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Self-Stabilized Distributed Network
Distance Prediction

Yongquan Fu and Xu Xiaoping

Abstract— The network distance service obtains the network
latency among large-scale nodes. With increasing numbers of
participating nodes, the network distance service has to bal-
ance the accuracy and the scalability. The network-coordinate
methods scale well by embedding the pairwise latency into a
low-dimensional coordinate system. The prediction errors are
iteratively optimized by adjusting the coordinates with respect to
neighbors. Unfortunately, the optimization process is vulnerable
to the inaccurate coordinates, leading to destabilized positions.
In this paper, we propose RMF, a relative coordinate-based
distributed sparse-preserving matrix-factorization method to pro-
vide guaranteed stability for the coordinate system. In RMF, each
node maintains a low-rank square matrix that is incrementally
adjusted with respect to its neighbors’ relative coordinates.
The optimization is self-stabilizing, guaranteeing to converge
and not interfered by inaccurate coordinates, since the relative
coordinates do not have computational errors. By exploiting
the sparse structure of the square matrix, the optimization
enforces the L1-norm regularization to preserve the sparseness
of the square matrix. Simulation results and a PlanetLab-based
experiment confirm that RMF converges to stable positions
within 10 to 15 rounds, and decreases the prediction errors
by 10% to 20%.

Index Terms— Latency sensitive applications, stability,
network distance, network coordinate, relative coordinate, matrix
factorization.

I. INTRODUCTION

LATENCY-SENSITIVE network applications, e.g., dis-
tributed storage, online social networks, online network

games [1], multimedia streaming [2], interactive data publish
and query applications have attracted tens of millions of
simultaneous online users. Users access personalized contents,
with high demands of the quality of experiences (QoE):
The interactive process should be low-latency, otherwise,
the QoE degrades, yielding decreasing revenues for net-
working applications. As a result, latency-oriented optimiza-
tion becomes increasingly popular [1], [3]. For example,
online network games recommend nearby players to form the
game groups [1]; multimedia-streaming applications construct
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Fig. 1. The diagram of the network distance service. The portal provides
the query interface for end hosts. The network distances can be stored in the
portal for fast response.

low-latency overlay topologies and redirect the users to the
nearest servers [2].

The pairwise latency is a fundamental metric for the latency
optimization. Accordingly, the network distance service that
measures the pairwise network latency has been extensively
studied [1], [4]–[9]. Given the identifiers (for example, the
IP address) of a pair of nodes, the network distance service
returns the pairwise latency value from one node to the other
node. Figure 1 shows an illustrative example. A network
distance service approximates the near real-time network
latency for decentralized nodes. In many cases, the Round Trip
Time (RTT) is stationary, since most of the routing paths are
relatively stable over tens of minutes to hours [10]–[12]. The
network distance service needs scalable latency-measurement
techniques, since the numbers of clients and servers are usually
on the orders of millions. Collecting all-pair latencies requires
a quadratic number O(N2) of probing packets and O(N2)
storage space, where N denotes the number of participating
nodes.

In contrast, network coordinate methods provide a scalable
approach to estimate network distances without all-pair direct
measurements, for N hosts, O(N) coordinates suffices to
predict the all-pair RTTs. GNP [4] and IDES [5] require a
set of centralized landmark nodes to serve as reference nodes
for calculating the coordinates, which could cause performance
bottlenecks as the system increases. Vivaldi [6], DMF [7] and
DMFSGD [9] directly let each node adjust its coordinate with
respect to the coordinates of a number of sampled neighbors,
which avoids the single points of failures. Generally, each
coordinate is initialized as a random vector and iteratively
adjusted using neighbors’ coordinates that have a degree of
errors.
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The distributed distance estimation has to be consistently
accurate under varying system conditions. For example, end
hosts may join or leave the system at any time, yielding churns.
Existing network coordinate methods face the destabilization
issue: some neighbors’ coordinates can be arbitrarily inac-
curate due to the churns of the distributed systems, accord-
ingly, the coordinate optimization process is easily tampered
by these neighbors’ positions, as shown in section III-B.
Researchers [1], [6], [8], [9] propose to use weights to esti-
mate the accuracy of neighbors’ coordinates, and to adjust
the coordinate movements scaled by weights. The weights
are correlated with the accuracy of neighbors’ coordinates.
However, calculating exact weights is challenging, since no
ground-truth optimal coordinates exist in the system. As a
result, the weights based methods [1], [6], [8], [9] still suffer
from the destabilization problem.

In this paper, we define a rigorous self-stabilized network
coordinate model in section III-C. The self stabilization
guarantees to converge to a “legitimate” state in a bounded
amount of time, regardless of the initial state [13]. We propose
to map the “legitimate” state to the local-minimum position
of each network coordinate that is not interfered by system
churns.

We propose a novel distributed network coordinate method
named RMF that guarantees to be self-stabilizing under
churns. RMF addresses the destabilization problem in a very
different way. Whereas prior network coordinate methods use
weights to adapt to the effects of inaccurate coordinates, which
are sensitive to the accuracy of weights, RMF avoids the
uncertainty using the relative coordinate [14] to adjust each
node’s coordinate. Each node has a relative coordinate that
is constructed as a vector of RTT values from itself to a
set of distributed neighbors. Our key observation is that the
relative coordinates have no computing errors, as a result,
the coordinate optimization process converges to the local
minimum irrespective of neighbors’ coordinate states.

To represent the pairwise coordinate distance, we present a
novel distributed relative coordinate based matrix factorization
model. Each node maintains a relative coordinate and a square
non-negative parameter matrix whose dimension amounts to
the dimension of the relative coordinate. The coordinate dis-
tance of a node pair amounts to the product of a node’s
relative coordinate, parameter matrix and the other one’s
relative coordinate. The relative coordinates are exchanged
among neighbors to optimize each node’s parameter matrix,
while the parameter matrix of each node is not exchanged. Our
three-factor matrix factorization model differs significantly
from the two-factor matrix factorization used in DMF [7] and
DMFSGD [9], since the latter does not use relative coordinates
to represent the coordinate distances.

We propose decentralized algorithms to maintain the relative
coordinates and the parameter matrices. First, each node
randomly selects a small number of neighbors (16 by default)
as the decentralized landmarks of its relative coordinate, in
order to avoid the poor scalability of the centralized landmarks.
Then, each node measures the RTTs to its neighbors and
use them to construct its own relative coordinate. Second,
by observing the sparse structure of the parameter matrix

TABLE I

NOTATIONS

(see section V-A), we propose a novel distributed sparse-
regularized least-square optimization approach to optimize
each parameter matrix. Accordingly, each node initializes
its parameter matrix as a random non-negative matrix and
updates the parameter matrix in a fully distributed manner,
which guarantees to converge to the local minimum. Our
experiments from both simulations and a PlanetLab deploy-
ment confirm that RMF is robust to the errors of neighbors’
parameter matrices, and improves the prediction accuracy
by 10-20%.

The rest of the paper is organized as follows. We present
related network-coordinate studies in section II. Then we
formulate the self-stabilization problem in section III. We next
introduce the design of the RMF method in section IV. Then,
we present a mathematical framework to provide the self-
stabilizing network coordinates in section V. We introduce the
implementation of RMF in section VI. Next, we evaluate the
performance of RMF and compare it with related studies using
comprehensive simulations in section VII. We present the
performance of RMF on the PlanetLab in section VIII. Finally,
we conclude in section IX. The symbols are summarized
in Table I.

II. RELATED WORK

We next survey existing network-coordinate methods, focus-
ing on the stability of the coordinate optimization process.
A more comprehensive survey is referred to [15].

Relative Coordinate The relative coordinate assumes a
set of centralized nodes called landmarks to be available.
Then each node obtains a vector of distance values to these
landmarks, and uses this vector as its relative coordinate. The
order of landmarks should be the same among all nodes.
We can see that the relative coordinates themselves do not
contain computational errors, since each coordinate component
amounts to the distance from a node to a landmark. Moreover,
the computing processes of relative coordinates of different
nodes do not correlate with each other, therefore, each node’s
relative coordinate is independent from others.

We can use the upper and lower bounds of the triangle
inequality of the distances to these landmarks [16]–[18] to
predict the distance intervals for two nodes. Unfortunately, the
intervals have approximation errors, since the Internet delay
space contains TIVs. Further, centralized landmarks easily
lead to single points of failures and performance bottlenecks.
In this paper, we use distributed neighbors as the decentralized
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landmarks to scale well, and combine the relative coordinates
with the matrix factorization to compute exact distances that
tolerate the TIVs.

Multidimensional Scaling (MDS) GNP [4] pioneers the
study of network coordinates, using a small number of central-
ized nodes as the landmarks to guide the coordinate computa-
tion. These landmarks embed their coordinates into a geomet-
ric coordinate space, then other non-landmark nodes compute
their coordinates by minimizing the errors between the RTTs
and coordinate distances to landmarks. NPS [19] and PIC [20]
use decentralized neighbors to compute the coordinates, which
therefore increases the scalability. Unfortunately, NPS and PIC
are agnostic of neighbors’ coordinate errors, as a result, the
coordinate-optimization process is vulnerable to inaccurate
coordinates. Moreover, MDS methods suffer from the Inter-
net’s TIV phenomenon, since the coordinate system assumes
the triangle inequality to hold.

Force-Field Simulation It predicts RTTs using the sim-
ulations of the physical-force fields. Each node is regarded
as one particle in a physical system; and the RTT values
amount to the force strengths between particles in the steady
positions. Adjusting the coordinate is analogous to moving
a particle in a field, which has an interesting connection with
the well-studied force-field theory. The Big-Bang [21] method
assigns each coordinate at the origin, and iteratively moves all
nodes’ coordinates in a centralized manner. Vivaldi [6] and its
following works like Non-metric Vivaldi [22] and Htrae [1]
initialize each coordinate at a random position and incremen-
tally optimize the coordinate in a distributed manner. Further,
Vivaldi and its subsequences maintain a weight parameter
w to represent the accuracy of each coordinate according to
the historical prediction errors. Then each node i adjusts its
coordinate respect to the error towards a neighbor j scaled
by the weights as wi

wi+wj
. The weights smooth the coordinate

movement towards neighbors. Unfortunately, since no global-
truth errors of each coordinate exist in the network coordinate
system, the weight parameter has uncertainty that destabilizes
the optimization process (see section III-B).

Matrix Factorization IDES [5] assumes centralized
landmarks to compute their coordinates first using the
two-factor matrix factorization defined in Eq (1), while non-
landmark nodes calculate closed-form coordinates with respect
to landmarks based on the least-square optimization. DMF [7],
Phoenix [8] and DMFSGD [9] let each node adjust its own
coordinate with respect to neighbors’ coordinates defined in
Eq (1). The coordinate components in Eq (1) are initialized
as randomized vectors, which have to be iteratively optimized
by reducing the errors between the RTTs and the coordinate
distances towards its neighbors. IDES and DMF are agnostic
of neighbors’ coordinate errors. Each node just computes
the closed-form coordinate with respect to neighbors’ coor-
dinates. As a result, IDES and DMF become destabilized
when neighbors’ coordinates have errors. Phoenix [8] and
DMFSGD use a weight parameter to scale the coordinate
optimization analogous to Vivaldi [6]. Unfortunately, since
no ground-truth coordinate positions are available, there exist
inherent uncertainty in the weights, leading to degraded
performance.

Our work has three major differences from DMF and
DMFSGD. First, we propose a novel three-factor matrix
factorization (see Eq (4)) to compute the coordinate distances
using relative coordinates and a low-dimensional parameter
matrix. As discussed in the relative-coordinate sub-section,
the relative coordinate has no computational errors and there-
fore does not need to be optimized. However, in DMF [7]
and DMFSGD [9], they did not study the relative coordi-
nate, instead, they studied the two-factor matrix factorization
defined in Eq (1), where U and V are initialized as the
random matrices and need to be optimized. Therefore, both
matrices U and V have computational errors.

Second, we observe that the parameter matrix has many
zero (close to zero) items, as a result, we formulate a dis-
tributed sparse-regularized optimization objective function to
preserve the sparseness of the parameter matrix of each node.
In contrast, DMF and DMFSGD use the Frobenius-norm reg-
ularized objective to optimize the coordinate components Ui

and Vi for each node i. DMFSGD regularizes both coordinate
components Ui and Vi, while we only need to regularize the
parameter matrix, leaving the relative coordinates unchanged.

Third, we propose a nonnegativity-preserving multiplicative
rule to adjust the coordinate for each node. We can use
the relative coordinates free-of-computation-error benefit to
stabilize the network coordinate. We guarantee to find the local
minimum for the optimization objective. While DMF uses the
least-squared optimization, and DMFSGD uses the stochastic
gradient descendent (SGD) optimization. Unfortunately, our
experiments show that DMF and DMFSGD are affected by
the churns: neighbors’ erroneous coordinates destabilize the
coordinate optimization process.

III. PROBLEM DEFINITION

A. Prediction Model

The pairwise RTT values of N nodes can be represented
as a N -by-N matrix d. Then the network distance problem is
transformed to obtain the unobserved items in the matrix d.
The network coordinate methods seek to compute a low-
dimensional coordinate-distance matrix d̂ that approximates
the RTT matrix d well. Each unobserved pairwise RTT
value dij for a pair of nodes i and j is estimated using the
coordinate distance d̂ij .

It is well known that [23]–[25] the latency space has a
fraction of triangle inequality violations (TIV), as a result, the
metric-space based coordinate spaces such as the Euclidean
space, the Hyperbolic space or the spherical space have latent
distortions due to the assumption of the triangle inequality
to hold. The vector-space based matrix factorization toler-
ates the TIVs via products of vectors. For example, the
two-factor matrix factorization model is adopted by existing
studies [5], [7]–[9]:

d̂ = UV T (1)

where U ∈ RN×r and V ∈ RN×r. The i-th row vectors
Ui∗ and Vi∗ altogether form the coordinate for node i. The
coordinate distance d̂ij from node i to node j amounts to d̂ij =∑r

k=1 UikVjk . For each pair (i, j) of nodes, the coordinate



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

distance d̂ij may differ from d̂ji. When the RTT matrix d is
complete, we can calculate the closed-form optimal solution
of U and V by the Singular Value Decomposition (SVD)
technique [26]; while when the matrix d has missing items,
computing the optimal matrices U and V is NP-hard [26].

Coordinate Optimization Finding the optimized coordi-
nates requires to form an objective function. A centralized
objective function minimizes the sum of pairwise prediction
errors:

L({−→x i}) =
∑

i,j∈S

∥
∥
∥dij − d̂ij

∥
∥
∥ (2)

where the norm ‖•‖ represents some metric, e.g., ‖d‖2F =∑
i,j∈S d2

ij . Eq (2) requires global pairwise latencies to
be available, which does not scale well. Instead, the
state-of-the-art methods approximate Eq (2) using decomposed
sub-objective functions, where each node i independently
minimizes a sub-objective:

L(�xi) =
∑

j∈Si

‖dij − PairCoordDist (�xi, �xj)‖ (3)

where−→x i denotes a coordinate, Si represents the neighbors of
node i, and PairCoordDist (−→x i,

−→x j) represents the coordinate
distance from node i to node j.

When each node i joins the network-coordinate system, its
coordinate is initialized as a random vector; afterwards, node i
iteratively optimizes its own coordinate in rounds with respect
to the coordinates of neighbors Si. Although this distributed
optimization process scales well, it is vulnerable to several
challenges, as discussed in the related-work section II.

B. Self-Stabilization Comparison

Modeling the churns is challenging, since nodes usually
have a variety of decentralization: some nodes in the data
centers may be quite stable, while some nodes in home
networks or desktop grids could join or leave the system
at will. Most of prior network-coordinate simulators usually
assume that neighbors are always online during the simulation
period [6]–[8]. As a result, each round of the distributed
coordinate adjustment procedure is equivalent to a centralized
iterative optimization process that converges fast.

We use a simple asynchronous model to represent the
dynamics of nodes. The simulation consists of a number of
rounds. At each round, every node independently samples its
neighbors and updates its own coordinate. At each round, a
fraction p of nodes add one neighbor that just joins in the
coordinate system with a random coordinate to their neighbor
sets. By controlling the fraction p of nodes meeting dynamic
neighbors, we are able to study the effects of churns of nodes
on the convergence of coordinates.

1) Existing Methods’ Stability: We select two representative
methods NonMetric [22] and DMF [7], and compare their
performance. We compute the well-known Relative Error
of coordinates, defined as the absolute difference of the
coordinate distance and the RTT distance divided by the RTT

distance fRE = |d̂ij−dij|
dij

. We also test the stability of other
methods. The results are consistently similar as NonMetric and
DMF, which are omitted for brevity.

Fig. 2. The convergence of NonMetric and DMF methods for nodes
with dynamic neighbors. (a) NonMetric on P2P1143. (b) NonMetric on
Meridian2500. (c) DMF on P2P1143. (d) DMF on Meridian2500.

We first test whether nodes that have dynamic neighbors
degrade the coordinates’ accuracy. We vary the percent p of
nodes meeting dynamic neighbors from 0.05 to 0.6. In each
round, we compute the mean relative errors for those nodes
having dynamic neighbors. Finally, we plot the CCDFs of the
relative errors of coordinates for these nodes after 100 rounds.

From Figure 2, we see that NonMetric and DMF degrade
their prediction accuracy due to dynamic neighbors. DMF
converges to much worse local minimum than NonMetric.
As DMF is agnostic of neighbors’ errors, while NonMetric
tunes uncertainty weights of neighbors’ coordinates.
NonMetric converges to instable positions when more
nodes have dynamic neighbors, since the uncertainty weights
only locally approximate the accuracy of each coordinate.

Having shown that dynamic neighbors degrade the conver-
gence, we next study the accuracy of coordinates for nodes
whose neighbors are stable throughout the simulation periods.
Figure 3 shows the results. We see that increasing the percents
of dynamic neighbors degrades the prediction accuracy of sta-
ble nodes. This is because although their neighbors are stable,
the neighbors of these nodes’ neighbors may be dynamic.
The coordinate errors of the dynamic neighbors are indirectly
propagated along the progress of coordinate updates.

Summary of Findings: Our experiments show that even a
small fraction of dynamic nodes degrade the overall accuracy.
Not only nodes with dynamic neighbors have degraded coor-
dinates, but also those having stable neighbors also decrease
the prediction accuracy. We can also see that the weights
have limitations in mitigating the destabilization of random
coordinates. Individual nodes may be misled by the random
coordinates significantly.

C. Stability of Network Coordinates
Having presented the backgrounds of network coordinate

methods, we next introduce the stabilization model for the
network coordinate methods. We first state our assumptions.
First, the distributed system may have churns, where new
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Fig. 3. The convergence of NonMetric and DMF methods for nodes with
stable neighbors. (a) NonMetric on P2P1143. (b) NonMetric on Meridian2500.
(c) DMF on P2P1143. (d) DMF on Meridian2500.

nodes may join the system and existing nodes may leave
the system at any time. Second, the pairwise latency matrix
d is assumed to be stationary, where small perturbations
of latencies are smoothed using the filters [27]–[29]. Our
assumptions are reasonable, as the churns match well with the
dynamics of the end hosts, while the stationary assumption is
the basis for the network-coordinate studies.

Self-stabilization: A classic self-stabilizing system should
satisfy two properties [13]:

• Convergence: it guarantees to converge to a legitimate
state within finite rounds, irrespective of its starting state;

• Closure: it stays in the legitimate state after convergence,
and converges to the legitimate state after external per-
turbations.

Due to the convergence and closure properties, a self-
stabilization system is insensitive to the initial state, and
tolerates transient events like failures of nodes, joins of new
nodes, perturbations of external environments.

Local minimum state: The self stabilization has not been
studied in the network-coordinate field. Therefore, we first
define the analogous notations in a network coordinate system.
We define the state of a node as its current coordinate
position, and define the state of a network coordinate system
as the whole set of states of all online nodes.

We next motivate the definition of the legitimate state of the
system. When no churns happen, the distributed coordinate-
optimization procedure converges to the local-minimum states.
Let the static local minimum of each node be the ones
computed when all nodes are assumed to be online with
respect to Eq (3). We can see that the static local minimum is
the best state for each node. Due to the churns of the system,
some neighbors may be offline. As a result, new neighbors
must be re-sampled from the rest of online nodes. The newly
sampled neighbors may have arbitrarily inaccurate coordinates,
however, existing coordinate-optimization methods tend to
move the coordinates towards neighbors having inaccurate
coordinates, which increases the overall errors, as shown in
section III-B. As a result, it is desirable to ensure the network

coordinate system to reach the static local minimum even
under churns. Therefore, we define the legitimate state of
a node as the static local-minimum coordinate.

Self-stabilizing network coordinate: Having presented the
legitimate states of network coordinates, we next define the
self-stabilizing network coordinate system:

Definition 1: A network coordinate system is self-
stabilizing, iff each node’s coordinate satisfies two conditions:

• Convergence: Each node’s coordinate should converge
to the static local minimum that minimizes Eq (3) in a
finite rounds of optimization.

• Closure: Once the coordinate converges to the static
local-minimum state, new rounds of optimization should
put the coordinate into the static local minimum. If churns
happen, new rounds of optimization should converge each
node’s coordinate to the static local minimum within a
finite rounds of optimization.

To realize the self-stabilizing objective, each node’s coordi-
nate optimization process has to be invariant to the erroneous
coordinates of neighbors, which is the focus of this paper.

IV. DESIGNING STABLE COORDINATES

Having analyzed the stability model, we next present RMF,
a method that completely avoids the instability caused by
inaccurate coordinates and guarantees to converge to the self-
stabilizing states, using a novel relative coordinate matrix
factorization based coordinate structure.

A. Overview

We propose a novel relative coordinate based matrix
factorization named RMF to predict the pairwise latency.
In RMF, each node i maintains a list of online nodes as its
neighbors (required to be at least ≥ m, where m = 16 by
default). Each node i maintains a relative coordinate Yi of
length m and a m × m-sized square parameter matrix Φi

constructed as follows:
• Node i probes the latencies to these neighbors and gener-

ates a vector of length m of probed latencies to neighbors.
This vector serves as node i’s relative coordinate Yi.

• The parameter matrix Φi stands for node i’s coordinate,
which is initialized as a random matrix and needs to be
optimized. We enforce each item in the parameter matrix
to be non-negative to preserve the nonnegativity of the
latency values.

Next we present a three-factor matrix factorization based
distance function to calculate pairwise coordinate distances.
The coordinate distance d̂ij from a node i to another node j
amounts to the product of i’s relative coordinate Yi, its
parameter matrix Φi and node j’s relative coordinate Yj , which
is calculated by:

d̂ij = YiΦiY
T
j (4)

The pairwise coordinate distances d̂ij and d̂ji can be different,
since the parameter matrices Φi and Φj vary.

B. TIV Tolerance and Stabilization

TIV tolerance: Our coordinate structure tolerates TIVs. In
section VI-A, we present such an example. Here we give intu-
itions. For a triple of three nodes A, B and C, we compute
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the ratio between the sum of two edges and the third edge

d̂AB + d̂BC

d̂AC

=
YAΦAY T

B + YBΦBY T
C

YAΦAY T
C

=
YAΦAY T

B

YAΦAY T
C

+
YBΦBY T

C

YAΦAY T
C

If every item in YB is larger than every item in YC , then the

ratio d̂AB+d̂BC

d̂AC
will be always larger than one, i.e., satisfying

the triangle inequality. Otherwise, d̂AB+d̂BC

d̂AC
may be smaller

than one, therefore, a TIV happens.
As the neighbors of each node are randomly selected,

the latency values to these neighbors tend to be randomly
distributed. As a result, the probability that every item in YB

is larger than every item in YC is very low. Therefore, the TIV
may happen.

Stabilization: We ensure the stabilization by decoupling the
correlation of parameter matrices of different nodes. Recall
that existing methods must obtain neighbors’ coordinates to
optimize its own coordinate. While in RMF, each node does
not need neighbors’ parameter matrices, but only requires their
relative coordinates. To see why, each node’s parameter matrix
Φi is only useful for predicting network distances from itself
to other nodes, while its relative coordinate Yi is required for
predicting network distances from other nodes to node i.

The independence of coordinates helps RMF keep stable
against erroneous coordinates. The relative coordinate’s free-
of-computation-error advantage is translated to decouple the
interference of inaccurate coordinates among online nodes.
Accordingly, each parameter matrix guarantees to converge
by itself, which completely avoids the instability caused by
inaccurate coordinates. We provide a formal proof of the self
stabilization in Theorem 2 in section V-E.

C. Coordinate Optimization

Maintaining the Relative Coordinate: Each node’s relative
coordinates are required to be of the same length for interoper-
ability. Selecting centralized landmarks does not scale well. To
overcome this shortcoming, each node uses its own neighbors
as the landmarks to compute the relative coordinates. The
relative coordinates should be updated infrequently, since they
are references for optimizing the parameter matrices.

Optimizing the Parameter Matrix: We optimize parameter
matrices for each node in a fully distributed manner. Each
node i requests the relative coordinates of these neighbors
and then iteratively adjusts its own coordinate in cycles.
Node i initializes a randomized parameter matrix, then in each
cycle, node i updates the parameter matrix Φi iteratively that
guarantees to reach the local minimum (see section V-C).

V. MATHEMATICAL ANALYSIS

Having presented the basic ideas of RMF, we next present
mathematical results to optimize the parameter matrix of
each node. We first formulate the optimization problem, then
derive an multiplicative optimization rule, finally, we prove
the stabilization of the optimization process. In contrast, the
relative coordinates can be directly maintained by probing the
distributed neighbors.

A. L1-Norm Regularized Optimization

To optimize the parameter matrices, we adopt the well-
known least-squared optimization technique [4], [6], [7].
To keep the nonnegativity of coordinate distances, we
enforce each node’s parameter matrix to be nonnegative. The
least-squared optimization minimizes the squared difference
between the coordinate distances and pairwise RTT values:

L(Φ) = min
∑

i,j∈[1,N ],i�=j

∥
∥dij − YiΦiY

T
j

∥
∥2

F
(5)

where ‖x‖2F =
∑

i,j x2
ij .

Enforcing each coordinate distance d̂ij to match the RTT
dij is likely to fail, since the RTT matrix is only approx-
imately low-rank. Accordingly, the overfitting phenomenon
may occur: Although we can decrease the prediction errors
for pairwise RTTs of nodes in the training set, the errors for
nodes that are out of the training set may increase significantly.
Therefore, we next refine Eq (5) to avoid the overfitting issue.

A common approach is to incorporate regularized items
to Eq (5) that tries to minimize the difference, but does
not strictly require the difference to be zero. We propose
a regularization to Eq (5) using one important observation:
Many items in each parameter matrix are (close to) zeros.
To see why, the one-way coordinate distance d̂ij from node i
to node j can be rewritten as:

d̂ij =
∑

c1∈[1,m]

∑

c2∈[1,m]

Yic1Yjc2Φi [c1, c2]

which can be transformed to:
∑

c1∈[1,m]

∑

c2∈[1,m]

Yic1Yjc2

d̂ij

Φi [c1, c2] = 1 (6)

As the latency values d̂ij , Yic1 and Yjc2 are uniformly distrib-
uted due to the randomly sampling of neighbors, we see that
Yic1×Yjc2 > d̂ij holds in many cases. As a result, many items
in the parameter matrix Φi are much smaller than one with
increasing numbers of neighbors. Our example in section VI-A
clearly shows that many items in the parameter matrices are
close to zeros.

As a result, we use the well-known L1 norm [30] to enforce
the sparsity of each parameter matrix:

L(Φ) = min
∑

i,j∈[1,N ],i�=j

∥
∥
(
dij−YiΦiY

T
j

)∥
∥2

F
+
∑

i∈[1,N ]

‖Φi‖L1

= min
∑

i,j∈[1,N ],i�=j

∥
∥
(
dij − YiΦiY

T
j

)∥
∥2

F

+
∑

i∈[1,N ]

m∑

c1=1

m∑

c2=1

|Φi [c1, c2]|

= min
∑

i,j∈[1,N ],i�=j

∥
∥
(
dij − YiΦiY

T
j

)∥
∥2

F

+
∑

i∈[1,N ]

m∑

c1=1

m∑

c2=1

Φi [c1, c2]. (7)

due to the nonnegativity of the parameter matrices
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B. Distributed Decomposition

We next decompose Eq (7) to a set of problems that can
be solved in a distributed manner. For each node i, let the
set Si denotes node i’s neighbors, we transform Eq (7) to a
new objective that only contains the RTT measurements from
node i to its neighbors:

L(Φi) = min
∑

j∈Si

∥
∥dij − YiΦiY

T
j

∥
∥2

F
+ α

m∑

c1=1

m∑

c2=1

Φi [c1, c2]

(8)

Now each node i is able to locally compute its parameter
matrix with neighbors’ relative coordinates, while neighbors’
parameter matrices are not needed.

Eq. (8) belongs to the well-studied tri-factor matrix fac-
torization [31], which has the same optimal solution as the
traditional two-factor matrix factorization, but increases the
freedom of the computation process.

C. Distributed Optimization

We next propose a distributed algorithm to optimize Eq (8).
Let di =

(
dij1 , . . . , dij|Si|

)
, Y =

[
Yj1 ; . . . , Yj|Si|

]
, where

j1, . . . , j|Si| ∈ Si.
We transform Eq (8) as

L (Φi) =
∥
∥di − YiΦiY

T
∥
∥2

F
+ α

m∑

c1=1

m∑

c2=1

Φi [c1, c2]

= tr
(
dT

i di − 2Y T dT
i YiΦi + YiY

T
i ΦiY

T Y ΦT
i

)

+ α

m∑

c1=1

m∑

c2=1

Φi [c1, c2] (9)

with the trace norm of the matrix, where tr() denotes the
trace of a matrix. The optimal solution that minimizes the
objective in Eq (9) must satisfy the Karush-Kuhn-Tucker
complementarity condition (KKT condition):

(−Y T
i diY + YiY

T
i ΦiY

T Y + α
)
gh

Φi [g, h] = 0 (10)

which implies that the optimal parameter matrix Φi must
satisfy:

Φi [g, h] =

(
Y T

i diY
)
gh(

YiY T
i ΦiY T Y + α

)
gh

Φi [g, h] (11)

We next present a multiplicative rule to adjust the parameter
matrix Φi for each node i. We first compute the gradient
of each element Φi [g, h] with respect to Eq (9) (we omit
the scalar “2” in the right side of Eq (12) to simplify the
derivations):

∇Φi[g,h]L (Φi) =
(−Y T

i diY + YiY
T
i ΦiY

T Y + α
)
gh

(12)

By the gradient-descent method, we set the update rule for
Φi [g, h] as:

Φi [g, h] ← Φi [g, h]− ηgh∇Φi[g,h]L (Φi)
= Φi [g, h]− ηghΦi [g, h]
× (−Y T

i diY + YiY
T
i ΦiY

T Y + α
)
gh

(13)

where ηgh denotes the adjustment parameter. To keep Φi [g, h]
to be nonnegative, we set ηgh as: ηgh = Φi[g,h]

(YiY T
i ΦiY T Y +α)

gh

.

Then, Eq (13) can be written as:

Φi [g, h] ← Φi [g, h]

(

1− 1
(
YiY T

i ΦiY T Y + α
)
gh

×(−Y T
i diY + YiY

T
i ΦiY

T Y + α
)
gh

)

= Φi [g, h]
Y T

i diY(
YiY T

i ΦiY T Y + α
)
gh

(14)

At convergence, the solution of Eq (14) satisfies Eq (11),
which guarantees the correctness of Eq (14). We next prove
that the distributed objective Eq (9) is non-increasing under
Eq (14), yielding a local minimum.

Theorem 1: Eq (9) reaches the local minimum under the
update rule

Φt+1
i [g, h]← Φt

i [g, h] ·
(
Y T

i diY
)
gh(

YiY T
i Φt

iY
T Y + α

)
gh

(15)

Proof: We use the auxiliary-function method for the proof
inspired by Ding et al. [31].

Definition 2: A function g(H, H̃) is called an auxiliary
function of another function f(H) if the function g(H, H̃)
satisfies that:

g
(
H, H̃

)
≥ f (H) , g (H, H) = f (H) (16)

for any variables H, H̃ .
Auxiliary-function Example: Let

Ht+1 = arg min
H

g
(
H, Ht

)
(17)

be the minimum for the function g (H, Ht). We have

f
(
Ht
)

= g
(
Ht, Ht

) ≥ g
(
Ht+1, Ht

) ≥ f
(
Ht+1

)
(18)

Therefore, the function f (Ht) monotonically decreases for a
sequence of variables

(
H1, · · · , Ht

)
as the index t→∞.

Let

g (Φi, Φ′
i) =

⎛

⎝dT
i di − 2tr

(
Y T dT

i YiΦi

)

+
∑

g,h

(
YiY

T
i Φ′

iY
T Y
)
gh

Φ2
i [g, h]

Φ′
i [g, h]

⎞

⎠

+ α
∑

g,h

Φ2
i [g, h]

Φ′
i [g, h]

(19)

We next show that the function g (Φ, Φ′) is an auxiliary
function of Eq (9).

First, dT
i di and −2tr

(
Y T dT

i YiΦi

)
are preserved in Eq (9).

Second, the terms
∑

g,h

(YiY
T

i Φ′
iY

T Y )
gh

Φ2
i [g,h]

Φ′
i[g,h] and α

∑

g,h

Φ2
i [g,h]

Φ′
i[g,h]

in Eq (19) are proved to be always bigger than the items

YiY
T
i ΦiY

T Y ΦT
i and α

m∑

c1=1

m∑

c2=1
Φi [c1, c2] in Eq (9), respec-

tively (see [31, p. 6]). Therefore, it follows that

g (Φ, Φ′) ≥ JΦ
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which means that g (Φ, Φ′) is an auxiliary function of the
objective function JΦ of calculating the parameter matrices
for all nodes.

(ii) We next prove that the variable Φt+1 in Eq (15)
minimizes the auxiliary function g (Φ, Φt) in Eq (19). Setting
the derivative of g (Φ, Φ′) in Eq (19) to zero leads to:

0 =
δg (Φ, Φ′)
δΦi [g, h]

= −2
(
YidiY

T
)
g,h

+ 2×
(
YiY

T
i Φ′

iY
T Y
)
gh

Φi [g, h]

Φ′
i [g, h]

+ 2α
Φi [g, h]
Φ′

i [g, h]
(20)

which means that

Φi [g, h] = Φ′
i [g, h]×

(
YidiY

T
)
gh(

YiY T
i Φ′

iY
T Y
)

gh
+ α

(21)

Combining Eq (21) and (15), we see that variables
Φt+1 = Φ, Φt = Φ′ hold. As a result, Eq (15) monotonically
decreases the function (9), yielding the local minimum. �

D. Static Local Minimum Under Churns

Assuming that the latency values are stationary during the
optimization, we next show that RMF can yield the static local
minimum under churns due to the free of computational errors
of the relative coordinates.

1) Neighbor Departs: We construct an optimization process
that is invariant to the departure of neighbors. Given a node i
with a neighbor set Si, at the first round, node i retrieves the
relative coordinates of all neighbors and obtains the latencies
to these neighbors. Next, node i initializes its parameter
matrix Φi as a positively random matrix. Then node i performs
the optimization according to Eq (15). From the first round
to the (t − 1)-th round (t > 1), let all neighbors in Si be
online. Node i performs the optimization according to Eq (15).
From Theorem 1, the optimization monotonically decreases
the prediction error for node i.

While at the t-th round, let some neighbors Sio in the set
Si be offline. For the t-th and the following rounds, node i
removes nodes in Sio from the set Si, and continues the
optimization according to Eq (15) using online neighbors
in (Si − Sio). since Eq (15) only needs the relative coor-
dinates that are static throughout the optimization, node i’s
optimization process is equivalent to that using the neighbor
set (Si − Sio) when all nodes are always online. As a result,
despite the departure of some neighbors, the optimization is
equivalent to that when neighbors are online, yielding the static
local minimum.

Further, due to the invariance of the relative coordinates,
the departures of neighbors can occur multiple times, while
the same conclusions still hold.

2) Neighbor Joins: Second, we consider adding new neigh-
bors into the neighbor set. If at time t, some new nodes Vt are
added as a node i’s neighbors St

i = Si ∪ Vt, the objective in
Eq (8) may deviate from the current local minimum. However,
applying the multiplicative rule in Eq (15) monotonically
decreases Eq (8), leading to a new local-minimum solution.
We can see that this new local minimum is identical to
that using the neighbors St

i assuming all nodes are online.

Fig. 4. A simple network topology consisting of four edge hosts A, B, C
and D. The edge weight represents RTTs between these nodes.

Therefore, each node i’s optimization is also identical to that
when all nodes are always online, which yield the static local
minimum. Analogous to the departure of neighbors, the same
conclusions hold when new neighbors join the system in
multiple times.

3) Putting it All: As we can obtain the local minimum that
is equivalent to the one when no churns happen, each node’s
coordinate reaches the static local minimum under churns.

E. Self Stabilization of RMF

We next show that Eq (15) based optimization leads to the
self stabilization that is defined in Definition 1.

Theorem 2: Applying Eq (15) to optimize each parameter
matrix leads to the self-stabilizing network coordinates.

Proof: According to the Definition 1, for each node i,
we analyze the convergence and closure of optimizing its
parameter matrix by Eq (15). (i) Convergence: According
to Theorem 1, the multiplicative rule in Eq (15) guarantees
that each node i’s parameter matrix converges to the local
minimum. From section V-D, the local minimum is one of
the static local minimum. (ii) Closure: If no neighbors are
offline, when node i’s parameter matrix reaches the static local
minimum, further optimization guarantees that the objective
in Eq (8) stays in the static local minimum due to the
monotonic decreasing optimization objective in Theorem 1.
Further, section V-D shows that we can reach the static
local minimum under churns. The convergence and closure
complete the proof. �

VI. DETAILS OF THE RMF METHOD

A. Example of RMF

We next use an example to illustrate how RMF is able to
predict RTTs well. From Figure 4, there are four hosts A, B, C
and D that need to calculate pairwise RTTs via RMF. Assume
that four nodes’ neighbors are selected as: A ← (B, C),
B ← (A, C), C ← (A, B) and D ← (A, C). Then these
nodes’ relative coordinates are calculated as: YA = (100, 30),
YB = (100, 60), YC = (30, 60) and YD = (25, 70).

After applying 20 rounds of multiplicative rule in Eq (15)
for each node’s parameter matrices, we obtain a list of
two-by-two sized parameter matrices of four hosts:

ΦA =
[

0.0090 0.0002
0.0025 0.0005

]

, ΦB =
[

0.0056 0.0037
0.0045 0.0037

]

ΦC =
[

0.0000 0.0113
0.0008 0.0095

]

, ΦD =
[

0.0000 0.0116
0.0000 0.0116

]
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Fig. 5. The diagram of RMF’s architecture.

We can calculate the coordinate-distance matrix with Eq (4)
as (The diagonal items are set to be zeros):

d̂ =

⎡

⎢
⎢
⎣

0 99.5544 31.4116 26.9122
100.0740 0 59.8762 61.6043
31.7980 59.0307 0 64.6842
33.0003 66.0000 65.9996 0

⎤

⎥
⎥
⎦

We list the RTT matrix d for comparison:

d =

⎡

⎢
⎢
⎣

0 100 30 25
100 0 60 50
30 60 0 70
25 50 70 0

⎤

⎥
⎥
⎦

We can see that the predicted distances match the RTT dis-
tances quite well. For example, the RTT distance dAB = 100,
while the predicted value d̂AB = 99.5544. Further, the TIV
triples are well preserved in the prediction. For example,
there is a TIV for the triple (A, C, D): dDA + dAC = 55,
while dDC = 70, i.e., dDA + dAC < dDC . The TIV is
preserved in the predicted distance matrix d̂: d̂DA + d̂AC =
33.0003+31.7980 = 64.7983, and dDC = 65.9996. The same
conclusion holds for another triple (A, B, C) with a TIV.

Further, the pairwise distances in d̂ are asymmetric, as
each node’s parameter matrix is independently optimized. For
example, dCD = 64.6842 while dDC = 65.9996. This is
useful for representing asymmetric distance metrics.

B. Overall Architecture

We have implemented RMF in a distributed network dis-
tance service. Figure 5 plots main components in this program:
(i) The RTT estimation module. It receives the latency-query
requests consisting of the source and destination addresses via
the XML RPC interface, and predicts the pairwise RTT value
by Eq (4). If the source or the destination are not cached at
the local node, it pulls the corresponding relative coordinates
and the parameter matrices through the XML RPC interface.
(ii) The relative coordinate maintenance module. It maintains
the current node’s relative coordinate, which will be intro-
duced in section VI-E. (iii) The parameter-matrix maintenance
module. It incrementally adjusts a node’s parameter matrix,
as introduced in section VI-F. (iv) The neighbor management
module. It maintains a set of neighbors via the standard gossip
protocol [32], [33], introduced in section VI-C.

C. Gossip Based Neighbor Management

The gossip protocol is light-weight and robust, allowing
RMF to tolerate failures of nodes and to keep up-to-date
membership. Our gossip protocol follows the push-pull based
gossip protocol [33]. The objective of the gossip protocol
is to maintain a number of randomly-sampled neighbors for
updating the parameter matrices.

The gossip protocol consists of two procedures:
(1) Initialization: When a node joins the system, it contacts

some bootstrapping server that records the addresses of each
joined node, obtains the addresses of a number of joined nodes
from the bootstrapping node and stores them into a candidate-
neighbor set. The candidate-neighbor set stores nodes that are
to be neighbors and may contain offline nodes due to churns.
Further, each node maintains a neighbor set that stores the
neighbors that have exchanged messages.

The neighbor set is used to update the parameter matrix.
For each neighbor j, the neighbor set records the address and
relative coordinate of node j as well as the RTT value to
node j.

(2) Sampling: Algorithm 1 shows the process of sampling
neighbors. Each node i runs two threads, namely Gossi-
pActive and GossipPassive. The GossipActive thread periodi-
cally sends gossip messages to other nodes, allows each node
to pull the relative coordinates of neighbors and to compute
the RTTs through the piggyback messages. The GossipPassive
thread continuously waits for the gossip messages from others,
stores the pushed information of neighbors, and sends back
response messages. To smooth the measured latencies, we use
the median filter [27] on the measured RTT samples to filter
out transient RTT perturbations due to changing network traffic
or machine loads.

D. RTT Estimation

To estimate the RTT to other nodes, each node needs to
compute the coordinate distance from itself to others. For
example, when a node A needs to predict the RTT value
to another node B, node A only requests node B’s relative
coordinate YB . Then node A computes the coordinate distance
d̂AB as d̂AB = YAΦAY T

B according to Eq (4).

E. Computing Decentralized Relative Coordinates

We next introduce the process of maintaining the rela-
tive coordinates for each node. To avoid the performance
bottlenecks of maintaining centralized landmarks, each node
independently chooses its landmarks to construct the relative
coordinate, so as to amortize probing loads on each landmark.
We do not require that all nodes share the same landmarks,
since we use relative coordinates to update each node’s coordi-
nate, while prior relative-coordinates target for predicting the
proximity between nodes.

Each node i maintains the relative coordinate as the vector
of RTTs to its neighbors to obtain its relative coordinate.
Node i probes the RTTs from itself to its neighbors in Si

and saves the successfully returned RTTs into a vector Yi of
length m. The ordering sequence of neighbors in the vector
Yi can be arbitrary, but the length of the vector Yi must be
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Algorithm 1 A Gossip based Neighbor Sampling Process

1 GossipActive(i)
2 while TRUE do
3 Node i selects a node j uniformly at random from

nodes in the candidate-neighbor set and the neighbor
set;

4 Node i creates a gossip message, whose payload
contains the relative coordinate of node i and the
address of a sampled neighbor from the nonempty
neighbor set of node i;

5 Node i sends the gossip message to node j. Node i
records the time-stamp of the transmission and waits
for the response from node j.

6 if Node i receives node j’s response message in Lh

seconds (Lh = 10 by default) then
7 Node i saves node j’s relative coordinate, and

updates the RTT value to node j using the
timestamp of sending the gossip message to node j;

8 else
9 Node i removes node j from its neighbor set;

10 Sleep(τ );

11 GossipPassive(j)
12 while TRUE do
13 if Node j receives the gossip message from node i

then
14 Node j reads the payload, stores the sampled

neighbor’s address into the candidate-neighbor set,
saves node i’s relative coordinate into j’s neighbor
set;

15 Node j pings the latency to node i and saves the
RTT value in the neighbor set;

16 Node j sends a response message to node i, whose
payload consists of node j’s relative coordinate, a
randomly sampled neighbor from its neighbor set;

of size m for the matrix factorization between decentralized
nodes.

After initializing the relative coordinate, to adapt the dynam-
ics of network latencies, each node i periodically measures
RTTs to neighbors in Si and updates its relative coordinate
Yi accordingly. If a neighbor is temporally offline, we replace
the failed landmarks with randomly selected online ones.

F. Distributed Parameter-Matrix Optimization

We then present an algorithm to optimize the parameter
matrix that guarantees to converge, based on the results
in section V.

We use the neighbor set maintained in section VI-C as the
set Si of nodes to adjust node i’s parameter matrix. Thanks
to the robustness of the gossip process, offline neighbors
are periodically removed and online neighbors are preserved.
To keep modest computation costs, we bound the maximal
size of the set Si to be Δm + Δs, where Δs (Δs = 2,
Δm = 16 by default) denotes the slack parameter to avoid

Algorithm 2 Decentralized Algorithm to Update the Para-
meter Matrix for Node i

1 UpdateParameterMatrix(i, Yi, Si, dSi , YSi , τ)
input: i: node index, Yi: node i’s relative coordinate, Si:

node i’s neighbors, dSi : the RTT vector from
node i to neighbors in Si, YSi : relative-coordinate
matrix of neighbors, in which each row vector
denotes a relative coordinate of one node i’s
neighbor in Si, τ : coordinate update period.

2 Initialize the parameter matrix Φ as a random matrix:
each item of Φ is randomly taken from the interval [0, 1];

3 while TRUE do
4 Let Gd = Y T

i (dSi)YSi ;
5 Let HΦ = α + Y T

i

(
YiΦYSi

T
)
YSi ;

6 for g = 1→ m do
7 for h = 1→ m do

8 tmp← Φgh · Gd
gh

HΦ
gh

;

9 if tmp 
= 0 then
10 Φgh = tmp;

11 Sleep(τ );

the oscillations of the neighbor set. When a new neighbor is
stored in Si, original neighbors are kept as long as the size of
Si is not larger than Δm + Δs, otherwise, we randomly pick
a number |Si|−Δm of online neighbors in Si and move them
to the candidate-neighbor set, therefore, we avoid repeatedly
removing the neighbors from the neighbor set until Δs new
neighbors are added.

The multiplicative rule (15) is sensitive to zero values: if
one item Φgh becomes zero after one round, then this item
Φgh will always be zero afterwards. However, the coordinate
updating process may not converge to the local minimum
since we cannot adjust the parameter any more. Skipping the
zeros avoids the parameter matrix being stuck at fixed points,
consequently, the coordinate updating process converges to the
local minimum.

Therefore, in order to increase the robustness of the opti-
mization, we skip the zeros. First, we calculate a temporary
value Φ′

gh with Eq (15). Second, we conditionally update the
parameter matrix with non-zero items. If the temporary value
Φ′

gh 
= 0, then we set Φgh = Φ′
gh; otherwise, we skip the

item Φgh.
Algorithm 3 summarizes the main steps. Step 2 initializes

node i’s parameter matrix Φi. Steps 3 to 11 iteratively adjust
node’s parameter matrix based on Eq (15). Step 4 and 5 cache
the local variables of adjusting the parameter matrix Φi: Step 4
needs O(m2|Si|) time complexity, while Step 5 needs O(m3+
m2|Si|) time complexity. Step 6 to 10 consist of a nested loop
to adjust each item in the parameter matrix Φi, with time
complexity O(m2). As a result, the overall time complexity
of Algorithm 3 amounts to O(m3 + m2|Si|). Besides, if one
item becomes zero in Step 8, then Step 9 to 10 will skip this
round of update for this item. Step 11 sleeps for a while and
waits for the next round.
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TABLE II

PARAMETER SETUP

Remark: We next discuss how to enable the timely response
for large-scale distributed systems. First, the coordinate updat-
ing process has a bounded time complexity as the system
size increases. We choose modest numbers of landmarks and
neighbors in order to ensure the scalability: a round of the
coordinate updating process requires only several millisec-
onds (see Figure 12). While the interval between every two
coordinate updating processes is usually on the order of tens
of seconds [1], [9], [28], [29]. Consequently, the coordinate
updating process incurs a negligible delay. Second, we decou-
ple the distance-query component with the coordinate updating
process in the network distance service. The distance query
component is a front-end service in the portal server, while the
coordinate updating process is a background process running
in each of the participating servers. Calculating the coordinate
distance requires O(m2) time, which is more than one order
of magnitude less than that of the coordinate updating process.
Therefore, the distance query process interacts with the end
users in a timely manner.

VII. SIMULATION

We next evaluate RMF’s performance and compare it with
state-of-the-art methods.

A. Experimental Setup

We seek to answer three questions: (i) Is RMF insensitive
to the propagation of coordinate errors under churns? (ii) How
does RMF vary its performance as we change its parameters?
(iii) Is RMF stable against the failures of distributed neighbors
used for relative coordinates or neighbors for updating the
parameter matrices?

For RMF, we set its default parameters to trade off the
accuracy and the computing overhead. We analyze RMF’s
sensitivity in section VII-D, and found that RMF is robust
against the parameter settings, therefore, we set a modest
number of neighbors for the RMF method. The size Δm of
each node’s neighbor set is 16. Consequently, the relative coor-
dinate dimension amounts to 16. We set the time interval τr

to 30 seconds and τ to 10 seconds for each node, since the
RTTs are stationary for short-term periods. We set the constant
parameter α for the matrix factorization to 0.05. Table II
summarizes the parameter configuration.

We report our simulations based on two well-known real-
world RTT data sets: (i)P2P1143: a RTT matrix between
1143 DNS servers provided by the P2PSim project [34].
(ii) Meridian2500: a RTT matrix of 2500 DNS servers pro-
vided by the Meridian project [35]. We have also tested the
performance on other data sets, the same conclusions hold
consistently.

Fig. 6. The CCDFs of the ratios between one edge and the sum of the other
two edges in each triple (P, X, Q).

We show the severity of TIVs of these two data sets. For
each triple that consists of three nodes denoted as (P, X, Q),
where P, X, Q ∈ S, we compute the ratio between an edge
and the sum of the other two edges in the triple (P, X, Q),
we then plot the complementary cumulative distribution func-
tions (CCDF) of the ratios. When the ratio is bigger than one,
a TIV occurs. From Figure 6, we see that over 99% of all
triples in P2P1143 satisfy the triangle inequality, while for
the Meridian2500 data set, over 23% of the triples violate the
triangle inequality.

The TIVs correlate with the latency-prediction accuracy.
The low dimensional model of the network coordinate methods
assumes that the latency measurements of different nodes are
correlated. A TIV occurs for a triple of nodes (P, X, Q) when
the sum of two edges dPX + dXQ is smaller than the third
edge dPQ, consequently, an edge may be much larger than the
sum of the other two edges in this triple. As a result, the TIV
in a triple of nodes relaxes the correlation between the edges
in this triple. Increasing the ratios of the TIVs in the data
set implies that more latencies are less correlated with each
other, therefore, the low dimensional coordinate system incurs
a higher prediction error. For example, we can see that the
Meridian2500 data set has more TIVs than the P2P1143 data
set, while from Figure 7 (a) and (b), we see that the prediction
accuracy on the Meridian2500 data set is worse than that on
the P2P1143 data set in most cases.

B. Stabilization Comparison With RMF

We next compare the stabilization of RMF with state-of-the-
art methods including Vivaldi [6], NonMetric [22], DMF [7]
and DMFSGD [9]. We set the same number of neighbors for
all network coordinate methods for fair comparison. We set the
coordinate dimension to ten for compared methods. Further
increasing the dimensions of these coordinate methods does
not increase the accuracy significantly.

We compute the stress [7], [9] of the network coordi-
nates after each round of coordinate updates: stress =√
�

i,j,i�=j (dij−d̂ij)2

�
i,j,i�=j d2

ij
to compute the overall fitness of the

coordinates. The stress value illustrates well the convergence
of algorithms. We collect the performance of different methods
when they converge to stable positions. We repeat the simula-
tions in ten times and report the average results and the 95-th
confidence intervals.

Figure 7 plots the stress values as we vary the percent p
of nodes having neighbors with randomized coordinates.
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Fig. 7. The stress values of compared methods as we vary the per-
cent p of nodes having neighbors with random coordinates. (a) P2P1143.
(b) Meridian2500.

RMF does not degrade its accuracy with increasing neighbors
having randomized coordinates, since RMF only exchanges
the relative coordinates that do not contain prediction errors.

DMF, DMFSGD, NonMetric and Vivaldi become less inac-
curate with increasing percent of nodes having neighbors
with randomized coordinates, since each node uses neighbors’
coordinates to adjust its own position. Vivaldi, Non-Metric
and DMFSGD use a weight parameter tune the impact of
neighbors’ coordinates. However, we see that the accuracy
of Vivaldi, Non-Metric and DMFSGD degrade severely when
neighbors have randomized coordinates, since the weight
parameters may not truthfully approximate the accuracy of
coordinates due to the lack of ground-truth coordinates.

C. Convergence Under Churns

We next validate RMF’s performance under churns. Gen-
erally, there may be two kinds of neighbors in RMF, i.e.,
the landmarks that are used to create the relative coordinate
and non-landmark nodes that are used to adjust the parameter
matrix. Both landmarks and non-landmark neighbors may have
churns, thus we evaluate RMF’s performance in two cases.
We set the number of landmarks to 16 and the number of
non-landmark nodes to 16. Varying the parameters does not
change the conclusions.

(1) Non-landmark churn: First, we evaluate RMF’s stabil-
ity under the churns of the non-landmark neighbors. We assign
a number of randomly sampled nodes from the data set as the
landmarks for each node in the data set and keep the landmarks
of each node to be online during the experiments. We set the
relative coordinate of each node in the data set as the vector
of RTTs towards the corresponding landmark neighbors.

We randomly sample a node i from the data set and let
node i join the system at the first round. We sample a number
of nodes from the data set as the non-landmark neighbors of
node i at the first round. To model the churns of non-landmark
neighbors in each round, we choose a fraction of node i’s non-
landmark neighbors uniformly at random and remove these
neighbors from node i’s neighbor set. Then, we sample the
same number of nodes from the data set into node i’s neighbor
set. We vary the choice of node i in the data set and calculate
the average stress values of the coordinate system. Varying the
fraction of offline neighbors allows us to model fine-grained
degrees of churns for each node.

Figure 8 shows the average stress values in each round as we
vary the percent of non-landmark neighbors that have churns

Fig. 8. The convergence of RMF as we change the percent of non-landmark
neighbors that have churns from 0 to 0.8. The y-axis is shown in a logarithmic
scale. (a) P2P1143. (b) Meridian2500.

Fig. 9. The convergence of RMF as we change the percent of landmarks that
have churns from 0 to 0.8 with respect to the whole number of landmarks.
The y-axis is shown in a logarithmic scale. (a) P2P1143. (b) Meridian2500.

from 0 to 0.8. We see that RMF converges to approximately
the same stress values after 10 to 15 rounds and keeps the
coordinates at the converged state. This is because the coor-
dinate updating process stochastically performs the gradient
descendent optimization process that has nice convergence
guarantees [36]. As we change the percent of neighbors that
have churns, the number of rounds required to converge the
coordinates varies. This is because of the variation of the
updating steps with respect to different neighbors.

(2) Landmark churns: Having shown that RMF is stable
under churns of non-landmark neighbors, we next test the
convergence of RMF when the landmarks have churns. At the
first round, we initialize the landmarks for each node in
the data set as those randomly sampled from the data set.
We construct the corresponding relative coordinate for each
node. In order to model the churns of the landmarks in each
round, we set a fraction of landmarks for each node to be
offline, and replace these offline landmarks using the same
number of nodes that are randomly sampled from the data set.
Then we update the components of each relative coordinate
that correspond to offline landmarks using the latency values
from the current node to newly sampled landmarks.

We vary the fraction of landmarks that have churns for each
node from 0 to 0.8 and calculate the average stress value of
the whole coordinate system in each round. From Figure 9,
we see that RMF converges to approximately the same stress
values within 10 to 15 rounds and is stably accurate afterwards.
This is because the components of each relative coordinate are
drawn from the same RTT distributions from the current node
to all other nodes, consequently, the expected values of the
relative-coordinate components do not vary much due to the
churns of the landmarks. As a result, the coordinate updating
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Fig. 10. The CCDFs of the relative errors as we vary the number of neighbors.
(a) P2P1143. (b) Meridian2500.

Fig. 11. The stress values of RMF with different neighbor-selection methods.
For each node i, we consider five methods: (i) “Rand”: select neighbors for
node i uniformly at random from all nodes. (ii) “Near”: select neighbors
nearest to node i. (iii) “Far”: select neighbors farthest to node i. (iv) “Hybrid”:
select neighbors for node i half via the “Near” approach and the other half
via the “Far” approach. (v) “KMeans”: select neighbors for node i uniformly
from each cluster created by applying the K-means clustering method on the
RTT matrix. (a) P2P1143. (b) Meridian2500.

process monotonically decreases the prediction error of the
parameter matrix with respect to the relative coordinates.

In summary, despite of the churns caused by the non-
landmark and landmark neighbors, RMF converges to stable
positions within a small number of updating rounds and keeps
to be stably accurate after the convergence.

D. Sensitivity Analysis

We next test the variation of RMF’s accuracy as we change
its parameters. We also found that varying the constant α in
Eq (15) does not significantly change the accuracy.

1) Size of Neighbor Set: Figure 10 plots the CCDFs of
RMF’s relative errors as we increase the size of the neighbor
set. We see that RMF keeps stable accuracy when we set
the number of neighbors among 16, 32 and 64. This is
because the RTT matrix is approximately low rank and we can
approximate it with low-dimensional coordinate matrices [15].
As a result, we can use a modest number of neighbors with
low bandwidth costs.

2) Neighbor Selection Methods: We next study whether
RMF’s accuracy can be improved by selecting different set
of neighbors. Figure 11 plots the stress values as we vary
the choices of neighbors. We see that the Rand and KMeans
approaches provide much higher accuracy than the other
methods. This is because by choosing the neighbors among
a wider range of the network latency space, we can avoid the
correlations of RTTs from a node to its neighbors.

E. CPU Efficiency of the RMF Method

We evaluate the CPU efficiency of calculating the parameter
matrix as we increase the number of neighbors. We calculate

Fig. 12. The CPU time of updating one round of the parameter matrix as
we vary the number of landmarks on the Meridian2500 data set.

Fig. 13. Latency prediction on the PlanetLab. (a) Accuracy comparison.
(b) Convergence of RMF.

the average CPU time of updating one round of the parameter
matrix. Figure 12 shows that the CPU time as we increase
the number of neighbors. We can see that the mean CPU time
increases, since increasing the number of neighbors enlarges
the dimension of the vectors used in updating the parameter
matrix.

VIII. PlanetLab EXPERIMENTS

Having presented RMF’s performance via simulations, we
next deploy RMF on the PlanetLab to conduct real-world
deployment experiments. We have implemented a proto-
type program for RMF in Java. This program works as a
daemon thread to predict the network latencies. We select
225 PlanetLab servers and install the RMF prototype program
on them. We use a PlanetLab server to store the pairwise
RTT values between PlanetLab servers as the ground-truth
RTT values. We also implemented the Vivaldi and DMF
network coordinate methods for comparison. All comparison
methods use the same parameters in section VII. Each node
joins the coordinate system at the beginning of the experiment
through a set of bootstrap nodes and updates its coordinates
in an asynchronous manner.

We first compare the accuracy of predicting the pair-
wise RTTs. Figure 13(a) plots the CCDFs of the relative errors
of three methods. We see that RMF improves the prediction
accuracy for more than 90% of node pairs compared to DMF
and Vivaldi. Bypassing the propagation of coordinate errors
helps RMF avoid bad local minimum.

We next show the convergence of RMF. Figure 13(b) plots
the stress values for each round of coordinate updates for RMF.
We see that RMF converges with less than ten rounds, which
is consistent with the simulation results.

IX. CONCLUSION

We have addressed the instability issue of the network coor-
dinate methods caused by churns. We propose a distributed
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network-coordinate method named RMF that uses the relative
coordinate method to avoid the instability due to erroneous
coordinates. Further, RMF utilizes the matrix factorization
method to tolerate the TIV phenomenon. RMF exchanges only
relative coordinates between neighbors ensuring the conver-
gence among decentralized nodes. Simulation results and the
PlanetLab experiments show that RMF converges under churns
and reduces the relative errors of the RTT estimations for more
than 90% of all node pairs. RMF scales well and is robust to
failures of neighbors. As a result, we believe RMF is suitable
for decentralized latency prediction under churns.

Although RMF guarantees to stabilize in large-scale and
dynamic distributed systems, RMF may be destabilized if
the relative coordinates are manipulated by adversaries, since
RMF relies on the relative coordinates to update the coordi-
nates. Guaranteeing the coordinate stabilization in the adver-
sary environment is an open problem.
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