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Abstract— Online cloud services need to fulfill clients’ requests
scalably and fast. State-of-the-art cloud services are increasingly
deployed as a distributed service mesh. Service to service com-
munication is frequent in the mesh. Unfortunately, problematic
events may occur between any pair of nodes in the mesh, there-
fore, it is vital to maximize the network visibility. A state-of-the-
art approach is to model pairwise RTTs based on a latent factor
model represented as a low-rank matrix factorization. A latent
factor corresponds to a rank-1 component in the factorization
model, and is shared by all node pairs. However, different
node pairs usually experience a skewed set of hidden factors,
which should be fully considered in the model. In this paper,
we propose a skewness-aware matrix factorization method named
SMF. We decompose the matrix factorization into basic units
of rank-one latent factors, and progressively combine rank-one
factors for different node pairs. We present a unifying framework
to automatically and adaptively select the rank-one factors for
each node pair, which not only preserves the low rankness of
the matrix model, but also adapts to skewed network latency
distributions. Over real-world RTT data sets, SMF significantly
improves the relative error by a factor of 0.2 x to 10 x, converges
fast and stably, and compactly captures fine-grained local and
global network latency structures.

Index Terms— Service mesh, matrix factorization, skewness,
latent factor model, residual learning.

I. INTRODUCTION

LARGE-scale cloud services are typically organized as a
mesh of micro-services deployed over hundreds to thou-

sands of nodes, as illustrated in Figure 1. Service-to-service
communication is frequent on the mesh structured service
topology. For example, a Web request may traverse thou-
sands of servers to search and aggregate results. A request’s
service level agreement (SLA) is determined based on the
response from the slowest server. As problematic locations are
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Fig. 1. An illustration of a service-mesh scheme [3], [4]. A cloud service
consists of a collection of loosely-coupled micro-services hosted on a set
of distributed servers. The service-to-service communication is managed by
a dedicated service-mesh proxy layer for autonomous traffic control and
optimization. The monitoring functionality is located at the proxy layer to
collect pairwise RTT status for the service mesh layer.

unpredictable a priori, we need to track RTTs by all nodes and
for all nodes [23].

Timely response is vital for ensuring the Quality of Expe-
rience (QoE) [29], [45], otherwise, the increased delay signif-
icantly affects users’ experience and providers’ revenue [10],
[51]. Unfortunately, high latency issues may arise between any
node pairs of the service mesh, due to changing routing paths,
degraded path conditions, or transient network congestions.
To correctly correlate the network issue with the problematic
service, it is vital to tell if a service is affected by a network
issue by monitoring pairwise RTTs of the service mesh.
Further, optimizing the service mesh needs pairwise RTTs. For
example, we may choose the detour routing scheme [13], [40],
[52] that selects a relay on the direct routing path between a
set of hosts and forwards packets via the relay.

A straightforward approach is to directly collect all-pair
network latency, which requires a quadratic number of probing
packets with respect to the system size. To provide enough
network visibility, we need to predict missing measurement
results. The measurement may also disturb normal application
traffic, as node resources are usually shared among multiple
tenants.

To reduce the probing cost, researchers have proposed
prediction methods that embed nodes into a low-dimensional
vector space and estimate the pairwise RTTs based on the
vector distances. This representation model succinctly captures
the pairwise network latency matrix, and needs only O(N)
probes to predict the full pairwise matrix for N hosts in edge
data centers. Further, the vector representation can act as the
input for various applications [15], [16], [26].

The vector space follows from a low-rank matrix factor-
ization model [17], [31], [32], [34], which represents each
node as a vector of variables. These variables are “latent”
in the sense that they are not directly observed, but should
be inferred via a mathematical model from observed data.
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A matrix factorization model is well known to be equivalently
represented as the sum of a set of rank-one matrices [22].
A rank-one matrix represented as the product of two vectors
FkG

T
k for k ≤ r ( the constant r denotes the number of

rank-one matrices) serves as a “latent factor”; and the vector
Fk and Gk serve as the soft memberships of each row and
each column of the RTT matrix to this latent factor [12],
[43], respectively. As the same set of rank-one matrices are
shared by all nodes, all node pairs are implicitly assumed to
share the same set of latent factors. However, our analyses in
Section III-C show that a real-world network latency matrix
is heterogeneous and highly skewed, thus different node pairs
are typically correlated with heterogeneous factors. Thus the
matrix factorization should be revisited to account for skewed
factors.

In this paper, we focus on improving the adaptation to
the skewness for the matrix factorization model. We propose
a skewness-aware matrix factorization method called SMF,
which decomposes the matrix factorization framework into the
basic units of rank-one matrices, and selectively combines the
rank-one entries for each node pair to account for skewed
factors.

The first challenge is how to smartly combine the rank-one
matrices. Existing methods assume positive correlations
between the rank-one matrices and the approximation results.
We relax this assumption and consider generalized scenarios
where each rank-one matrix is either positively correlated, neg-
atively correlated or irrelevant. Then, we model these relations
within a unifying residual-learning framework, by extending
the well-known orthogonal matching pursuit algorithm [37].
In each iteration, we add a new rank-one matrix into the
prediction, where each entry is either added, bypassed, or
decreased to account for the skewness of the network latency
distribution.

The second challenge is how to complete the selection
decision for each entry. We treat the selection decision
as the rating score and the service mesh as both clients
and goods, and establish a collaborative filtering task that
predicts missing rating scores between a set of clients and
a set of goods. We propose an adaptive method to map
the collaborating filtering scores to discrete combination
choice by extending the well-known maximum margin matrix
factorization method [38], [44].

Finally, extensive experiments using real-world data sets
confirm that our approach reduces the relative errors by a
factor of 0.2x to 10x compared to state-of-the-art methods.
SMF converges fast and stably. Applying SMF to inform the
low-latency detour routing [13], [40], [41] achieves close to
optimal performance. Further, we have evaluated the parameter
regions where SMF obtains good approximations and verified
its computational efficiency.

In summary, we make three primary contributions in this
paper:

• We quantify the skewness of the RTT metric with respect
to a set of local and global metrics.

• We develop a skewness-aware matrix factorization frame-
work SMF that adaptively learns rank-one latent factors.

• We perform extensive experiments on real-world data sets
to confirm that that SMF finds a good balance between
the low rankness and the adaptation to skewed RTT
distributions.

The rest of the paper is organized as follows. Section II
summarizes the related literature. Next, Section III presents
the background and states the requirements for skewed latent
factors. Next, Section IV introduces the basic ideas of the
skewness-ware matrix factorization. Section V presents the
detailed algorithms and analysis. Section VI reports simulation
experiments compared with state-of-the-art methods. Finally,
we conclude in Section VII.

II. RELATED WORK

Extensive studies have been made to enable network-latency
measurement for large-scale distributed systems and data cen-
ter networks. We only introduce representative studies that are
most related to us.

A. Mesh Network Monitoring

iPlane [33] predicts end to end network latency based
on an Internet topology model. iPlane issues active probes
from wide-area vantage points to routable network addresses.
PingMesh [23] collects all-pair round-trip time (RTT) mea-
surement system in several scales for geo-distributed data
centers, which accumulates 24 TBs of probe results each day.
[50] approximates network latency in an OpenFlow network
environment based on control messages to and from the
OpenFlow controller. Mobilyzer [36] provides a controlled and
isolated library for mobile network measurement experiments.
Our work is complementary to these studies by predicting
missing measurements.

B. Network Latency Prediction

Researchers proposed to predict network latency with
network coordinate methods for scalability. GNP [35]
pioneers this field with an Euclidean coordinate system.
Vivaldi [8] combines a 2-d coordinate system with a height
model that reflects the first-hop delay of traversing the
accessing link. IDES [34] and DMFSGD [31] embed nodes in
a two-factor matrix factorization model. DMFSGD [31] trains
the low-rank matrix factorization with the SGD optimization
technique. Liu et al. [32] decompose the latency metric to
a distance component and a network feature component for
flexibility. Fu and Xu [17] stabilizes the matrix factorization
process under churns via a relative coordinate based matrix
model. Zhu et al. [54] propose an adaptive matrix factorization
approach by data transformation. The transformed metrics
become more symmetric than the raw metrics, however,
retransformed metrics become less stable when the observation
is incomplete, since the estimator’s inaccuracy will be
amplified exponentially with respect to the transformation
base. A second approach is to estimate the quantiles [56]
based on the quantile regression framework. Generally, these
methods assume that each pair of nodes shares the same
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set of latent factors, which may not hold when node pairs
experience diverse hidden factors. Our work addresses this
challenge via a skewness-aware matrix factorization model.

C. Matrix Completion

Our study is related with the matrix-completion theory [5],
which recovers an incomplete matrix via a subset of observed
entries. For a rank-r m×n matrix (r� (m,n)) that meets an
incoherent condition1, a unique rank-r matrix can be recovered
with a high probability. Minimizing the matrix rank exactly is
NP-hard [5]. OR1MP [43] iteratively finds a rank-one matrix
out of the approximation residual with the SVD. However,
it is generally impossible to exactly recover the SVD result
for a partially observed matrix. Further, different node pairs
are likely to be correlated with heterogeneous latent factors.

D. Traffic Matrix Interpolation

Real-world traffic matrices are usually incomplete. Con-
sequently, interpolating missing entries becomes important.
Traffic matrix interpolation is a related, but different problem,
with different properties. Xie et al. [46]–[48] exploit hidden
spatial and temporal structures with three-dimensional low-
rank tensors, which effectively reduces the estimation error.
Zhang et al. [53] interpolate incomplete traffic matrices with
structure regularized low-rank matrix factorization and local
interpolation procedures. LENS [7] models the traffic matrices
as the sum of multiple matrices that are positively correlated
with the traffic matrix. Our work proposes a unifying model
that keeps the low-rank interpretation and adapts well to
skewed latent factors.

III. PROBLEM STATEMENT

We first present the measurement environment for
the mesh-structured cloud services, then introduce the
matrix-factorization results, and discuss the open questions.

A. Measurement Architecture

A service mesh typically consists of a set of nodes located in
mega data center networks or edge data-center networks. Each
node hosts a set of networked micro-services, as discussed
in the introduction. Service-to-service communication is fre-
quent, while the latency between sending service requests and
obtaining responses should meet network SLAs. We assume
that, the service mesh should have synchronized their clocks,
as otherwise we could not correlate the network problems in
different locations. The synchronization protocols such as Net-
work Time Protocol (NTP) [2] or the IEEE 1588 Precise Time
Protocol (PTP) [1] can provide millisecond-level precision for
geo-distributed nodes.

The measurement system is comprised of two main com-
ponents inspired by the software defined networks [23], [33],
[50]: a data plane that consists of service-mesh nodes and a
control plane on a logically centralized server.

(i) At the control plane, the logically centralized controller
schedules the Round-Trip Time (RTT) measurement process

1Incoherence [5] states that the singular vectors spread out to help the matrix
be loosely aligned with the coordinate axes.

in the data plane. The controller randomly samples a small list
of nodes as probing targets for each service-mesh node. The
choices of probing targets are randomized for different nodes
for load balancing. The number of probing targets depends on
the node’s measurement capability. For a scale of hundreds
of nodes, selecting tens of probing targets suffices to obtain a
good level of accuracy.

Further, the controller handles the churns of nodes, since
an offline node is useless and should be detected and fil-
tered. Accordingly, the controller keeps the online status of
the data plane as volatile states in the main memory. Each
online node periodically sends a heart-beating message to the
centralized controller to notify its online status; as a response,
the controller piggybacks a list of sampled online nodes. The
frequency of the heart-beat messages is platform-dependent,
where stable platforms could choose a long period, while edge
platforms should choose a relatively short period (e.g., one
minute) to reflect system churns.

(ii) At the data plane, each service-mesh node performs a
number of measurements towards other nodes in the same
platform. It downloads the list of probing targets from the
controller, and measures the RTT status towards these probing
targets in a periodical approach. After collecting the RTT
samples in an interval, each node uploads the RTT results
to the persistent storage that is accessed by the controller.

The data plane could use any kinds of measurement meth-
ods. For example, at the network or transport level, the data
plane may choose ICMP or TCP protocol based measurement
methods; at the application level, the data plane could use
RPC or HTTP protocol based methods. Generally, the RTT
value amounts to the absolute difference between the time
of sending a request message to the probing target and that
of receiving the response message from this probing target.
The unit of a measurement interval determines the granularity
of the monitoring process. Increasing the sampling interval
towards a probing target yields a coarser granularity.

B. Challenges for RTT Matrix Completion

For a set of N nodes, the pairwise RTTs between N nodes
in an interval can be represented as a N -by-N matrix D.
The state-of-the-art approaches predict pairwise RTT values
based on the matrix factorization approach, which factorizes
a matrix D ∈ RN×N as a product of two low-dimensional
factor matrices F ∈ RN×r and G ∈ RN×r, i.e., D ≈ FGT ,
where r� N , and T denotes the transpose of a matrix.

A matrix factorization model is equivalent to a sum of a set
of rank-one matrices:

D̂ = FGT =
∑

k

FkG
T
k (1)

where Fk, Gk denote the k-th (k ≤ r) column vector of the
matrix F and G, respectively. An objective function seeks
to minimize the approximation residual between the observed
entries and the sum of the rank-one matrices:

min
F,G

∥∥∥∥∥D−
r∑

k=1

F∗kG
T
∗k

∥∥∥∥∥ (2)
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As the matrix factorization approximates the target
matrix D via the sum of each rank-one matrix FkG

T
k , each

of which is assumed to be positively correlated with the
approximation results. Consequently, the matrix factorization
assumes that all node pairs experience the same set of latent
factors. This assumption may not hold for the RTT metric,
which additively consists of many factors, e.g., the propagation
latency, the queueing latency, the transmission latency. For two
node pairs with a number of different routing links, their RTTs
are likely to be affected by independent latency components,
or hidden factors. Furthermore, the RTT metric only reveals
the sum of all factors, not individual factors.

C. Empirical Distributions

Next, we empirically analyze the RTT characteristics of
real-world data sets and motivate the design requirements.

1) Data Set: Real-world network connections are heteroge-
neous, therefore, an ideal network latency prediction algorithm
should adapt to different network connections. We choose
three publicly available data sets that differ in terms of the
node size and RTT distributions to study real-world perfor-
mance of different prediction algorithms:

• Seattle: The Seattle platform is an open peer-to-peer
cloud computing platform that includes donated personal
devices like personal computers, laptops and mobile
phones [6] This data set was collected in summer 2014 for
three hours between 99 nodes. Each interval aggregates
pairwise RTT samples within 15.7 seconds, which indi-
cates short-term dynamics between Seattle nodes.

• PlanetLab: The PlanetLab platform has been widely used
in many previous RTT-prediction studies [17], [31], [33].
This data set was collected in 2013 for a 9-day period
between 490 distributed nodes. Each interval aggregates
pairwise RTT measurements within 14.7 hours, which
represents long-term RTT trends between PlanetLab
nodes.

• RIPE: The RIPE Atlas measurement platform consists
of tiny networked devices that issue measurements
to a small number of addresses, most of which are
chosen by the platform owner. There are two kinds of
devices, i.e., Probes and Anchors, depending on their
measurement capability. The Anchor is more powerful
than the Probe. As we need dense RTT matrices to train
the matrix factorization methods, we choose RIPE Atlas
nodes that are powerful enough to probe each other.
This data set2 was collected in August 19, 2018 between
250 RIPE Atlas nodes.

Table I summarizes several basic statistics about the data
sets. We can see that the data sets span wide ranges.

2) Distributions: First, we compare the RTT distributions
for each node. We calculate the interquartile ranges for each
RTT vector, i.e., the difference between the 25th and the 75th
percentiles of the samples in the vector. In Figure 2, the
interquartile ranges span wide intervals, thus different node
pairs are likely to experience diverse hidden factors.

2https://data-store.ripe.net/datasets/atlas-daily-dumps/

TABLE I

BASIC STATISTICS OF DATA SETS

Fig. 2. The CCDFs of interquartile ranges of each row vector in the dataset.

Fig. 3. Heat maps of the pairwise correlation coefficients. We choose the
first interval for illustration purpose. Varying the intervals yields the same
conclusions. We randomly select a number of nodes from the data set as the
landmarks, calculate the vector of correlation coefficients from this node to
the landmarks. Then we compute the K-means clustering with these feature
vectors based on the Lloyd method [49]. Finally, we reorganize the correlation
coefficient matrix by putting nodes in the same cluster at adjacent positions,
and plot the heat map of the matrix where darker pixels correspond to larger
correlation values. During the experiments, we set the number of landmarks
to 16, the number of clusters to three. The same conclusions hold as we vary
the parameters.

Next, we evaluate the correlation between pairs of nodes.
We compute the linear correlation coefficient [39] for any pair
of nodes i and j, defined as

c (i, j) =

〈
�Di ◦ �Dj

〉
−

〈
�Di

〉 〈
�Dj

〉

σ
(
�Di

)
σ

(
�Dj

) ,

where D denotes the pairwise RTT matrix, �Dj denotes the
i-th row vector, ◦ denotes the hadamard operator

(
�Di ◦ �Dj

)

k
= DikDjk

for i, j, k ∈ [1, N ], 〈·〉 denotes the average of the vector, and

σ
(
�Di

)
=

√〈
�Di ◦ �Di

〉
−

〈
�Di

〉2

.

Figure 3 plots the heat map of the linear correlation
coefficients of each node pair. Darker pixels correspond to
larger correlation coefficients. Two to three groups of nodes
are separable from the rest of the plot, where intra-group
correlation coefficients are relatively larger than node pairs
from different groups. Thus the pairwise RTT distribution
is highly skewed, and intra-group nodes are more likely to
experience similar latent factors than inter-group node pairs.
Thus we need to study more powerful representative models
to account for these skewed distributions.
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TABLE II

FREQUENTLY USED NOTATIONS IN THIS PAPER

IV. SKEWNESS-AWARE MATRIX FACTORIZATION

Having analyzed the skewness with real-world RTT data
sets, we see that the RTTs of different node pairs are likely
to be affected by divergent hidden factors, which should
be accounted by the prediction algorithm. Next, we first
present naive approaches and discuss its limitations, then
present a new model that keeps the interpretation of the
low-rank representation and adapts to the skewness of the
RTT distributions.

Table II summarizes frequently used notations used in this
paper.

A. Strawman Approaches

1) Increasing Rank: A straightforward approach is to
increase the rank of the matrix factorization model, which
amounts to the maximal number of columns or rows that
are linearly independent with each other. The rank is neatly
characterized by the number of positive singular values of the
SVD of this matrix [22]. The SVD represents D as D =
USV T , where V T denotes the transpose of V , U ∈ RN×N

is an orthogonal matrix, i.e., UUT = UTU = I , V ∈ RN×N

is also an orthogonal matrix, i.e., V V T = V TV = I ,
S is a squared and diagonal matrix consisting of a vector
of descendingly-ordered real numbers (σ1, · · · , σN ), where
σi ≥ 0 for i ≤ N . Further, the SVD amounts to the sum
of k rank-1 matrices D̂ =

∑k
i=1 δiuiv

T
i , where δi is the i-th

singular value, ui is the i-th left singular vector, and vi is the i-
th right singular vector. Each rank-1 matrix represents a latent
factor that introduces a degree of freedom to approximate the
matrix.

Figure 4 shows the residual variance and the relative error
with an increasing number of top singular values. First, 90%
of its variance can be captured with two to four top singular
values, therefore, the RTT matrix is approximately low-rank.
Second, the relative error is still high, since a longer tail of
singular values implies a higher relative error. This is due
to the fact that, the residual of the SVD approximation is
correlated with the remaining set of singular values, which
is represented as D − D̂k =

∑N
i=1 δiuiv

T
i −

∑k
i=1 δiuiv

T
i =∑N

i=k+1 δiuiv
T
i .

2) Incorporating Weights: A second approach is to regu-
larize the latent factor model for different node pairs. For
example, [55] sets D̂′ [i, j] = D̂ [i, j] · w [i, j], where w

Fig. 4. Energy contained in the top-k singular values VS. the relative error of
the rank-k approximation using the SVD [22]. We compute the relative error���Dij−D̂r

ij

���
Dij

for each node pair between the rank-k approximation D̂r and
the RTT matrix D. Further, we compute residual fraction of the total variance

captured by top-k singular values as 1−
�k

i δ2
i�N

i δ2
i

, where δi represents the i-th

largest singular value.

denotes the weight matrix. The estimation of each node pair is
scaled independently, which introducesN2 degrees of freedom
to the prediction D̂. Accordingly, the weighted model has
enough degrees of freedom to recover any matrix exactly.
[55] assigns an N -by-N real-valued weighted matrix to the
low-rank matrix, and estimates the weight matrix in the matrix
completion framework. However, [55] still assumes that each
latent factor is of equal importance for each node pair, which
may not hold due to complex routing decisions and varying
latency components.

B. Ideal Skewness-Aware Model

Next, we present an ideal model to account for skewed latent
factors assuming that we obtain the complete RTT matrix.
In the next subsection, we relax this assumption and present
a practical approach.

Recall that matrix factorization is equivalent to the sum of
rank-1 matrices, while each rank-1 matrix serves as a latent
factor. To make the matrix factorization be aware of skewed
latent factors, we should incorporate a rank-1 matrix entry for
a node pair only if this node pair is correlated with this latent
factor.

Let k denote the index of the current rank-1 matrix
(1 ≤ k ≤ r). Let D̂k be the approximation result of
combining the first k rank-1 matrices, and Ek = D − D̂k−1

the current residual, where D̂0 represents an empty matrix.
1) Correlation Model: We define three kinds of correlation

types to combine the latent factor for each node pair (i, j) as
follows:

(i) Positive correlation: If the approximation residual
Ek [i, j] will be smaller by adding the entry Xk [i, j]
to the current approximation D̂k−1 [i, j], i.e., D −(
D̂k−1 [i, j] + Xk [i, j]

)
< Ek [i, j], then the entry Xk [i, j]

is said to be positively correlated with the current approx-
imation residual. Accordingly, we update the approximation
for the node pair i, j as: D̂k [i, j] = D̂k−1 [i, j] + Xk [i, j].

(ii) Negative correlation: Otherwise, if the approximation
residual Ek [i, j] will be smaller if we subtract the entry
Xk [i, j] from the current approximation D̂k−1 [i, j], i.e., D−(
D̂k−1 [i, j]−Xk [i, j]

)
< Ek [i, j], then the entry Xk [i, j]

is claimed to be negatively correlated with the approximation
residual. To reduce the approximation error, we update the
approximation as: D̂k [i, j] = D̂k−1 [i, j]−Xk [i, j].
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Fig. 5. The diagram of the ideal correlation model.

(iii) Irrelevance: If the above (i) and (ii) do not hold,
we should skip this component Xk [i, j] for node pair i, j,
since otherwise, the approximation residual will increase.
This entry Xk [i, j] is said to be irrelevant with the current
approximation residual.

Accordingly, the approximation residual either decreases
monotonically (positive or negative correlation holds) or keeps
the current status (irrelevance holds). Thus we not only keep
the interpretation of the matrix factorization, but also adapt
to the skewed latent factors.

2) Algebraic Representation Model: Having presented the
correlation model in pieces, we next represent it in a compact
framework. We summarize the correlation model in a pairwise
matrix (denoted as a sign matrix) β ∈ {+1,−1, 0}N×N . The
“positive correlation, negative correlation, and irrelevance”
choices are transformed to three discrete choices (+1, −1,
0), respectively. Consequently, we transform the correlation
model from a combination optimization problem to a linear
algebraic problem.

We next represent the k-th approximation residual as fol-
lows: Êk = βk ◦ Xk. The overall estimation amounts to
D̂ =

∑r
k=1 Êk =

∑r
k=1 βk ◦Xk.

The ideal model can be represented as a recurrent frame-
work that predicts the residuals layer by layer, as illustrated
in Figure 5. Each recurrence aims to find a skewness-aware
rank-1 matrix to minimize the current residuals. The model
sequentially finds a rank-1 matrix with respect to the residual
and a sign matrix according to the correlation types. Then,
it combines the rank-1 matrix and the sign matrix to approx-
imate the residual. Finally, the overall estimation is updated
and the refreshed residual is forwarded to the next recurrence.

Lemma 1 shows that the ideal model either decreases the
approximation residual monotonically or keeps the current
status in each layer. The proof is put in the Appendix A.

Lemma 1: Assume that we obtain the perfect sign matrix,
for all k ≥ 1, ‖Ek+1‖ ≤ ‖Ek‖

Unfortunately, manually deciding the selection choices is
only possible for observed RTTs, but impossible for unob-
served node pairs. To address this challenge, we next predict
the selection choices to make the ideal model practical.

C. Our Work

1) Overview: We realize the ideal model with a
residual-learning framework called SMF, which unrolls the
recurrent framework to a chained sequence of layers, and trains
the model layer by layer similar to the stacking architecture
of the deep neural network [25].

Each layer k takes the partially-observed residual as the
input, and computes a new rank-1 matrix by maximizing the
correlation with the current residual, then combines each entry

of this rank-1 matrix into the current approximation based
on the sign matrix, both of which are learnt from partial
observations. Next, we calculate the approximation residual
at this layer, and finally refresh the residual and forwards that
to the next layer until completing the final layer.

Our work improves the matrix factorization in several
aspects:

• Explainability: SMF progressively finds a rank-1 matrix
to best explain the residual in each layer. Further, higher
layers’ rank-1 matrices are trained based on the residuals
to lower layers’ rank-1 matrices. Thus there exists no
ambiguity for the rank-1 matrices.

• What-if Analysis: SMF optimizes a separate rank-
1 matrix for each layer, and sequentially combines them
with the sign matrices to produce the residual approxi-
mation. Thus SMF enables the operator to test the choice
of rank based on the layerwise RTT approximation.

• Robustness: SMF formulates the model with respect to
the residual in each layer, which is known to be robust to
the gradient-vanishing problem, as proved by the ResNet
method [24].

• Modularity: SMF divides each layer to two conditionally
independent optimization problems and combines layer-
wise estimation into a modular framework.

2) SMF Components: (i) Rank-1 Matrix: As each rank-1
matrix amounts to a product of two vectors [22], [43], we
represent the rank-1 matrix Xk as Xk = Fk(Gk)T , where Fk

and Gk denote two vectors of length N . Moreover, to keep
the latent factor be interpretable, we enforce the rank-1 matrix
Xk to be nonnegative. As the observation is incomplete,
we formulate a rank-1 matrix factorization problem to estimate
the vectors Fk and Gk.

(ii) Sign Matrix: We utilize the analogy between the sign
matrix estimation and the collaborative filtering problem that
recovers missing discrete rating scores (e.g., one to five stars)
between a set of clients and a set of goods, and predict the
sign matrix βk with a Maximum Margin Matrix Factoriza-
tion (MMMF) [15], [38].

We represent pairwise signs with a low-dimensional model.
We assign each node a rs-dimensioned coordinate (�ui, �vi) and
a threshold vector �γi that serves as boundaries to obtain the
discrete signs. We tolerate skewed distributions by incorporat-
ing a bias parameter to each node [44]. Each node i keeps a
bias variable bi, the coordinate distance Yij from node i to
node j is defined as the sum of the dot-product result plus the
sum of biases:

Yij = �ui�vj + bi + bj (3)

We compute the sign from node i to node j by mapping
the coordinate distance �ui�vj to “−1”, 0, “+1” using node i’s
threshold values �γi:

β̂ij =

⎧
⎪⎨

⎪⎩

−1, �ui�vj ≤ �γi(1)
0, �γi(1) ≤ �ui�vj ≤ �γi(2)
+1, else

(4)

3) Example: We provide a simple example to illustrate
the SMF algorithm. Note that our purpose here is not to
characterize the performance.
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Fig. 6. Four nodes organized in a hierarchical topology.

Given four nodes in Figure 6, the RTT matrix is defined as:

D =
[

0 20 80 80
20 0 80 80
80 80 0 40
80 80 40 0

]

We build a sampled RTT matrix to model the probes in the
data plane:

D′ =
[

0 20 0 80
20 0 80 0
0 80 0 40
80 0 40 0

]

Next, we compute a rank-1 matrix with respect to the matrix
D′: F1 = (−6.6791,−6.6791,−7.1096,−7.1096), G1 =
(−6.6791,−6.6791,−7.1096,−7.1096). The first two nodes
and the last two nodes are identical with each other, respec-
tively, which implies that the rank-1 components captures the
global proximity index. Further, F1 and G1 are identical to
each other, as the RTT matrix is symmetric.

Multiplying F1 and G1 yields the rank-1 matrix as follows:

X1 =
[

0 44.6102 47.4854 47.4854
44.6102 0 47.4854 47.4854
47.4854 47.4854 0 50.5459
47.4854 47.4854 50.5459 0

]

Next, we calculate the residual E1 to the matrix D as
follows:

E1 =
[ 0 −24.6102 32.5146 32.5146
−24.6102 0 32.5146 32.5146
32.5146 32.5146 0 −10.5459
32.5146 32.5146 −10.5459 0

]

Given the partially observed residual matrix E′
1:

E′
1 =

[ 0 −24.6102 0 32.5146
−24.6102 0 32.5146 0

0 32.5146 0 −10.5459
32.5146 0 −10.5459 0

]
,

we find F2 and G2 to the non-negative absolute numbers of
E′

1 as follows: F2 = (−4.7934,−4.7934,−4.3030,−4.3030),
G2 = (−4.7934,−4.7934,−4.3030,−4.3030). The new rank-
1 matrix is calculated as follows:

X2 =
[

0 22.9771 20.6263 20.6263
22.9771 0 20.6263 20.6263
20.6263 20.6263 0 18.5161
20.6263 20.6263 18.5161 0

]

We extract the sign matrix to the residual matrix E′
1:

β =
[ 0 −1 0 1
−1 0 1 0
0 1 0 −1
1 0 −1 0

]

based on Algorithm 1, and predict the sign matrix as follows:

U :
[ 0.6074 −0.3540

0.8816 −0.1533
−1.0691 −0.2674
−0.5347 0.5162

]
, V :

[−0.8211 −0.1208
−0.6933 0.1867
0.8124 −0.9372
0.3635 0.0986

]
,

γ :
[

0.3265 0.3686
0.2530 0.2870
0.3905 0.5373
0.0705 0.0771

]

and the bias vector ( 0.1988 ,0.1186 ,-0.0130 ,0.6004).
The coordinate distance matrix Ŷ can be derived by

Eq (3) as:

Ŷ =
[

0 −0.1698 1.0110 0.9851
−0.3880 0 0.9655 1.0243
1.0959 0.7969 0 0.1724
1.1759 1.1861 −0.3308 0

]

Fig. 7. The diagram of the SMF method.

Next, we infer the sign matrix to Ŷ as follows:

β̂ =
[ 0 −1 1 1
−1 0 1 1
1 1 0 −1
1 1 −1 0

]

Based on the estimated rank-1 matrix and the sign matrix,
we obtain the selective combination X2 ◦ β as:

X2 ◦ β =
[ 0 −22.9771 20.6263 20.6263
−22.9771 0 20.6263 20.6263
20.6263 20.6263 0 −18.5161
20.6263 20.6263 −18.5161 0

]

Plugging this rank-1 approximation to the rank-1 approxi-
mation yields a new estimation matrix:

D̂2 =
[

0 21.6331 68.1117 68.1117
21.6331 0 68.1117 68.1117
68.1117 68.1117 0 32.0298
68.1117 68.1117 32.0298 0

]

The estimation matrix D̂2 outperforms the rank-1 estimation
X1, which completes the process of a two-layer residual-
driven optimization framework.

V. OPTIMIZATION METHODS

Having presented the residual-driven layerwise representa-
tion framework, we next present optimization techniques to
find the skewness-aware matrix factorization model.

As stated in Section III-A, the monitoring framework con-
sists of a logically centralized controller in the control plane
and distributed service-mesh nodes in the data plane. The
controller predicts missing measurements in each interval:
It aggregates the measurements of an interval as a partially
observed matrix, and runs the SMF to estimate missing matrix
entries.

A. Optimization Workflow

We summarize the layerwise optimization workflow in
Figure 7:

(i) S1: For the first layer, let E1 denote the partially-
observed RTT matrix D, which consists of aggregated RTT
samples of the current interval.

(ii) S2: We compute a rank-1 matrix Xk (k is set to one for
the first layer) to maximize the correlation with the residual
Ek. E1 is initialized to the matrix D for the first layer.

(iii) S3: Next, we compute a sign matrix βk to the current
rank-1 matrix Xk, by minimizing the approximation error of
the residual Ek.

(iv) S4: We approximate the residual as the dot product
of these two matrices: Êk = Xk ◦ βk, and update the RTT
estimation as follows: D̂k = D̂k−1 + Êk =

∑k
l=1 Xl ◦ βl,

where ◦ represents the element-wise product operator.
Next, we update the residual for each observed entry (i, j):

Ek+1 [i, j] = D [i, j]− D̂k [i, j].
(v) Let k← k+1. If k < r, we move to the next layer until

completing at the final layer; otherwise, we stop and output
the approximation as follows: D̂ =

∑r
l=1 Xl ◦ βl.
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Fig. 8. Graphical model of key variables in the optimization workflow.

B. Loss Function

Based on the optimization workflow, the rank-1 matrix is
optimized with respect to the residual from the last layer,
while the sign matrix is optimized with respect to the observed
sign samples calculated between the residual and the approx-
imated rank-1 matrix. Thus, each layer optimizes two condi-
tionally independent optimization problem, as clearly shown
in Figure 8. Thus we separate the optimization problem to
decomposed subproblems and design modular optimization
workflow, due to the conditional independence between the
rank-1 matrix and the sign matrix.

1) Rank-1 Matrix: The input to the rank-1 matrix comple-
tion is the residual. We compute the residual Ek based on the
prediction D̂k−1 that is recursively built from the first to the
k − 1-th layer:

Ek [i, j] = D [i, j]− D̂k−1 [i, j] (5)

for (i, j) ∈ Observed samples and k ≥ 2.
We define a loss function that minimizes the difference

between the rank-1 matrix and the absolute-valued residual
Ek as follows:

min
∥∥Fk(Gk)T − |Ek|

∥∥2

F
(6)

We extend this loss function to a regularized objective function
so as to avoid the overfitting issue [19], [57]:

min Jk =
∥∥Fk(Gk)T − |Ek|

∥∥2

F
+ λ

∥∥FT
k Fk −GT

kGk

∥∥2

F
(7)

where λ denotes a regularized factor. The regulariza-
tion

∥∥FT
k Fk −GT

kGk

∥∥2

F
addresses the scaling ambiguity as

Fk(Gk)T = (FkR)(GkR)T holds for any orthogonal matrix
R [57]: Suppose Jk is defined in Eq (7), any stationary
point (Fk, Gk) of Jk with ∇J (Fk, Gk) = 0 implies that
FT

k Fk = GT
kG.

2) Sign Matrix: The sign matrix is vital to keep the com-
bined prediction monotonically decreasing. The input to find
the sign matrix is the signs of observed node pairs.

We first present a simple algorithm to obtain the input β that
is consistent with the selective combination rules (presented
in Algorithm 1).

Let the sign β [i, j] of each observed node pair (i, j) be
shifted to the interval {1, 2, 3} for ease of training. We

formulate a soft-margin classification error L
(
Y, �γ

)
for each

Algorithm 1: SignRule(Ek [i, j], Xij ): The Rule of
Calculating the Sign for an Observed Node Pair (i, j).

1 SignRule(Ek [i, j], Xij)
input : Ek [i, j]: Current approximation residual, Xij :

rank-one esimtation for pair (i, j)
output: Sign βk [i, j].

2 if |Ek [i, j] + Xij ]| < |Ek [i, j]| then
3 Set βk [i, j] = “+1”;

4 else if |Ek [i, j] − Xij ]| < |Ek [i, j]| then
5 Set βk [i, j] = “−1” ;

6 else
7 Set βk [i, j] = “0”;

8 return βk [i, j] ;

observed node pair (i, j) [11], [15], [38]:

L
(
�ui, �vj , bi, bj, �γi

)

=
βij−1∑

c=1

h
(
�ui · �vj + bi + bj − �γi (c)

)

+
2∑

c=βij

h
(
�γi (c)− (�ui · �vj + bi + bj)

)

=
2∑

c=1

h
(
T c

ij [βij ] · (γic − (�ui · �vj + bi + bj))
)

(8)

where γic = �γi (c), T c
ij [βij ] =

{
+1 c≥βij

−1 c<βij
serves as an

indicator function for the sign value βij , and h (z) ={ 1
2−z z<0
0 z>1

1
2 (1−z)2 otheriwse

represents a smoothed hinge loss with the

derivative as follows: h′ (z) =
{ −1 z<0

0 z>1
z−1 otheriwse

Thus the loss
function allows for gradient based optimization techniques.

Further, We present a regularized loss function with respect
to Eq (8) for each node i for robustness against outliers and
missing items [11], [15], [38]:

gk(xi) =
∑

∈Si

L
(
�ui, �vj , bi, bj , �γi

)

+λ
(
‖�ui‖2F + ‖�vi‖2F + ‖bi‖2F

)
(9)

where xi =
[
�ui;�vi; bi; �γi

]
, and λ denotes the regularization

constant.

C. Algorithms

Each layer has two key optimization building blocks, includ-
ing the optimization of the rank-1 matrix and that of the
sign matrix, both of which belong to the non-convex matrix-
factorization problem.

1) Rank-1 Matrix Optimization: First, we seek a
rank-1 matrix Xk to be maximally correlated with the
approximation residual. We compute the rank-1 matrix with
the stochastic gradient descendent (SGD) method. The SGD
converges fast to the vicinity of the optimum regions and
helps escape the local minimum for distributed optimization
[19]–[21], [27], [28], [42].
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Algorithm 2: RankOne(|Ek|): SGD Based Rank-One
Matrix Optimization

1 RankOne(|Ek|)
input : Partially observed residual |Ek|, learning rate η1,

optimization rounds T
output: Fk, Gk

2 for t = 1, 2, · · · , T do
3 for i ∈ 1, 2, · · · , N do
4 Compute the partial gradients of ∂J

∂Fk(i) and ∂J
∂Gk(i)

of node i as:
∂J

∂Fk(i) = λFk (i)
(
FT

k Fk −GT
kGk

)−∑
j∈Si

(|Eij | − Fk(i)Gk(j))Gk(j)
∂J

∂Gk(i) = −λGk (i)
(
FT

k Fk −GT
kGk

)−∑
j∈Si

(|Eji| − Fk(j)Gk(i))Fk(j)

(10)

5 Update the coordinate as:

Fk(i) = Fk(i)− η1 ∂J
∂Fk(i)

Gk(i) = Gk(i)− η1 ∂J
∂Gk

(i)
(11)

6 return Fk, Gk;

Let Fk(i) and Gk(i) denote the row vectors of node
i, respectively. We optimize these two row vectors in T
rounds. In each round t, we compute the partial gradients
of each row vectors with respect to probed targets of node
i, and then adjust each row vector towards the approxi-
mated negative gradient direction scaled by a learning-rate
parameter η1, which is automatically chosen using the line
search method [31]. We summarize the optimization steps in
Algorithm 2.

2) Sign Matrix Optimization: Second, we seek a sign matrix
to optimize the correlation types for each node pair between
the residual and the current rank-1 matrix. We compute the
sign matrix based on the MMMF framework that adaptively
penalizes the difference between the estimated signs and the
ground-truth ones [38].

We form a vector xi as the concatenation of the coor-
dinate components of i, i.e., xi(s) =

[
�ui; �vi; �γi; bi

]
, and

adjust each node’s vector xi in T rounds. In each round
s (s ≥ 1), we compute the conjugate direction of the
vector xi with respect to probed targets, and move the
vector xi a small distance in the direction of the conju-
gate direction scaled by a learning-rate parameter η2, which
is automatically computed to meet the Strong wolfe line
search conditions [9]. The optimization steps are summarized
in Appendix B.

3) Putting It All: Algorithm 3 summarizes the overall
workflow. First, we find a rank-1 matrix that is maximally
correlated with the partially-observed RTT matrix D (In
line two). Next, we set the current approximation based on
the rank-1 matrix X1 ( in line three). Then, we perform a
layerwise training process (from lines four to ten), by finding
the rank-1 matrix and the sign matrix, and forward the
residual to the next loop cycle.

Algorithm 3: Optimization Procedures of the SMF Algo-
rithm

1 SMF(D, r)
input : Partially observed RTT matrix D, rank r
output: Estimated RTT matrix D̂

2 Compute a rank-1 matrix X1 = F1(G1)T that is
maximally correlated with the RTT matrix D by calling
RankOne(D) in Algorithm 2 ;

3 Set the RTT prediction as D̂1 = X1;
4 for Integer k ∈ [2, r] do
5 Compute the residual Ek = D− D̂k−1 ;
6 Find a rank-1 matrix Xk = Fk(Gk)T with respect to

Ek by calling RankOne(|Ek|) in Algorithm 2;
7 Calculate the sign matrix βk by calling

SignRule(Ek [i, j], Xij) in Algorithm 1;
8 Find a sign matrix β̂k by calling SignMatrix(βk)

(Appendix B);
9 Update the RTT prediction D̂k = D̂k−1 + Xk ◦ β̂k;

10 Set k ← k + 1;

11 return D̂ =
r∑

k=1

Fk(Gk)T ◦ β̂k;

D. Analysis

1) Convergence: SMF generalizes the truncated SVD that
recursively finds an approximately optimal rank-1 matrix to
the residual. The SVD sums up each rank-1 matrix to form
the low-rank prediction, while SMF flexibly combines each
rank-1 matrix to be aware of the skewness of node pairs. As a
result, the truncated SVD is a special case for SMF.

SMF and ResNet [24] both optimize the residuals in a
layerwise approach. ResNet [24] forces each layer to learn the
residual feature between the output of this layer and that of the
last layer, which efficiently addresses the gradient-vanishing
problems for deep neural networks. While SMF not only forces
each layer to approximate the residual, but also regularizes the
structure of the layer to be aware of skewed latent factors.
Accordingly, SMF adapts well to the matrix-factorization
context.

Recall that the rank-1 matrix factorization and the sign
matrix estimation are two conditionally independent optimiza-
tion problems. As a result, the problem of proving SMF’s
convergence is transformed to prove the convergence of the
rank-1 matrix factorization and that of the sign matrix in each
layer.

(i) Rank-1 Matrix
A point x is a stationary point iff its gradient ∇J (x) is

zero. Geometrically, x is a local minimum iff x is a stationary
point and there exists a neighborhood area NA(x) of the
vector x such that J (z) ≥ J (x) for any z ∈ NA(x) [30].
We restate the strict saddle property for twice differentiable
functions such as the rank-1 matrix factorization.

Definition 1 ( [18], [19]): A twice differentiable function J
is (ψ,Ω, ω)-strict saddle, if for any point x at least one con-
dition holds: (i) ‖∇J (x)‖ ≥ ψ; (ii) λmin

(∇2J (x)
) ≤ −Ω;

(iii) x is ω-close to the set of local minima.
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The strict saddle definition implies that for any point x,
either it has a large gradient, or it has a negative directional
curvature, or it is close to a local minima. Lemma 2 shows
that, the loss function Jk defined in Eq (7) satisfies the strict
saddle condition.

Lemma 2: Let σ∗
1 , σ∗

r denote the largest and the r-th
singular values of the residual Ek. The loss function Jk is
(�,Ω (σ∗

r ) , O
(

ε
σ∗

r

)
)-strict saddle.

The proof of Lemma 2 directly derives from Theorem 4 in
[19]. Accordingly, the rank-1 matrix factorization satisfies
that: All local minima are also globally optimal; any saddle
point has at least one strictly negative eigenvalue in its
Hessian matrix, thus local search methods efficiently find
points towards the local minima [18], [19].

Further, the optimization process of the rank-1 matrix with a
random initialization converges to or a local minimizer almost
surely, as described in Lemma 3 and proved in Appendix C.

Lemma 3: If λ ≥ 0, η < 1
Lsmooth

, where Lsmooth denotes
the smoothness of function J , i.e. ‖∇J (x1)−∇J (x2)‖ ≤
L ‖x1 − x2‖, Algorithm 2 with a random initialization con-
verges to a local minimizer almost surely.

(ii) Sign Matrix
The nonlinear conjugate-gradient optimization converges to

zero gradients, as proved in Theorem 3.5 by Liu et al. [9]
under the following conditions:

Lemma 4: The gradient of the nonlinear conjugate-gradient
method converges to zero, i.e., lims→∞∇gk(s) = 0 given the
conditions:

• g (x) is bounded below on the level set =
{x|g (x) ≤ g (x1)}, where x1 denotes the starting point.
And in some neighborhood of , g is continuously differen-
tiable, and the gradient is Lipschitz continuous, i.e., for
a constant L > 0, such that ‖g (x)− g (y)‖ ≤ L ‖x-y‖.

• The level set = {x|g (x) ≤ g (x1)} is bounded.
• Polak-Ribière scalar γs ≥ 0.
• Strong wolfe line search conditions: A positive step-length
η2 computed by a line search satisfies that g(xs +
η2Λxs) ≤ g(xs) + ρη2Δxs

T Λxs and Δ(xs +
η2Λxs)T Λxs ≥ σΔxs

T Λxs, for 0 < ρ < σ < 1.
• Descendent condition: Δxs

T Λxs < 0.
• Property (*): There exists constants b > 0 and λ > 0

for all k, if |γs| ≤ b, and
∥∥x(s)− x(s− 1)

∥∥ ≤ λ, then
|γs| ≤ 1

2b .
(iii) Discussions
Further, significant efforts such as [18]–[21], [27], [42] have

proved that first-order local search optimization algorithms
have nice convergence guarantee for general non-convex opti-
mization problems: No spurious local minimum arise in the
optimization landscape; further, simple local search methods
escape saddle points efficiently and find the exact low-rank
matrix from arbitrary starting points with high probability in
polynomial time.

2) Robustness: Due to the non-convex nature, some entries
of the sign matrix may be incorrectly predicted. Specifically,
there exists a small probability that “+1” is flipped to
“−1”, “−1” to “+1”, and “0” to “+1” or “−1”. Note that
mapping “+1” or “−1” to “0” does not degrade the current

approximation residual. We next bound the failure probability
that the sign of any server pair is always incorrect in
Theorem 1.

Theorem 1: Let r be the approximation rank and � the
expected fraction of incorrectly predicted signs. For any node
pair, the expected number of correctly predicted signs amounts
to r (1− �), the variance is �r (1− �), and for t > 0,
the number of correct estimations is not within t

√
r (1− �)

from its expectation is at most ε
t2 .

The proof is put in the Appendix D. For example, if � = 0.2
and r = 8, the expected number of correct predictions amounts
to 8× 0.8� = 6, with the variance 0.2 · 8 (1− 0.2) = 1.28.
Further, note that when a sign is mapped to zero from “+1”
or “−1”, then the current approximation will be skipped and
the residual will not change accordingly.

3) Time Complexity: The time complexity of SMF amounts
to the sum of time spent on each layer, finding the rank-1
matrix and the sign matrix.

(i) Rank-1 matrix: The time complexity of the SGD
algorithm is proportional to the gradient computation. For each
node i, one gradient calculation takes O(np) time, where np

denotes the set of probing targets. N nodes take O(Nnp) time
to compute the gradient for one round. Algorithm 2 needs T
rounds, requiring O(TNnp) time.

(ii) Sign Matrix: The time complexity of the
conjugate-gradient method is linearly proportional to
the calculation of the conjugate gradient [15]. Let rs denote
the dimension of the coordinate, it takes O(rsnp) time to
compute the partial gradient and O(npr

2
s) time to derive the

conjugate gradient direction for each node i. Consequently,
N nodes take O(Nnpr

2
s). SignMatrix algorithm needs T

rounds, requiring O(TNnpr
2
s).

In summary, training a rank-r SMF model needs
O(rTNnp(1 + r2s)) time.

E. Parameter Choices

As the optimization problem is non-convex, it is challenging
to choose optimal parameters for the SMF method. For an
unknown dataset, we propose an offline approach to decide
the number of rank-1 components, the dimension of the sign
matrix, and the regularization constant. We fix all but one
parameters, and incrementally adjust the parameter until the
average relative error does not decrease significantly.

From our empirical experiments, a wide range of para-
meters achieve similar degrees of the estimation accuracy.
As the majority of a RTT matrix is typically captured by
several singular values from Figure 4. Therefore, we could
select a relatively small numbers of probing targets and rank-
1 matrices, as well as the dimension of the sign-matrix
approximation.

VI. EVALUATION

Having presented the optimization algorithms, we next
systematically evaluate the performance of our method with
state-of-the-art methods on real-world data sets.
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A. Experimental Setup

We built a trace-driven controller-agent structured simulator.
We reuse the data sets introduced in Section III-C.1 for the
simulator. The simulator parses the trace for continuous net-
work latency monitoring. During a slice, each agent randomly
samples a small set of nodes as probing targets, then submits
network latency values to these targets to the controller.
The controller collects probed samples from all agents, then
initializes parameters for each node in the continuous vector
space, and adjusts parameters based on optimization rules until
reaching the local minimum. Afterward, the controller predicts
network latency values for missing node pairs.

Performance metric: We quantify the performance of
unobserved entries using relative error that is widely used
for network latency prediction studies. It is defined as the
ratio between the relative error and the ground-truth value
|Dij−D̂ij |

Dij
for each unobserved node pair (i, j). For each

setting, the simulation runs in ten times. The results reported
show the average relative error.

Default parameters: We choose the default parameters
for SMF to balance the diminishing returns of the expected
relative error and the computational cost, based on the sen-
sitivity analysis in Section VI-D. Specifically, we set the
approximation rank r to 8, the number of probing targets np

to 32, the bias MMMF coordinate dimension rs to 16, and the
regularized parameter λ to one. Our parameter choices yield
sparse matrices. For example, for a 99-by-99 matrix, setting
the number of probing targets to 32 implies that 32% of matrix
entries are observed, while for a 490-by-490 matrix, it implies
that only 6.5% of matrix entries are observed.

We run experiments on a MacBook-Pro Intel Core i7 with
Quad-core and 16 GB memory.

B. Comparison Results

First, we compare the relative error of our method with
state-of-the-art methods. As we mentioned in the related work,
there are many methods proposed in the literature. We choose
four baseline algorithms covering the recent well-known
approaches: (i) Vivaldi [8]: predicts RTTs in an Euclidean
coordinate system and trains the coordinates via a spring-force
field simulation. Further, Vivaldi incorporates a height constant
to model the access-link portion from end hosts to the edge. (ii)
DMFSGD [31]: predicts RTTs in a matrix factorization model
and trains the factorized matrices based on the SGD method.
(iii) Distance feature decomposition (denoted as DFD in the
plot) [32]: predicts RTTs via the product of a low-rank matrix
and a complete weight matrix. (iv) OR1MP [43]: recovers
an incomplete matrix by incrementally generating a rank-one
basis matrix by the SVD method and linearly combining this
matrix to the current approximation in a closed form.

For Vivaldi, DMFSGD and OR1MP, we directly down-
loaded authors’ implementations, while for DFD, we imple-
mented the algorithm based on [32]. For fair comparison, all
methods use the same number of probes, and set the same
coordinate dimension and the identical set of probing targets.
We set the regularized parameters based on the recommended
configuration of each method.

Fig. 9. The CCDFs of relative errors for different methods. We set the
number of probes per node to 32. The x-axis is in log-scale.

Fig. 10. The convergence of the MAE values at each round. We plot the
average MAE and the standard deviations.

We plot the distributions of the relative errors. We set the
number of probing targets to 32 and the coordinate dimension
to eight. We compute the CCDF of relative errors for all
methods. From Figure 9, SMF consistently outperforms the
other methods in three data sets, while DFD, DMFSGD and
Vivaldi are less stable than SMF. OR1MP is less accurate than
SMF, since OR1MP combines a set of rank-one matrices with
a weight vector, which is insufficient to account for skewed
latent factors.

C. Convergence Analysis

Having shown the effectiveness of our method, we next
evaluate the convergence of SMF’s performance.

1) Sign-Matrix Prediction: First, we evaluate the conver-
gence of the sign-matrix prediction process, as it deter-
mines the convergence of the selective combination procedure.
We quantify the difference between the estimated sign matrix
and the ground-truth result based on the normalized mean
absolute error (MAE):

∑
(i,j)∈missing entries

∣∣∣Ŷij − Yij

∣∣∣
∑

(i,j)∈missing entriesYij

,

where Yij represents the ground-truth sign from i to j, and
Ŷij denotes the estimated sign.

In Figure 10, we plot the average MAE values of the
coordinates at each round. We see that the MAE values
monotonically decrease towards the local minimum with
increasing numbers of rounds. Further, the MAE values
generally increase as we consider more rank-1 matrix
components, while most incorrect estimations are either
mapping “+1” or “−1” to “0”, since most incorrect signs are
adjacent to the correct values. Accordingly, the estimation
accuracy is not affected by the sign “0”, as it implies that we
skip the current rank-1 component entry, therefore,

2) Approximation Residual: Having shown the convergence
of the sign matrix prediction, we next evaluate the relative
error of approximation residuals as we combine more rank-one
matrices to the approximation. In Figure 11, we see that
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Fig. 11. The average relative error as a function of the number of combined
rank-one matrices.

Fig. 12. Sensitivity of the approximation rank as we increase the rank from
4 to 20.

Fig. 13. Sensitivity of the number of probing targets as we increase the
number from 16 to 48.

the RTT matrix can be compactly captured with two to
three rank-one matrices. The average relative error decreases
significantly as we combine the second and the third rank-one
matrices, while combining more matrices marginally decreases
the average relative error.

D. Sensitivity Results

Having presented the convergence, we next test the sensi-
tivity of our method. We fix all but one parameters to default
values, and vary the parameter configuration. We report the
average relative errors and the standard deviation.

1) Approximation Rank: First, we compute the distributions
of the relative errors as we increase the approximation rank r
from four to twenty. In Figure 12, we see that eight to twelve
rank-1 components are enough to obtain a reasonably accurate
estimation. Further, the median, the 15-th, and the 75-th
percentiles of relative errors remain steady on the Planetlab
dataset, since the PlanetLab dataset is approximately low-rank.
Comparatively, the relative errors on the Seattle and RIPE
dataset decrease significantly when we increase the rank from
4 to 8, as these data sets have longer tails of singular values
than the PlanetLab dataset.

2) Number of Measurements for Each Node: Next, we eval-
uate the choice of the number of targets. We compute the
relative errors for each setting. From Figure 13, the average
relative error decreases progressively, and 32 probing targets
suffice to obtain relatively accurate results.

3) Biased-MMMF Dimension: Next, we vary the choice
of the coordinate dimension for predicting the sign matrix

Fig. 14. Sensitivity of the bias-MMMF dimension as we increase the
coordinate dimension from 4 to 20.

Fig. 15. Sensitivity of the regularization parameter λ as we increase the
regularized parameter λ from 0.4 to 2.

Fig. 16. The average relative error and the standard deviation of the
found relay as a function of the number of targeting detouring hosts. For
a set of nodes (T1, . . . , TL) of size � that need detour routing, we define
the optimal relay as the one that minimizes the average network latency:
1
�

��
j=1

�
dTjRO

+ dROTj

�
We quantify the detouring performance for

each node pair by comparing the optimal relay selected from the ground-truth
network latency matrix and that from the estimated all-pair network latency

matrix:

�����
j=1

�
dTjRf

+dRf Tj

�
−��

j=1

�
dTjRO

+dROTj

����
�

�
j=1

�
dTjRO

+dROTj

� , where Rf and

RO denote the estimated relay and the optimal relay respectively.

and plot the relative-error distribution. In Figure 14, setting
the dimension to 12 to 16 is enough to obtain a relatively
high degree of estimation. The median relative error decreases
marginally on the PlanetLab, but decrease progressively on the
Seattle and RIPE datasets, which also holds for the 15-th and
75-th percentiles of the relative errors.

4) Regularization λ: Next, we study the performance sensi-
tivity with respect to the regularized parameter λ that controls
the extent of the regularization. We vary the regularized para-
meter from 0.4 to 2 and compute the relative error distribution
for each setting. From Figure 15, the relative error keeps steady
as we change the regularized parameter, thus the prediction is
less sensitive to the regularization than other parameters.

Summary: From the sensitivity analysis, a wide range
of parameters yield similar accuracy. Therefore, we choose
modest parameters in order to trade off well between the
accuracy and the computation complexity.

E. Use Case

Having evaluated the performance of SMF, we next evaluate
the performance gains for selecting detouring routing nodes
that act as proxies to forward packets for end hosts. Given a
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group of clients that need detour routing via a relay, we choose
a server with the minimal average RTT value towards this
group of clients. Figure 16 plots the variations of the average
relative errors of the found relay as we vary the number of
relayed hosts. We can see that on the PlanetLab dataset, our
method and DMFSGD obtain the most accurate relays, since
the PlanetLab dataset can be well approximated via a low-rank
model, while on the Seattle and RIPE datasets, our method
significantly outperforms the other methods.

VII. CONCLUSION

Monitoring pairwise RTT status scalably and accurately is
vital for network troubleshooting and performance manage-
ment. Existing matrix factorization based methods overcome
the scaling limitations, but could not truthfully capture the
skewed distributions. We propose a skewness-aware matrix
factorization method named SMF to learn latent factors for
different node pairs. We incrementally combine a rank-one
matrix weighted by their correlations with the current approx-
imation residual in a scalable residual-learning framework.
Extensive experiments over real-world data sets show that
SMF significantly improves the relative error by a factor
of 0.2x to 10x, converges fast and stably.

Although this paper focuses on a cloud measurement archi-
tecture, we can decompose the representation model to decen-
tralized components. First, a rank-1 matrix can be decomposed
to separable models with respect to each node. Second, the
sign matrix model can be decomposed to separate coordinates,
as already proven in previous studies in [14], [15]. After we
decompose the representation model, we may optimize tuples
a decentralized procedure, which is left as future work.
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