to two, which outweighs the FP degradation of the individual BFs.

7.7. Summary of Findings

From our experiments, we can draw the following conclusions. (i) Fixing the ra-
tio between the number n of items and the maximum number nmax of items yields
consistent FP probabilities for an increasing number of items for a configuration
{d, ρ1, k1, mi,i>1, ki,i>1} (Figure 11(a)). (ii) Increasing the depth d will exponentially de-
crease the FP probability (Figure 11(b)). (iii) Increasing the ratio ρ1 at the first layer
always decreases the FP probability, while there exists a “sweet spot” for ρ1 ≈ 1 (Fig-
ure 11(c)). (iv) The number of hash functions at each level should be fine-tuned in order
to obtain the local minimum of the posterior FP probability (Figures 11(e) and 11(f)).
(v) The size mi,i>1 of the SBFs at the second and higher layers should be modest. First,
recall that the expected number of items inserted into each descendent filter amounts
to the expected number of items inserted to the corresponding bit of its ancestor filter.
Increasing the size mi,i>1 decreases the expected number of items inserted to each BF
in the second and higher layers, which exponentially decreases the overall FP proba-
bility of the BloomTree (Figure 11(d)). Second, the overall storage size increases with
increasing filter size for the levels d > 1. For ease of analysis, let’s assume that the
filter for the levels d > 1 all have the same size, say, m. Then, the total storage size
amounts to m1 + m1

∑d
i=2 mi−1, where m1 denotes the filter size for the first level. For

m = 5, a three-level filter is of size 31 ∗ m1; a four-level filter is 146 ∗ m1.
As a result, we recommend the following default configuration: (i) the number of

levels d ∈ {2, 3, 4}; (ii) the ratio between the size of the root filter and the number of
items ρ1 = m1

n = 1; (iii) the number k1 of hash functions for the first layer k1 ∈ {4, 5, 6};
(iv) the number ki,i>1 of hash functions for the second and higher levels ki,i>1 ∈ {1, 2};
and (v) a modest size mi,i>1 for the BFs at the second and higher levels mi,i>1 ∈ {2, 3, 4}.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:30 Y. Fu and E. Biersack

Fig. 12. The FP probabilities and the transmission sizes as a function of the numbers of set items. The
upper bound nmax of the set size is set to 108. We set d = 4, ρ1 = m1

nmax
= 1, m2 = 4, m3 = 4, m4 = 5, k1 = 6,

k2 = 3, k3 = 3, k4 = 2.

8. PERFORMANCE COMPARISON

The goal of BloomTree is to simultaneously reduce the transmission size and achieve
a low FP probability. In this section, we compare the performance of BloomTree with
the SBF, the CBF, and two more closely related data structures for theset query and
the set-intersection query.

8.1. Set Query

In this section, we report the posterior FP probability of the set query and the trans-
mission size. We compare BloomTree with SBF, CBF, and two related tree-structured
BFs: the Bloofi [Crainiceanu and Lemire 2015] and the tree-structured filter (BTree)
[Yoon et al. 2014].

8.1.1. Comparison with SBF and CBF. We calculate the posterior FP probability of each
BloomTree instance according to Equation (11). Querying a BloomTree visits different
branches that depend on the hashing locations for the querying item. Therefore, for
each BloomTree instance, we perform 10,000 membership queries on the BloomTree.
We then compute the geometric mean values of the posterior FP probabilities. We repeat
each experiment ten times and compute the average values and their 95% confidence
intervals.

We next present the growth of transmission size of BloomTree as we add items to
this BloomTree. We set the BloomTree’s parameters according to Table III. The upper
bound nmax of set size is 108. For fair comparison, we plot the transmission sizes of CBF
and SBF that have the same geometric-mean posterior FP probability with that of the
BloomTree.

From Figure 12, we see that BloomTree’s FP probability increases as we keep adding
new items, since the percentage of bits set to one at each level monotonically increases.
Further, the BloomTree’s transmission size varies with increasing items because of the
compression. We see that BloomTree requires the smallest transmission size compared
to the CBF and the SBF as we continue to increase the number of items. For example,
CBF’s transmission size becomes infinity for a wide range of set sizes, since we have to
increase CBF’s bit array to be infinity to match the BloomTree’s FP probability, as the
number of hash functions of CBF is far from the optimal value. SBF is quite different
from the CBF, since SBF uses the optimal number of hash functions, which helps SBF
control its transmission size to be within feasible regions. SBF’s transmission size
increases when the set size grows to 0.5 times of the upper bound nmax, then decreases

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:31

Fig. 13. The FP probabilities and the compression sizes for BloomTree, Bloof,i and BTree.

afterwards, since the size of the SBF’s bit array depends on both the FP probability
that decreases exponentially and the set size that keeps increasing, which naturally
leads to a maximum point.

Finally, BloomTree’s transmission size first increases to its storage size, but then
decreases again after the set size reaches 40% of the upper bound nmax. This is because
the amount of compression at each level is inversely proportional to the binary entropy
of the bit array corresponding to each level, which is maximized when the percentage
p of zeros in each bit array is 0.5, but decreases when p deviates from 0.5. For the
BloomTree, the percentage p of zero-valued bits first increases to 0.5, which reduces
the gap between p and 0.5, but then becomes larger than 0.5, yielding a larger gap that
leads to more space being compressed.

8.1.2. Comparison with Tree-Structured Filters. We now compare the BloomTree with two
tree-structured filters, Bloofi [Crainiceanu and Lemire 2015] and BTree [Yoon et al.
2014]. We compute the geometric FP probabilities and the compression efficiency of
each method. We enforce that all methods have the same storage sizes to ensure a fair
comparison. We use a three-level BloomTree with ρ1 = 1, m2 = 4, m3 = 3, k1 = 6, k2 = 3,
and k3 = 2. We set the recommended parameters for Bloofi [Yoon et al. 2014] and BTree
[Crainiceanu and Lemire 2015]. We set the upper bound nmax of the number of items
to 108.

Figure 13(a) presents the variations of the posterior FP probabilities as more items
are inserted into the filters. We see that the BloomTree has the smallest FP probabili-
ties, which is two to five orders of magnitude smaller than for the BTree and three to
seven orders of magnitude smaller than for the Bloofi. The BloomTree uses a subtree
of filters to collaboratively detect the FP events, while the BTree only uses a chain of
filters for the detection of FPs. The BTree is better than the Bloofi since the BTree uses
a chain of independent BFs to detect the FP events, while the Bloofi only detects the
FP events using the leaf filters, since the internal nodes in the Bloofi have correlated
FP probabilities with the leaf filters.

Figure 13(b) shows the dynamics of the ratio between the transmission size and the
upper bound nmax as a function of the number of items inserted. We can see that
the BloomTree requires two to three times more bits than the BTree and Bloofi, while
the Bloofi and BTree have similar transmission sizes. This is because the BloomTree
has more BFs than the Bloofi and BTree, and it concentrates the bits set to one to
a small portion of the bits in each level; the filled factors of BFs in the BloomTree’s

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:32 Y. Fu and E. Biersack

Fig. 14. Comparing the SBF and CBF with the BloomTree as we vary the size of the set intersection.

bottom level are still far from one, while the filled factors of most BFs in each level in
the Bloofi and BTree are close to one. Consequently, the total space being compressed
at each level for the BloomTree is less than the Bloofi and BTree.

8.2. Set-Intersection Query

We next evaluate and compare the performance of estimating the set intersection by
intersecting the BFs.

8.2.1. Experimental Setup. The intersection of BloomTrees is also a new BloomTree.
Therefore, we enumerate the set of query processes across the tree. For each query,
we compute the product of the posterior FP probabilities of these filters selected at
each query process, which makes one sample of the posterior FP probabilities of the
intersection of the BloomTrees.

We generate a pair of BloomTrees BT (A) and BT (B) according to the maximum
number nmax of items that is set to 108. We vary the size of the set intersection SAB
and the sizes of two sets SA and SB to be general enough for diverse networking
applications. We compute the minimum of the transmission sizes for BT (A) and BT (B)
after compression. Let the minimum transmission size be WBT . Then, we compute the
geometric mean values of posterior FP probabilities for BT (A) and BT (B). We next
create instances for SBF and CBF and compute the posterior FP probability for the
intersection of SBF or CBF instances, respectively.

For fair comparison, we seek to set the same transmission sizes for SBFs and
CBFs with those of the BloomTree. For the SBF, we have a closed-form solution
by Equations (2) and (4). However, given an expected transmission size, reversely
computing the storage size for the CBF has no closed-form solutions. Therefore, we
have to choose the storage size for the CBF to approximate the same transmission size
with that of the BloomTree. Accordingly, we also plot the storage size and transmission
size of the CBF for comparison. In fact, the CBF’s transmission size is always larger
than that of the BloomTree. We set the BloomTree’s default parameters as: d to 3, ρ1
to 1, m2 to 4, m3 to 3, k1 to 6, k2 to 3, and k3 to 2. Varying these parameters changes the
outcomes, but the same conclusions hold consistently.

8.2.2. Varying the Set Intersection. We test whether the size of the set intersection im-
pacts query accuracy. We set the same size for two sets SA and SB, and change the size
of the set intersection. We see in Figure 14 that all three schemes see a degradation
of their FP probability with increasing size of the set intersection, since more items in

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:33

Fig. 15. Comparing the SBF and CBF with the BloomTree as we vary the number of items in the sets. We
fix the percentage of set intersection to 0.5.

the set intersection yield a higher percentage of bits set to one in the intersected filters,
which increases the overall FP probability.

The BloomTree’s FP probability is one to two orders of magnitude smaller than those
of the SBF and CBF, since the SBF and CBF instances scatter items that are not in
the set intersection over the whole bit array, which increases the number of bits set to
one in the intersection of filters, thus degrades the FP probability. Further, we found
that the 99th percentiles of FP probabilities of the BloomTree are worse than the ones
for the CBF or SBF. This is due to the variance of the number of items in different BFs.
The same trends hold for the following evaluation.

8.2.3. Varying the Number of Items in the Set. We next evaluate whether the number of
items in the sets affects the prediction accuracy. We set the same size for two sets and
fix the percentage of set intersection to 0.5 times the set size. We then vary the number
of items in two sets from 5 ∗ 106 to 108.

In Figure 15, we see for all three schemes an increase in their FP probability with
increasing number of items in the set, since more bits in the intersected filters will be
set to one. However, the BloomTree has several orders of magnitude smaller geometric
mean FP probabilities than SBF and CBF, since the BloomTree concentrates items
that are not in the set intersection over a small percentage of filters thanks to its tree
structure.

8.2.4. Varying the Skewness of Set Size. Since two sets do not necessarily have the same
size, we next evaluate how a difference in the set size affects the prediction accuracy.
We fix one set SA to nA = 108 and vary the size nB of the smaller set SB from 5 ×106 to
108. We set the size of the set intersection of SA and SB to 0.5 times the size of the set
SB. The skewness of two sets is calculated as 108

nB
≥ 1.

From Figure 16, we see that increasing the skewness of two sets decreases the FP
probabilities of all filters, since the intersection of filters cancels more ones as the set
SB has fewer items. The BloomTree has orders of magnitude smaller FP probabilities
than SBF and CBF. This is because BloomTree concentrates items into a small subset
of filters across the tree structure. Therefore, items are likely to be hashed into a more
disjoint set of filters with increasing levels. Therefore, the probability that a bit is set
to one in the intersection of filters decreases exponentially as the level increases. While
the SBF and CBF spread each item over the whole bit array, a bit in the intersection of
filters can be set to one by any item in two sets SA and SB. Therefore, the intersections

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:34 Y. Fu and E. Biersack

Fig. 16. Comparing the SBF and CBF with the BloomTree as we vary the skewness of sets.

Fig. 17. The variation of the FP rates as we vary the percentage of the items in the set intersection.

of the SBF and CBF have a much larger number of bits set to one than the BloomTree,
which leads to higher FP probabilities.

8.2.5. Trace-Based Experiments. We next use the real-world packet traces of a data
center [Benson et al. 2010] to evaluate the performance of the BloomTree intersection.
We sample two sets of two million packets uniformly at random from the dataset and
vary the size of the intersection of these two sets. To evaluate estimation accuracy, we
choose two million packets that are not in the set intersection from the datasets. We
represent each set using a BloomTree and estimate the intersection of two sets using
the BloomTree intersection approach. We define the false positive rate (FPR) of the
BloomTree intersection as the percentage of packets that are incorrectly claimed to be
in the set intersection. We use a three-level BloomTree with ρ1 set to 1, m2 to 4, m3
to 3, k1 to 6, k2 to 3, and k3 to 2. We repeat the experiments ten times and report the
average FPRs.

Figure 17 plots the average FPRs with increasing percentages of the set intersection.
We see that the BloomTree has the smallest FPR, which is one half to two orders of
magnitude smaller than that of the SBF, and three orders of magnitude smaller than
that of the CBF. The superiority of the BloomTree is expected, since the BloomTree

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:35

intersection cancels many bits that are set to ones by items that are not in the set
intersection.

Also, the SBF is better than the CBF, since the SBF uses the optimal number of hash
functions to minimize the FPR, while the number of hash functions for the CBF is far
smaller than that in the SBF.

9. CONCLUSIONS AND FUTURE WORK

Many geo-distributed applications require efficient approximate set queries. Bloom
filters are ideal for trading off query accuracy, storage space, transmission size, and
query speed. We have proposed a new variant of the BF called BloomTree that uses
a tree topology, which concentrates items into a small number of bit locations in the
tree structure, thus increases the locality of the bits set to one. Extensive experiments
show that the BloomTree obtains a nice trade-off between the FP probability and the
transmission bandwidth. Further, we propose an efficient intersection method for the
BloomTree to predict the items that are common to two sets, which decreases the FP
probability by orders of magnitude compared to existing BFs.

The BloomTree can be significantly compressed to reduce its transmission size
thanks to its tree-structured organization of small SBFs. To determine the optimal
configuration of a BloomTree, we compare an exhaustive search approach with the
Genetic algorithm. We find that the Genetic algorithm is preferable for d ≥ 3.

Future Work: There are several interesting directions to be pursued. First, an open
question is to optimize the BloomTree based on a closed-form theoretical analysis.
Second, we do not consider deleting items from the BloomTree. Third, the SBF can be
halved by performing the OR operation between the first and the second half [Yu et al.
2009]. It would be interesting to investigate whether the BloomTree can be extended
to support these operations.

APPENDICES

A. MISMATCH BETWEEN THE ESTIMATED FILLED FACTOR AND THE GROUND-TRUTH
FILLED FACTOR

The a priori FP probability estimates the filled factor of each filter using Equation (1).
Therefore, we validate the suitability of using the a priori FP probability for the
BloomTree by comparing the estimated filled factor and the ground-truth filled fac-
tor of each filter in the BloomTree.

We construct a BloomTree instance and record the numbers of inserted items and the
ground-truth filled factor of each filter. Then, we calculate the estimated filled factor of
each filter in the tree via (1 − 1/m)nk based on Equation (1), where m is the size of that
filter, k is the number of hash functions, and n is the number of items inserted into that
filter.

From Figure 18, we see that the ground-truth filled factors are different from the
estimated values across layers. Although the bottom layer has two to three times lower
errors than those of the middle-portion layers, over 90% of filters have estimation errors
greater than 0.1. Further, over 60% of the middle-portion filters have errors greater
than 0.4.

From our experiments, we see that the a priori FP probability fails to give accurate
BloomTree FP probabilities. Therefore, we do not use the a priori FP to guide the
experiments and parameter optimization, but use the posterior FP probability that
uses the filled factor of the bit array to quantify the BloomTree’s accuracy. The downside
is that it is difficult to determine optimal parameters for the BloomTree.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:36 Y. Fu and E. Biersack

Fig. 18. The CCDFs of the levelwise relative error between the estimated filled factor σ and the ground-truth
value f of each filter. We set n = 10,000, d = 4, ρ1 = 1, k1 = 4, mi,i>1 = 4, ki,i>1 = 2.

Next, we analyze the probability distribution of the numbers of items of each filter
in a BloomTree.

B. DISTRIBUTION OF NUMBERS OF ITEMS ACROSS LEVELS

Suppose that we insert n items into the BloomTree. We can see that we insert n items
into the first-level BF. We next derive the number of items inserted into each BF in the
levels ≥2.

B.1. Number of Items Hashed in Each Bit in the First Level

Since each bit of the filter in the top level corresponds to a descendent filter, the number
of items inserted into a bit in the first level amounts to the number of items inserted
into the corresponding descendent SBF in the second level. Therefore, we first compute
the number Y 1

i of items inserted into the ith bit in the first-level BF for i ∈ [1, m1].
Let m1 = ρ1nmax be the length of the first-level BF. Since we choose k1 hash functions

for the first level, we set a total number nk1 of bits to one; therefore, we see that
Y 1

i ≤ nk1. As the number n of inserted items is upper bounded by nmax, we see that the
number Y 1

i of items that is inserted to the ith bit is upper bounded by nmaxk1; therefore,
Y 1

i can be approximated using the Poisson distribution. The probability of Y 1
i = x is

computed as

Pr
(
Y 1

i = x
) = (λ)x e−(λ)

x!
=

(
n

nmax
· k1

ρ1

)x
e−( n

nmax
· k1
ρ1

)

x!
(21)

for x ∈ {1, 2, . . . , nk1}.
We can also derive the expected number of items λ hashed into a bit as

λ = nk1

m1
= nk1

ρ1nmax
= n

nmax
· k1

ρ1
. (22)

B.2. Number of Items in the Second Level

Let Y 2
i (i ∈ [1, m1]) be the number of items inserted into the ith filter BF2,i in the

second level. Since the ith filter BF2,i corresponds to the descendant of the ith bit of
the filter in the top level, we can see that Y 2

i = Y 1
i holds. Therefore, we can represent

Y 2
i as follows, based on Equation (21). Further, the expected number of items for Y 2

i
are determined by Equation (22).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:37

B.3. Number of Items in Higher Levels

Given the bth BF BFa,b at the ath (a ≥ 2) level in the BloomTree, let Y a
b denote the

number of items inserted into the BF BFa,b. We next compute the number of items
hashed into the descendants of BFa,b.

For an SBF BFa,b, we represent its ka (a ≥ 1) descendent BFs as {BF(a+1),bi } (i ∈ [1, ka])
in the (a + 1)th level. We can see that the total number of items inserted into these ka
descendent BFs satisfies that

ka∑
i=1

Y a+1
bi

≤ Y a
b ka. (23)

As a result, the number Y a+1
bi

of items of the BF BF(a+1),bi is upper bounded by Y a
b ka.

Since Equation (23) is recursive, we see that Y a
b ka itself has an upper bound. Therefore,

we also approximate the number of items based on the Poisson distribution.
Similar to Section B.1, the number Y a+1

bi
of items of the BF BF(a+1),bi amounts to the

number of items hashed into the corresponding bit in its ancestor BFa,b. The probability
of having x items in a descendent BF at the (a + 1)th level amounts to

f
(
x, λa+1

bi

) = Pr
(
Y a+1

bi
= x

) =
(
λa+1

bi

)xe−(λa+1
bi

)

x!
=

(
Y a

b ka

ma

)x
e−(

Ya
b ka
ma

)

x!
, (24)

where x ∈ [0, Y a
b ka].

The expectation λa+1
bi

of the number of items for the BF BF(a+1),bi can be computed as

λa+1
bi

= E
[
Y a+1

bi

] = Y a
b ka

ma
. (25)

By calculating the expectation of two sides in Equation (25), we have a recursive
equation between the expectation of the expected number λa+1

bi
of the items hashed to a

descendant BF(a+1),bi and the expected number λa
b of items hashed to its ancestor BFa,b:

E[λa+1
bi

] = E[ Y a
b ka

ma
] = ka

ma
E[Y a

b ] = ka
ma

λa
b. Further, the variance var(Y a+1

bi
) of the items of

different descendent BFs is var(Y a+1
bi

) = E[Y a+1
bi

] = λa+1
bi

.

B.4. Example

Next, we use the empirical distribution of the numbers of items across filters in Fig-
ure 8(a) to test the accuracy of the Poisson distribution–based approximation of the
numbers of items. Recall that n = nmax = 10,000, d = 4, ρ1 = 1, k1 = 4, mi,i>1 = 4, and
ki,i>1 = 2. First, for a filter in the second level, we can estimate the expected number
of items based on Equation (22) and Equation (25): λ2 = n

nmax
× k1

ρ1
= 1 × 4

1 = 4. Second,
for a filter in the third level, the expected number λ3

bi
of items can be approximated as

λ3
bi

= E[Y 3
bi

] = Y 2
b k2

m2
= Y 2

b 2
4 = Y 2

b
2 . As the expectation E[Y 2

b ] of the number of items per
filter in the second level amounts to λ2, we see that the expectation λ3

bi
of the number

of items per filter in the third level amounts to λ2
2 = 2, which matches Figure 8(a) quite

well.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their numerous and constructive comments that helped improve
the article significantly.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



19:38 Y. Fu and E. Biersack

REFERENCES

Karolina Alexiou, Donald Kossmann, and Per-Ake Larson. 2013. Adaptive range filters for cold data: Avoiding
trips to Siberia. In Proceedings of the VLDB Endowment. 1714–1725.

Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: Self-tuning indexes for similarity
search. In Proceedings of WWW. 651–660.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traffic characteristics of data centers
in the wild. In Proceedings of IMC. 267–280.

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM 13, 7, 422–426.

Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel Smid,
and Yihui Tang. 2008. On the false-positive rate of bloom filters. Information Processing Letters 108, 4,
210–213.

Andrei Z. Broder and Michael Mitzenmacher. 2003. Network applications of bloom filters: A survey. Internet
Mathematics 1, 4.

Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G. Andersen. 2010.
SplitScreen: Enabling efficient, distributed malware detection. In Proceedings of NSDI. 377–390.

Xu Cheng and Jiangchuan Liu. 2009. NetTube: Exploring social networks for peer-to-peer short video sharing.
In IEEE INFOCOM. 1152–1160.

Ken Christensen, Allen Roginsky, and Miguel Jimeno. 2010. A new analysis of the false positive rate of a
Bloom filter. Information Processing Letters 110, 21, 944–949.

Adina Crainiceanu and Daniel Lemire. 2015. Bloofi: Multidimensional Bloom filters. Information Systems
54, 311–324.

Dubhashi and D. Ranjan. 1998. Balls and bins: A study in negative dependence. Random Structures and
Algorithms 13, 2, 99–124.

David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. 2011. What’s the difference?
Efficient set reconciliation without prior context. In Proceedings of SIGCOMM, Vol. 41. 218–229.

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman. 1998.
Computing Iceberg queries efficiently. In Proceedings of VLDB. 299–310.

Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vitucci. 2008. Blooming trees: Space-
efficient structures for data representation. In Proceedings of ICC. 5828–5832.

Yongquan Fu and Yijie Wang. 2012. BCE: A privacy-preserving common-friend estimation method for dis-
tributed online social networks without cryptography. In 7th International ICST Conference on Commu-
nications and Networking in China (CHINACOM’12). 212–217.

Yongquan Fu, Yijie Wang, and Ernst Biersack. 2013. A general scalable and accurate decentralized level mon-
itoring method for large-scale dynamic service provision in hybrid clouds. Future Generation Computer
Systems 29, 5, 1235–1253.

Yongquan Fu, Yijie Wang, and Wei Peng. 2014. CommonFinder: A decentralized and privacy-preserving
common-friend measurement method for the distributed online social networks. Computer Networks 64,
369–389.

David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA.

Fang Hao, Murali Kodialam, and T. V. Lakshman. 2007. Building high accuracy Bloom filters using parti-
tioned hashing. In Proceedings of SIGMETRICS. 277–288.

Mark C. Jeffrey and J. Gregory Steffan. 2011. Understanding Bloom filter intersection for lazy address-set
disambiguation. In Proceedings of SPAA. 345–354.

Adam Kirsch and Michael Mitzenmacher. 2008. Less hashing, same performance: Building a better Bloom
filter. Random Structures and Algorithms 33, 2, 187–218.

Georgia Koloniari, Nikos Ntarmos, Evaggelia Pitoura, and Dimitris Souravlias. 2011. One is enough: Dis-
tributed filtering for duplicate elimination. In Proceedings of ACM CIKM. 433–442.

Dan Li, Henggang Cui, Yan Hu, Yong Xia, and Xin Wang. 2011. Scalable data center multicast using multi-
class Bloom filter. In Proceedings of IEEE ICNP. 266–275.

Steven S. Lumetta and Michael Mitzenmacher. 2007. Using the power of two choices to improve Bloom filters.
Internet Mathematics 4, 1, 17–33.

Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic nuggets in content delivery. SIGCOMM
Computer Communication Review 45, 3, 52–66.

Michael Mitzenmacher. 2002. Compressed Bloom filters. IEEE/ACM Transactions on Networking 10, 5,
604–612.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.



False-Positive Probability and Compression Optimization for Tree-Structured Bloom Filters 19:39

Michael Mitzenmacher and Salil Vadhan. 2008. Why simple hash functions work: Exploiting the entropy in
a data stream. In Proceedings of SODA. 746–755.

Felix Putze, Peter Sanders, and Johannes Singler. 2009. Cache-, hash-, and space-efficient bloom filters. ACM
Journal of Experimental Algorithmics 14, 4.4 (2009).

Brad Solomon and Carl Kingsford. 2015. Large-Scale Search of Transcriptomic Read Sets with Se-
quence Bloom Trees. Technical Report. Retrieved August 25, 2016 from http://repository.cmu.edu/cgi/
viewcontent.cgi?article=1001&context=cbd.

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. 2012. Theory and practice of Bloom filters for distributed
systems. IEEE Communications Surveys Tutorials 14, 1, 131–155.

wikipedia.org. 2016a. Integer Programming. Retrieved August 25, 2016 from https://en.wikipedia.org/
wiki/Integer_programming.

wikipedia.org. 2016b. Multi-objective optimization. Retrieved August 25, 2016 from https://en.wikipedia.org/
wiki/Multi-objective_optimization.

Tong Yang, Alex X. Liu, Muhammad Shahzad, Yuankun Zhong, Qiaobin Fu, Zi Li, Gaogang Xie, and Xiaoming
Li. 2016. A shifting Bloom filter framework for set queries. Proceedings of the VLDB Endowment 9, 5,
408–419.

MyungKeun Yoon, JinWoo Son, and Seon-Ho Shin. 2014. Bloom tree: A search tree based on Bloom filters
for multiple-set membership testing. In Proc. of INFOCOM. 1429–1437.

Minlan Yu, Alex Fabrikant, and Jennifer Rexford. 2009. BUFFALO: Bloom filter forwarding architecture for
large organizations. In Proceedings of ACM CoNEXT. 313–324.

Dong Zhou, Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky, Michael Mitzenmacher, Ren
Wang, and Ajaypal Singh. 2015. Scaling up clustered network appliances with ScaleBricks. In Proceed-
ings of SIGCOMM. 241–254.

Received October 2015; revised May 2016; accepted May 2016

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 4, Article 19, Publication date: September 2016.

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1001amp;context=cbd
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1001amp;context=cbd
https://en.wikipedia.org/ ignorespaces wiki/Integer_programming
https://en.wikipedia.org/ ignorespaces wiki/Integer_programming
https://en.wikipedia.org/ ignorespaces wiki/Multi-objective_optimization
https://en.wikipedia.org/ ignorespaces wiki/Multi-objective_optimization

