
Tree-structured Bloom Filters for Joint Optimization of
False Positive Probability and Transmission Bandwidth

Yongquan Fu
Science and Technology Laboratory of Parallel

and Distributed Processing
School of Computer

National Univ. of Defense Technology
yongquanf@nudt.edu.cn

Ernst Biersack
www.e-biersack.eu

erbi@e-biersack.eu

ABSTRACT
Bloom filters are frequently used to perform set queries that test the
existence of some items. However, Bloom filters face a dilemma:
the transmission bandwidth and the accuracy cannot be optimized
simultaneously. This dilemma is particularly severe for transmit-
ting Bloom filters to remote nodes when the network bandwidth
is limited. We propose a novel Bloom filter BloomTree that con-
sists of a tree-structured organization of smaller Bloom filters, each
one using a set of independent hash functions. BloomTree spreads
items across levels that are compressed to reduce the transmission
bandwidth need. We investigate in detail under which conditions
BloomTree performs better than the compressed Bloom filter and
the standard Bloom filter.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Data communications

Keywords
Bloom filter; tree

1. INTRODUCTION
A Bloom filter (BF) [1] is a space-efficient compact data struc-

ture answering the approximate set queries [2, 3]. The Standard
Bloom Filter (denoted as SBF) represents the set by randomly hash-
ing each item into k bit locations into a bit array, where k denotes
the number of hash functions. The Bloom filter incurs a certain
false positive (FP) probability, since the hash locations may be al-
ready be set to ones by different items. However, a Bloom filter
never has false negatives, i.e. an item is hashed to the bit array, but
the query fails to report the existence of this item. To control the
false positive probability, the size of the Bloom filter must grow
linearly with the number of items in the set. Further, when Bloom
filters must be exchanged among remote nodes, the transmission
bandwidth is an important performance metric. In this case, using
a Compressed Bloom Filter (denoted as CBF) may decrease the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA.
ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745881.

k=2

k=2

k=1

y z

1 1 1

1

1

1

0

1 0

0 0

0

0

1

0

0

0

0

0

1 1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

y

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

(1) (2) (5)(4)(3)

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) (3,4) (2,4) (1,4) (3,5) (2,5) (1,5)

Level 1 

Level 2 

Level 3 

Figure 1: A three-level BloomTree instance. We represent
a BloomTree with a tuple: {nmax, d, ρ1, k1,mi,i>1, ki,i>1},
where nmax denotes the maximal number of items to be in-
serted, d represents the depth of the BloomTree, ρ1 denotes the
ratio between the number of bits and the number of items in
the first-level filter, k1 is the number of hash functions of the
filter in the first level, mi,i>1 is the size of the filter in the sec-
ond and higher levels, and ki,i>1 denotes the number of hash
functions of the filter in the second and higher levels.

transmission cost [4]. However, CBF usually has two hash func-
tions, which significantly degrades the accuracy compared to the
Bloom filters with the optimal hash functions. As a result, there is
still a gap between the space efficiency and the accuracy.

There exists a performance dilemma for BF based approximate
set queries: Given a fixed-size bit array, selecting the optimal num-
ber of hash functions that minimizes the FP probability will make
compression ineffective, while selecting fewer hash functions will
increase the compression efficiency but degrade the FP probabil-
ity. By how much a Bloom filter can be compressed depends on the
probability p ∈ [0, 1] that a bit in the array is zero [4]. For p = 0.5
the entropy of the bit array is at its maximum and no compression
is possible: This is the case for the SBF when it uses the optimal
number of hash functions. The closer p gets to either one or to zero,
the higher the potential for compression.

We designed and implemented a novel Bloom filter called BloomTree
(BT for short) that simultaneously decreases the average FP proba-
bility and optimizes the transmission cost. A BloomTree is a hier-
archical organization of Bloom filters, as shown in Figure 1. Each
vertex is a small-size filter. For each bit in the filter, this vertex has
one separate descendent filter in the next level. BloomTree deter-
mines whether an item is hashed into it via independent tests. The
number of such tests increases exponentially increasing with the
number of levels in the tree, resulting in an exponentially decreas-
ing FP probabilities as the tree grows in hight.

The tree structure provides novel opportunities for optimizing
the FP probabilities, by improving the locality of the hash locations

437



Table 1: Some optimal configurations for BloomTree. The
size n of the item set is set to nmax = 108. Let WBT de-
note the transmission size of a BloomTree instance. Let WCBF

and WSBF be the transmission sizes of the CBF and SBF in-
stances with the same geometric-mean FP probability with the
BloomTree instance.
d ρ1 m2 m3 m4 k1 k2 k3 k4 Posterior FP WBT

WCBF

WBT
WSBF

2 0.5 3 − − 6 1 − − 0.84 0.33 0.39
3 0.5 4 3 − 5 3 2 − 0.21 0.43 0.55
4 0.5 5 3 3 6 3 2 2 1.02 ×10−5 0.67 0.71

of data items, which in turn reduces the false positive probabilities
of querying the items.

2. DESIGN
The BloomTree optimizes the false positives and decreases the

transmission size through a novel tree-structured Bloom filter. As
shown in Figure 1, a logical structure of the BloomTree has d levels
of Bloom filters that are organized as a tree. The root of the tree is a
SBF in the first level. For each bit in a SBF at level i, a descendent
Bloom filter is appended at level (i + 1), i < d. The i-th level is
also called the ancestor level for the (i + 1)-th level. The level d
is called the leaf level.

To insert an item, we first insert the item in the first-level Bloom
filter like the SBF. We also record the hash positions of the item.
We next insert the item into each descendent Bloom filter at these
hash positions. The inserting process is recursively run until we
complete the insertion on the bottom level. The query process is
also a recursive process, where an item is said to be in the set iff all
visited Bloom filters report that the item is in the set. Accordingly,
a FP event occurs for a membership query iff the visited Bloom
filters all report that the item is in the set.

Time Complexity: To ensure constant time complexity, the phys-
ical storage of the BloomTree is stored into a one-dimensional bit
array. In the bit array, the ancestor-descendent links are computed
on-th-fly with low time complexity. As a result, the storage struc-
ture of BloomTree is identical to that of the SBF. Thanks to the
doubling hash method, we only use two hash functions to gener-
ate the hash values for all filters in the tree, as a result, we keep
the hashing time of the overall query time on the BloomTree to be
constant.

Accuracy: To control the number of bits that are set to ones, we
recursively map each item to a small number of descendent filters
layer by layer. As a result, some of the bits set for a given item
have common prefixes through the tree, so those bits tend to be
more clustered than for a traditional flat Bloom Filter.

The FP probability for an incoming item is a random variable,
since the computed hash locations of each filter may lead to dif-
ferent branches in the hierarchical structure, as shown in Figure
1. As a result, optimizing the FP probability of the BloomTree
is a stochastic-programming problem. We present a light-weight
parameter tuning method with the sample average approximation
method that minimizes the transmission size while limiting the FP
probability to be under a fixed threshold with 95% confidence. As
a result, we guarantee the FP probability for each incoming query
“on average”.

Space Efficiency: Observing that the bits that are set to ones are
biased towards a subset of all possible bits to be set, the bit array
can be efficiently compressed. For example, from Figure 1, we see
that in the second and third level, many filters have all-0 bits or all-1
bits. As a result, the whole level can be efficiently compressed.

0 2 4 6 8 10

x 10
7

10
−60

10
−50

10
−40

10
−30

10
−20

Number of items

F
P

 P
ro

b 
P

a

(a) FP probability

0 2 4 6 8 10

x 10
7

0

20

40

60

80

100

120

140

Number of items

S
iz

e/
n

 

 

BT’s storage
BT’s transmission
CBF’s transmission
SBF’s transmission

(b) Transmission size

Figure 2: The FP probabilities and the transmission sizes as
functions of the numbers of set items. The upper bound nmax

of the set size is set to 108. We set d =4, ρ1 = 1, m2 = 4, m3 = 4,
m4 = 5, k1 = 6, k2 = 3, k3 = 3, k4 = 2.

Results: We compare BloomTree with the standard Bloom filter
and the Compressed Bloom filter. For a fair comparison, we create
CBF and SBF instances whose geometric-mean posterior FP prob-
abilities amount to those of the BloomTree instances. BloomTree’s
accuracy is determined by Bloom filters that are close to the leaves.
The filters in the middle levels of the BloomTree serve as selectors
for the SBFs close to the leaves. Increasing the number d of levels
means that an exponential number of close-to-leaves Bloom filters
are added. Therefore, BloomTree has exponentially decreasing FP
probabilities as the depth d increases. From Table 1 we see that the
BloomTree improves the space efficiency by 30-40% compared to
the Compressed Bloom filter.

From Figure 2, we see that BloomTree’s FP probability increases
as we keep adding new items, since the percent of bits set to one
at each level monotonically increases due to the constant storage
of the BloomTree. We see that BloomTree requires the smallest
transmission size compared to the CBF and the SBF as we continue
to add more items. Moreover, the Compressed Bloom filters do not
have a feasible parameter region for a wide range of experiments,
since its transmission size becomes infinite due to too few hash
functions.
Acknowledgments: This work was supported by the National Nat-
ural Science Foundation of China (Grant No. 61402509 and 61379052),
the National High Technology Research and Development 863 Pro-
gram of China (Grant No.2013AA01A213), the Natural Science
Foundation for Distinguished Young Scholars of Hunan Province
(Grant No.14JJ1026), Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No.20124307110015).

3. REFERENCES
[1] A. Z. Broder and M. Mitzenmacher. Network Applications of Bloom

Filters: A Survey. Internet Mathematics, 1(4), 2003.
[2] Y. Fu and Y. Wang. BCE: A Privacy-preserving Common-friend

Estimation Method for Distributed Online Social Networks without
Cryptography. In Proc. of CHINACOM, pages 212–217, 2012.

[3] Y. Fu, Y. Wang, and W. Peng. CommonFinder: A Decentralized and
Privacy-preserving Common-friend Measurement Method for the
Distributed Online Social Networks. Computer Networks,
64:369–389, 2014.

[4] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Trans.
Netw., 10:604–612, 2002.

438




