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Every Timestamp Counts: Accurate Tracking of
Network Latencies Using Reconcilable

Difference Aggregator
Yongquan Fu , Pere Barlet-Ros, and Dongsheng Li

Abstract— User-facing services deployed in data centers must
respond quickly to user actions. The measurement of network
latencies is of paramount importance. Recently, a new family of
compact data structures has been proposed to estimate one-way
latencies. In order to achieve scalability, these new methods
rely on timestamp aggregation. Unfortunately, this approach
suffers from serious accuracy problems in the presence of packet
loss and reordering, given that a single lost or out-of-order
packet may invalidate a huge number of aggregated samples.
In this paper, we unify the problem to detect lost and reordered
packets within the set reconciliation framework. Although the set
reconciliation approach and the data structures for aggregating
packet timestamps are previously known, the combination of
these two principles is novel. We present a space-efficient synopsis
called reconcilable difference aggregator (RDA). RDA maximizes
the percentage of useful packets for latency measurement by
mapping packets to multiple banks and repairing aggregated
samples that have been damaged by lost and reordered packets.
RDA simultaneously obtains the average and the standard
deviation of the latency. We provide a formal guarantee of
the performance and derive optimized parameters. We further
design and implement a user-space passive latency measurement
system that addresses practical issues of integrating RDA into the
network stack. Our extensive evaluation shows that compared
with existing methods, our approach improves the relative error
of the average latency estimation in 10–15 orders of magnitude,
and the relative error of the standard deviation in 0.5–6 orders
of magnitude.

Index Terms— Passive measurement, loss, reorder, reconcilia-
tion, latency.

I. INTRODUCTION

MOST user-facing services are deployed in data centers.
These services must respond quickly to user actions in
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order to provide a fluid experience to end users. Even delays of
a few milliseconds may have a severe impact on the quality of
experience [11]–[14], [24], [25]. Although significant progress
has been made in the design of new network architectures and
transport protocols for data centers [5], [6], [11], [29], meeting
the tail of the latency distribution still remains a challenge,
given the complexity of scale-out services and the varying
queueing latencies typical from bursty data center workloads.
Therefore, the measurement of network latencies is of para-
mount importance to assess the compliance of application
deadlines and to diagnose problematic tail response times.

Unfortunately, measuring network latencies in data centers
is extremely challenging. Traditional latency measurement
methods based on active probing are not accurate enough.
Active probing collects measurement samples of the injected
probing packets, but not those from the packet streams
between measurement points. Consequently, the sampled end
to end latencies provide coarse-grained metrics, but have low
fidelity unless the sampling rates are very high. For example,
software bugs or faulty interfaces in switches may randomly
produce failures on some packets according to the route in the
network or packet header information [31]. Unfortunately, high
sampling frequencies have high bandwidth cost, computing
cost, and storage overhead. Due to the large number of servers
and the high probing frequencies required, active measure-
ments do not scale well with data center speeds and size, which
can even interfere with regular data center traffic [15].

Passive methods are generally preferable for measuring
latencies in data centers, assuming that measurement points
can synchronize their clocks. In passive methods, one measure-
ment point (called sender) records the timestamps of outgoing
packets to the other measurement point (called receiver), while
the receiver records the timestamps of packets coming from the
sender, and vice versa1 At the end of a measurement interval,
the sender and the receiver exchange the timestamps and
subtract them to obtain the one-way packet latency. Although
this approach is very accurate, it does not scale well with
increasing traffic volumes.

To address this scalability problem, some studies have
recently proposed a new set of efficient data structures, such

1The term “timestamp” refers to the time a packet was sent or the time a
packet was received. The sender and the receiver do not need to be the origin
and destination of the traffic, but the two network points from where we want
to estimate the latency, e.g., two switches in a data center.
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as LDA (Lossy Difference Aggregator) [19], FineComb [22],
LDS (Lossy Difference Sketch) [27] and COLATE [28]. The
main intuition behind these proposals is that to measure packet
latencies it is not necessary to exchange individual timestamps,
but instead they can be aggregated to an array of buckets,
where each packet is mapped to a random bucket and each
bucket accumulates the timestamps and the total number of
packets. Nevertheless, the accuracy of these methods still
degrades drastically in the presence of packet loss and reorder-
ing. As modern data centers may use multiple alternative
paths to increase the aggregate bandwidth or to provide fault
tolerance [5], while multi-path routing protocols (e.g., equal
cost multipath) may balance the load among different paths.
Data centers may also drop packets because of congestion
resulting from bursty traffic [11] or even due to packet black
holes [15].

In order to achieve robustness against lost packets and
reordered packets, these problematic packets should be
detected and removed from the buckets. Unfortunately, detect-
ing lost or reordered packets in a space-efficient way is
challenging. FineComb [22] and LDS [27] detect and discard
a pair of buckets that have some different packets. However,
discarded buckets may contain many useful packets for com-
puting the latency. Further, FineComb repairs buckets that
are only damaged by reordered packets, however, FineComb
cannot identify lost packets at the sender. Moreover, even with
a small number of lost packets, the number of useful buckets
decreases fast, as shown in Subsection III-C, which may result
in too many samples discarded. Finally, FineComb adopts a
brute-force approach to find buckets that contain reordered
packets, which incurs a high computational cost.

In this paper, we unify the problem to detect lost packets
and reordered packets within the set reconciliation framework.
Although the set reconciliation approach [10] and the data
structures for aggregating packet timestamps are previously
known, the combination of these two principles is novel.
Based on the observation, we proposed a naive synopsis that
simultaneously aggregates the timestamps and detects lost
packets and reordered packets using a unifying hashing based
data structure. Unfortunately, the naive synopsis is space-
redundant and fails to compute the standard deviation of the
latency.

Next, we presented a space-efficient data structure (RDA)
that obtains the average and the standard deviation of the
latency. RDA maximizes the percentage of useful packet
samples for latency measurements by mapping packets to
multiple banks and repairing aggregated samples that have
been damaged by lost and reordered packets. We provide a
formal guarantee of the performance and derive optimized
parameters.

Further, we designed and implemented a user-space end-
to-end passive latency measurement system. Different from
existing studies, we are able to measure the packet stream in
a pipelined approach by delimiting the measurement interval
with the already synchronized clock between measurement
points instead of controlling packets.

Finally, our experimental results show that compared to
existing methods, our proposal improves the relative error of

estimating the average latency in 10–15 orders of magnitude,
and the relative error of estimating the standard deviation
in 0.5–6 orders of magnitude.

Going forward, Section II introduces background of passive
synopsis based latency aggregation. Section III states the
problem of problematic packets. Next, Section IV proposes
a unified framework to detect these packets and presents a
naive synopsis that reconciles lost and reordered packets and
estimates the average latency. Then, Section V introduces RDA
that is space-efficient and accurately computes the average and
the standard deviation. Section VI presents the performance
bounds for RDA. Section VII presents extensive evaluation
results. Section VIII presents the implementation of RDA
based passive latency measurement in user space. Section IX
reports a prototype deployment on a small data center. Finally,
we conclude in Section X. We summarize related work in
the Appendix, which is available in the online supplemental
material.

II. BACKGROUND

We introduce the background of synopsis based passive
latency measurement in this section.

A. Requirements

Many applications deployed in data center have tight latency
requirements. For example, high frequency algorithmic trad-
ing applications have very short holding period, even delays
greater than 100 μs can cause financial losses [19], storage-
area networks (SAN) use Fiber Channel over Ethernet to
deliver similar latencies as the traditional IO bus between
CPUs and remote disks [20], Spark provides millisecond
large-scale data processing [26]. Unfortunately, the latency
distributions of these requests are usually long-tail [11], where
the average and the tail latency may differ by several orders
of magnitude, which significantly increases the completion
time of the service, since the number of users is usually
on the orders of millions to billions. Understanding and
troubleshooting fine-grained latency issues needs packet-level
information.

In this paper, we measure fine-grained, packet-level latency
without sampling. The measurement is divided into intervals.
A measurement interval seeks to capture the latency of a maxi-
mum number n of packets, where n is a constant. Our passive
latency measurement is based on the coordinated measure-
ment scheme proposed by Kompella et al. [19]: (i) Average,
captures the central tendency of latency, which characterizes
the long-term latency trend [11]; (ii) Variance, measures how
far the latencies are spread out, which correlates with the
latency tail: the higher the variance, the worse the long-tail
problem [17], [30]. Estimating other metrics like the order
statistics such as the maximum delay or the quantiles requires
knowledge of the latency value of each packet, unfortunately,
the coordinated measurement scheme does not fulfill this
requirement as it mixes the latency values of different packets.

B. Assumptions

We follow the same assumptions for passive latency
measurement problem [19]:
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(i) Timestamps are not embedded in packet headers, as in
LDA, FineComb and LDS. UDP packets do not carry the time
stamps. TCP protocol contains a timestamp field [8], which
unfortunately incurs an additional overhead for every TCP
packet. For a 32-bit timestamp, the bandwidth consumption
could increase by 10% [19].

(ii) Two measurement points should have synchronized
their clocks to the microsecond-level precision before the
measurement starts [19], [22], [27]. End points are synchro-
nized using the Network Time Protocol (NTP) [1] or the
IEEE 1588 Precise Time Protocol (PTP) [2]. Both NTP and
PTP provide microsecond-level (10−6 second) precision in a
local area network (LAN). Moreover, the Global Positioning
System (GPS) provides up to nanosecond-level (10−9 second)
precision [23] at the expense of the dedicated GPS hardware.
Recently, the Datacenter Time Protocol (DTP) [21] provides
nanosecond-level precision time synchronization across the
whole data center via the physical layer (PHY) protocols.

C. Synopsis Based Latency Aggregation

We next briefly introduce the coordinated measurement
scheme [19]. A bucket consists of a timestamp accumulator
and a counter. For two LDAs with the same number of buckets
and the same hash function, a packet is always mapped to the
same bucket. The accumulator accumulates the timestamps of
all packets inserted to the bucket, while the counter maintains
the number of packets inserted to that bucket. The sender and
the receiver uses the same hash function to ensure that a packet
is always mapped to the same position in the array.

Assuming that two measurement points record the same set
of packets, for each pair of buckets in the same location at
the sender and receiver, the difference between the sum of
accumulated timestamps, divided by the sum of accumulated
numbers of packets, amounts to the average latency of packets
that are inserted to this bucket. Using an array of buckets
ensures that a single lost or reordered packet may not inval-
idate all aggregated timestamps, since if a lost or reordered
packet exists in a bucket, then the set of packets aggregated at
this bucket will be different from those at the other measure-
ment point, and the subtraction of the aggregated timestamps
of two buckets will no longer amount to the sum of latencies.

In order to estimate the average latency, the sender sends
its LDA to the receiver, and then the receiver computes the
difference between both LDAs for each pair of useful buckets.
A pair of buckets is useful if the value of their counters is the
same in both LDAs. The remaining buckets are discarded as
not useful. Then, the average latency is computed as the sum
of the differences in the timestamp aggregators divided by the
sum of the counters.

For brevity, given two LDAs DA and DB with m × 1
timestamp accumulator arrays maintained at the sender A and
the receiver B, respectively. Let D [i].T denote the timestamp
accumulator and D [i].C the packet counter for the i-th bucket,
where i ≤ m. In LDA, a pair of buckets are called useful if
their packet counters match with each other.

The average latency is computed using all pairs of useful
buckets, while the standard deviation is calculated efficiently

without additional storage overhead. Let

˜DA [j] .T = DA [2j] .T − DA [2j − 1] .T
˜DB [j] .T = DB [2j] .T − DB [2j − 1] .T
˜DA [j] .C = DA [2j] .C + DA [2j − 1] .C
˜DB [j] .C = DB [2j] .C + DB [2j − 1] .C (1)

be the collapsed timestamp accumulator and packet counters,
where j ∈ [1, �m/2�]. Let

F =

∑

j∈{i| �DA[i].C= �DB [i].C }

(

˜DB[j].T − ˜DA[j].T
)2

∑

�DA[i].C= �DB [i].C
˜DA[i].C

(2)

Then the standard deviation is approximated as:

σ2 = F 2 − μ2 (3)

III. PROBLEM STATEMENT

Having presented the background, we next present a new
measurement interval that continuously monitors the end to
end latency. Next, we discuss challenges to obtain accurate
latency aggregation due to problematic packets.

A. Continuous Monitoring via Pipelined
Measurement Interval

Existing approaches use delimiting packets to define
a measurement interval. To start a measurement inter-
val, the sender sends an interval-start message to the
receiver. When the receiver records up to n packets into its
synopsis, the receiver sends an interval-end message to the
sender to terminate the measurement interval. Unfortunately,
due to the delay of processing the interval-start and interval-
end messages, we are unable to continuously monitor the end-
to-end latency between a pair of measurement points.

Different from existing studies, we propose to measure
the packet stream in a pipelined approach by delimiting the
measurement interval with the already synchronized clock
between measurement points instead of delimiting packets.
Each measurement interval i is defined by a beginning
timestamp ti and an interval-length parameter δi (say one
second). A pair of measurement points capture packets during
the interval delimited by two timestamps (ti, ti + δi). As a
result, the problem of continuously aggregating the latency
can be simply solved: we only need to set the beginning
timestamp ti+1 of the successor measurement interval i + 1
to the beginning timestamp of the last measurement interval
plus the interval-length parameter, i.e., ti+1 = ti + δi.

During each measurement interval, each measurement point
maintains a separate synopsis that aggregates the timestamps
of packets within this measurement interval and calculates
the average and the standard deviation of the latency of this
measurement interval.

B. Problematic Packets

Figure 1 illustrates a measurement interval. We can see that
each measurement point records some problematic packets
in Figure 1:
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Fig. 1. The timeline of a measurement interval.

• The receiver records packets P1 and P2, while the sender
misses these two packets.

• The sender records packets P4 and P5 that are lost dur-
ing the measurement interval, consequently, the receiver
misses these two packets.

• The sender records P9 and P10, but the receiver misses
these two packets, as packets P9 and P10 are sent before
the sender terminates the measurement interval.

• Further, some packets may arrive in an out-of-order
sequence, e.g., packets P6 arrives at the receiver later
than P7. However, as long as both packets are stored at
the sender and the receiver, we do not care about such
packets during the latency aggregation process.

In order to obtain truthful latency statistics, we need to
discard the lost packets and the reordered packets from the
latency aggregation. If two measurement points are within
the same router or directly connected, there may be few
lost or reordered packets between them. While if these devices
are several hops away, significant loss or reordering may arise
with increasing traffic volumes, since a packet that passes
one device may not traverse the other one due to multipath
routing or load balancing.

Lost and reordered packets interfere with latency measure-
ments, since only one measurement point obtains this packet,
while the other measurement point is agnostic to this packet.
Consequently, these packets should be eliminated from the
latency estimation.

In an extreme case, a packet that is sent in the previous
measurement interval from the sender may arrive at the
receiver at the next measurement interval. At the previous
measurement interval, this packet is only stored at the sender,
i.e., a lost packet, while for the next measurement interval, this
packet is only stored at the receiver, i.e., a reordered packet.

Besides the lost and reordered packets, duplicate packets
may arise, e.g., timeout packets, or duplicated acknowledge-
ment packets to trigger the fast retransmission. The duplication
issue has not been discussed in the literature to the best
of our knowledge. Unfortunately, it is difficult to determine
the duplicated packets without storing all packets. A simple
approach is to record the packets with unique identifiers
into a cache and to discard all the other duplicated packets.
An interesting open question is how to preserve as many
duplicates as possible to maximize the number of useful
packets for latency computation.

Fig. 2. An example of LDA that are damaged by problematic packets. The
sender sends packets P1 to P9 to the receiver. A measurement interval begins
before packet P1 and ends after packet P6. However, P5 is lost and thus
not recorded at the receiver. Further, due to packet reordering, P9 arrives at
the receiver earlier than the ending message, which is thus recorded at the
receiver. In (a), the sender inserts the timestamps (shown in the upper-level
box) of packets P1, P2, P3, P4, P5, P6 into its LDA. In (b), the receiver
inserts the timestamps of packets P1, P2, P3, P4, P6 and P9 into its LDA.

C. Challenges for Existing Aggregation Approaches

Having stated the problematic packets that may occur during
the measurement process, we next analyze the useless buck-
ets caused by problematic packets for LDA and FineComb.
In the next section, we propose a unifying framework to detect
the lost and reordered packets and a naive approach based on
the set reconciliation and discuss its limitations.

1) LDA: LDA [19] selectively samples packets from the
packet stream and maps them to a number of buckets. Unfor-
tunately, even if the counters of two buckets match with each
other, these two buckets may contain different packets due to
different combinations of lost and reordered packets, as shown
in Figure 2.

In Figure 2, all pairs of buckets are useful in LDA. The
average latency using all useful buckets is ((420 − 270) +
(260 − 150) + (390 − 250) + (760 − 310) + (450 − 330))/
(2 + 1 + 1 + 1 + 1) = 161. However, the actual latency
is 104 using the successfully delivered packets P1, P2, P3,
P4 and P6. This is because the fourth pair of buckets have
two different packets P9 and P5.

2) FineComb: FineComb detects whether each bucket is
damaged by problematic packets, by appending a parity-string
field to each bucket. The parity string is computed as the XOR
value of entire packets that are mapped to this bucket. If two
buckets have some different packets, we can see that their
parity strings will differ from each other, and they will be
discarded as useless.

Further, FineComb tries to remove reordered packets from
buckets, by maintaining a stash of packets that are likely to
be reordered at the receiver. After the measurement interval
ends, the receiver obtains the sender’s FineComb and subtracts
each pair of buckets at the same location in two FineCombs.
The result is stored in a new bucket. Next, for each of these
new buckets, the receiver compares its parity string with
the XOR result of each possible combination of packets in
the stash: If these two XOR values match with each other,
then FineComb assumes that this combination of packets are
reordering packets in its bucket.
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However, if a bucket contains some lost packets, FineComb
will be unable to repair this bucket, and all useful samples in
this bucket become useless. As a lost packet may be spread to
any bucket, we next compute the expected number of buckets
that contain at least one lost packet in Theorem 1:

Theorem 1: Suppose that a number nl of lost packets are
inserted into a FineComb with m buckets using a perfectly
random hash function. The expected number ml of buckets
that contain at least one lost packet is m · (1 − e−nl/m

)

.
The proof is presented in the Appendix, which is available

in the online supplemental material. Theorem 1 gives the
expected number of buckets that contain lost packets. For
example, when m = 100, nl = 50, the expected number ml of
buckets having lost packets is approximately 40, which means
that only with 50 lost packets, 40% of the buckets used by
FineComb would be useless.

IV. NAIVE APPROACH

Having stated the challenges, we propose a unifying frame-
work to detect the problematic packets from the synopsis.
Next, based on the connection with the set reconciliation
problem [10], we propose a naive synopsis sRDA (simple
Reconcilable Difference Aggregator). sRDA simultaneously
solves two problems with a unifying hashing based data
structure: (i) detecting and removing lost packets and reordered
packets between a pair of measurement points, and (ii) com-
puting aggregated latency using the useful packets that are
recorded at both sides. Finally, we discuss the limitations of
sRDA. In the next section, we present a novel synopsis that
addresses these limitations.

A. Detecting Problematic Packets and the Set Reconciliation

Recall that each packet’s identifier is invariant at both the
sender and the receiver, while the timestamp of each packet
varies between the sender and the receiver. Let SS be the set
of identifiers of packets that are intercepted by the sender.
Let SR be the set of identifiers of packets that are intercepted
by the receiver. The set intersection SS ∩ SR of the two
sets correspond to the set of identifiers of packets stored at
both measurement points. The union of the identifiers of the
lost and reordered packets refers to the set difference for
SS and SR. Let SR = {x |x /∈ SR } and SS = {x |x /∈ SS }
refer to the complement sets of SS and SR, respectively. The
set difference SS ⊕ SR can be represented as

SS ⊕ SR =

⎧

⎪

⎨

⎪

⎩

p

∣

∣

∣

∣

∣

∣

∣

p ∈ (

SS ∩ SR

)

︸ ︷︷ ︸

Lost

∪ (

SR ∩ SS

)

︸ ︷︷ ︸

Reordered

⎫

⎪

⎬

⎪

⎭

The problem of finding the identifiers of the lost and the
reordered packets is transformed to the problem of detecting
the set difference SS ⊕SR for the packets stored at the sender
and those at the receiver. We can see that the packets in
the set intersection SS ∩ SR are useful for computing the
latency metric, while the packets in the set difference should
be eliminated from the latency calculation.

As the synopsis mixes the timestamps of individual packets,
each measurement point is agnostic of the packets that will be

Fig. 3. The sRDAs of (a) the sender and (b) the receiver. There are five
buckets in each sRDA, and each packet is hashed to two random buckets.
The timestamp of each packet is appended to the packet identifier. Solid lines
are used to represent the mapping relationship between the packets and the
buckets. Packets P3 and P5 are lost at the receiver, while the packet P9 is
reordered and not stored at the sender.

lost or reordered a priori, consequently, each measurement
point has to keep a local cache of packets, in order to filter
out the timestamps of lost and reordered packets from the
synopsis.

B. Synopsis Structure

A sRDA keeps a flat array of buckets that store the aggre-
gated timestamps and the necessary information to find the
lost and reordered packets:

• To aggregate the latency, each bucket records the sum of
the timestamps of the packets (TS field) and counts the
number of packets inserted to that bucket (Δ field).

• To detect the set reconciliation, each bucket accumu-
lates the XOR value of the identifiers of the inserted
packets (ID field), and accumulates the XOR value of
the hashing number of the packet identifiers using an
independent hash function H() (IDSH field).
Both ID and IDSH fields are used to reconcile the set
difference between the packets stored at the sender and
those at the receiver. First, for a pair of buckets that
have some common packets, we can see that XORing the
ID fields of these two buckets cancels the identifiers of
common packets, but preserves the set difference in two
buckets. Second, IDSH enables us to determine whether
a bucket contains a unique packet.

Figure 3 shows an example of two sRDAs at the sender
and the receiver. We can see that each pair of buckets in two
sRDAs have some lost packets, or reordered packets or even
both. As a result, all buckets are useless for latency estimation.
We need to detect the lost and reordered packets and remove
them from the sRDAs.

A packet is hashed to k (2 by default) buckets using
k independent hash functions. When a new packet arrives at
the sender or the receiver, we hash the identifier of this packet
and obtain at most k different buckets. Then, for each of these
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Fig. 4. Repaired sRDAs in Figure 3. (a) Sender. (b) Receiver.

unique buckets, we update the bucket as follows: (a) ID =
ID ⊕ packet’s identifier; (b) TS = TS + packet’s timestamp;
(c) IDSH = IDSH ⊕ H(packet’s identifier); (d) Δ = Δ + 1.

C. Detecting Lost Packets and Reordered Packets

First, we construct a subtraction sRDA that preserves the
set difference, but cancels out the identifiers of packets in the
set intersection. To that end, we exploit the XOR operation of
two identical identifiers cancelling out this identifier. For each
pair of buckets (Is, Ir) at the same location, we construct a
new subtraction bucket whose: (a) ID field amounts to the
XOR value of two IDs in the two buckets: Ir .ID ⊕Is.ID;
(b) IDSH field amounts to the XOR value of two IDSHes
in the two buckets: Ir.IDSH ⊕Is.IDSH; (c) Δ field amounts
to the subtraction of two Δ values: Ir.Δ − Is.Δ. We do not
modify the TS field, since our goal is to list the identifiers of
packets in the set difference.

Second, let a bucket be pure if this bucket contains only
one packet, we next iteratively list all pure buckets and delete
the corresponding packet from the subtraction sRDA until no
pure buckets exist. As the subtraction sRDA only contains the
problematic packets, we decode all packets inserted to this
subtraction sRDA based on the set reconciliation [10].

The set reconciliation is based on two key ideas: (i) Pure
condition: Intuitively, for a non-pure bucket i, hashing its
ID fields using the hash function H(·) will differ from its
IDSH field; moreover, if I(i).Δ = ±1, the numbers of
packets stored at two original buckets differ by one. Therefore,
if H(I(i).ID) = I(i).IDSH and I(i).Δ = ±1 both hold,
this bucket i is claimed to be pure. (ii) Separation: Further,
we determine whether the packet inserted into a pure bucket
is a lost packet or a reordered packet:

• Δ = 1: the receiver’s bucket must contain one more
packet from the sender’s bucket, consequently, this packet
is only stored at the receiver, i.e., this packet is reordered.

• Δ = −1: the sender’s bucket must contain one more
packet than the receiver’s bucket, therefore, this packet is
stored only at the sender, i.e., this packet is lost.

The detailed decoding procedure of sRDA is presented in
the Appendix, which is available in the online supplemental
material.

D. Calculate Latency Aggregation

We can estimate the average latency after removing the
lost packets and the reordered packets. For example, Figure 4
shows the repaired sRDAs in Figure 3. The accumulated
subtraction of the timestamps in all buckets is computed as:
(110 − 70) + (560 − 400) + (390 − 250) + (650 − 400) +
(710 − 480) = 820. The accumulated numbers of packets in

Fig. 5. RDA has multiple banks of buckets. A packet is inserted into a
randomly selected bucket in each bank.

all buckets is 1 + 2 + 1 + 2 + 2 = 8. Therefore, the average
latency is 820

8 = 102.5, which matches the ground-truth
average value.

Further, we hope to compute the standard deviation. Accord-
ing to Eq (3), we can collapse adjacent buckets and derive
the standard-deviation metric. Nevertheless, sRDA has a seri-
ous flaw. For example, in Figure 4, we collapse four adja-
cent buckets and obtain two collapsed buckets as follows:
(i) Sender: the collapsed timestamps are 400 − 70 = 330,
400 − 250 = 150, respectively, and the collapsed counters
are 3, 3, respectively; (ii) Receiver: the collapsed timestamps
are 560 − 110 = 450, 650 − 390 = 260, respectively, and
the collapsed counters are 3, 3, respectively. We next use
collapsed buckets to compute the standard deviation according

to Eq (3) as: (450−330)2+(260−150)2

3+3 − 102.52 = −6089.6,
however, the ground-truth standard deviation is 43.49! This is
because collapsing the first and the second bucket cancels out
the timestamp of P1, while collapsing the third and the fourth
bucket cancels the timestamp of P4, consequently, the first
term (450−330)2+(260−150)2

3+3 = 4416.7 is much smaller than
the squared average latency. Unfortunately, sRDA always has
a probability to map a packet to adjacent buckets, and this
probability increases as more packets are inserted to the sRDA.

Space-Redundancy: Besides the above flaw, the IDSH field
contains redundant information with respect to the ID field.
Removing this redundant field saves 25% space, which is
necessary to scale to large numbers of buckets.

V. RDA

Having presented the limitations of the naive approach,
we next introduce a novel synopsis data structure RDA that is
space-efficient and accurately calculates the average and the
standard deviation.

A. Organization and Bucket Structure

In RDA, each bucket consists of the ID, TS and the Δ fields
that are defined in the sRDA structure. We organize buckets
into a multi-bank structure that consists of k banks of buckets,
where each bank contains m buckets. We set the number of
hash functions to k, so that we insert each incoming packet
into a random bucket in each bank. As a result, no bank
has two identical packets and RDA avoids each packet to be
inserted to adjacent buckets. Figure 5 shows an RDA with two
banks of four buckets.

In order to ensure constant time to access any bucket,
we use one contiguous array to store the RDA in the main
memory. Let a bank consist of m buckets. To logically split
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the array to k banks, the first bank contains the buckets from
1 to m, while the i-th (i ≥ 1) bank consists of the buckets of
[(i − 1) · m + 1, i · m].

To insert a packet into the RDA, we hash the packet’s
identifier and timestamp into each bank. Specifically, we select
a bucket uniformly at random from each bank, by hashing the
identifier of the packet with an independent hash function.
For each of these buckets, we update the packet as follows:
(a) ID = ID ⊕ packet’s identifier; (b) TS = TS + packet’s
timestamp for insertion, and TS = TS - packet’s timestamp
for deletion; (c) Δ = Δ + 1 for insertion, and Δ = Δ− 1 for
deletion.

B. Detect Lost Packets and Reordered Packets

For a pair of RDAs, we next present a lightweight approach
to detect the lost and reordered packets using a new decoding
process that does not need the IDSH field of the sRDA.

(i) Cancel common items: We perform a subtraction
operation on a pair of RDAs to cancel out items that are
inserted into both RDAs. The subtraction cancels the packet
identifiers that are inserted to both RDAs, but preserves the
identifiers of the lost packets and reordered packets.

We subtract the receiver’s RDA using the sender’s RDA,
which yields a subtraction RDA. For each pair of buckets
at the same location in two RDAs, we put a new bucket into
the subtraction RDA that is constructed: (a) ID = ID ⊕ I.ID;
(b) Δ = Δ − 1.

(ii) Decode: We next define a new decoding process on the
subtraction RDA. As we have removed the IDSH field in the
sRDA, we need to define a new pure condition in order to
find buckets that contain only one identifier. Our key insight
is that, the ID field of a bucket amounts to the XOR of the
packets that are mapped to this bucket, consequently, if an
RDA bucket contains only one packet, then hashing the ID
field of this bucket via this bank’s hash function will obtain
the index of this bucket in the bank; while if a bucket contains
multiple packets, hashing the XOR of these packets will obtain
a different index in this bank. Therefore, a bucket is claimed
to be pure if hashing the ID field of this bucket via this bank’s
hash function amounts to the index of this bucket in this bucket,
and its Δ field simultaneously amounts to 1 or −1.

Algorithm 1 summarizes the process to list problematic
packets in a subtraction RDA. Lines 3 to 6 record pure buckets
into a set Υ by traversing each bucket in each bank. Next,
lines 7 to 23 iteratively decode lost packets and reordered
packets. First, line 8 removes a bucket record from the set of
recorded pure buckets. This bucket may become empty due to
the update of the last iteration. If the bucket becomes empty,
no problematic packets exist, so we move to the next iteration.
Otherwise, we continue this iteration. Lines 12 to 16 extract
the packet identifier using the ID field of this bucket and
classify this packet to lost or reordered based on the Δ field
of this bucket. Next, lines 17 to 21 delete this packet from
each bank of the subtraction RDA; meanwhile, if an updated
bucket becomes pure, we save this bucket index into the set
of pure buckets. Then we turn to the next iteration until no
pure buckets exist.

Algorithm 1 Decode Problematic Packets for a Subtraction
RDA

1 Decode(IAB)
input : IAB: subtraction RDA: IB − IA.
output: IDAB: lost packets. IDAB: reordered packets.

2 Υ = {}, IDAB={}, IDAB={};
3 for each bank l ∈ [1, k] do
4 for each i ∈ [1, m] do
5 if hl(IAB(i, l).ID) == i ∧ |IAB(i, l).Δ| == 1

then
6 Υ= Υ ∪ {(i, l)} ;

7 while Υ �= ∅ do
8 Remove a record (i, l) from Υ, where i denotes the

bucket index, and l denotes the index of the bank;
9 if bucket i becomes empty, i.e., IAB(i, l).Δ = 0,

IAB(i, l).ID = 0 then
10 continue;

11 else
12 id = IAB(i, l).ID;
13 if IAB(i, l).Δ == 1 then
14 IDAB = IDAB ∪ {id} ;

15 else
16 IDAB = IDAB ∪ {id};

17 delta = IAB(i, l).Δ;
18 for each bank l ∈ [1, k] do
19 q = hl(id);
20 IAB(q, l).ID = IAB(q, l).ID

⊕

id;
21 IAB(q, l).Δ = IAB(q, l).Δ − delta;
22 if |IAB(q, l).Δ| == 1 ∧ hl(IAB(q, l).ID) == q

then
23 Υ = Υ ∪ {(q, l)} ;

24 return IDAB, IDAB;

The time to scan all buckets takes O(k ·m), while the time
to delete all pure buckets amounts to O(k ·d), where d denotes
the total number of lost and reordered packets. Thus, we need
an overall O(k· (m+d)) time. We can see that RDA’s decoding
complexity is independent of the size of the cache. In contrast,
FineComb finds the reordered packets in each bucket using a
brute-force approach whose time complexity depends on the
size of the stored packets. Let m be the number of buckets,
and

∣

∣SStash
R

∣

∣ the size of the receiver’s cache, then FineComb’s

expected complexity amounts to O(m2|SStash
R |).

C. Latency Aggregation

Having presented the process to detect the lost and reordered
packets, we next compute the average latency and the standard
deviation. We propose a new algorithm to compute the stan-
dard deviation.

Average Latency: We compute the average latency using
all buckets that do not have lost and reordered packets.
As each packet is mapped to each bank, we can see that
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the timestamp of a packet may be aggregated multiple times
in different buckets, since each packet is mapped to multiple
banks. The redundancy usually increases the number of useful
latency samples when some buckets are useless due to the
lost or reordered packets.

Standard Deviation: To compute the standard deviation, we
need to collapse adjacent buckets in each bank. In LDA, every
two adjacent buckets are directly collapsed. Unfortunately,
some buckets may be empty; meanwhile, when the decoding
process does not completely succeed, some buckets may still
contain lost packets or reordered packets.

As a result, collapsing physically adjacent buckets leads to
two drawbacks: First, if one of the collapsed buckets contains
some lost packets or reordered packets, then the collapsed
bucket will be useless, since it still contains these problematic
packets. Second, if one of the collapsed buckets contains no
packets, then this collapsing is ineffective to derive accurate
standard deviation, as packets in the collapsed bucket should
be assigned randomized signs.

Algorithm 2 Collapse Two RDAs

1 Collapse(I1, I2)
input : I1, I2: a pair of RDAs.
output: I ′1, I ′2: a pair of collapsed RDAs.

2 I ′1= ∅, I ′2= ∅ ;
3 for each i in k do
4 Ψ = ∅ ;
5 for j ∈ [(i − 1) · m + 1, i · m] do
6 if I1[j].ID == I2[j].ID AND I1[j].Δ > 0 then
7 Ψ = Ψ ∪ {j};

8 if |Ψ| ≥ 2 then
9 for c ∈ [2, |Ψ|] do

10 p = Ψ [2c − 1], q = Ψ [2c];
11 B1.ID = I1[p].ID ⊕ I1[q].ID;
12 B1.Δ = I1[p].Δ + I1[q].Δ;
13 B1.TS = I1[p].TS - I1[q].TS;
14 I ′1.add(B1);
15 B2.ID = I2[p].ID ⊕ I2[q].ID;
16 B2.Δ = I2[p].Δ + I2[q].Δ;
17 B2.TS = I2[p].TS - I2[q].TS;
18 I ′2.add(B2);

19 return I ′1, I ′2 ;

In order to address the above limitations, we propose
a new Algorithm 2 to selectively collapse buckets for a
pair of RDAs. Lines 5 to 7 select nonempty buckets that
do not contain problematic packets. Lines 8 to 18 collapse
selected buckets. If the number of available buckets is smaller
than two, no collapsing is feasible, so we move to the
next bank. Otherwise, we collapse every two buckets from
lines 10 to 18, and store the collapsed bucket to a vector of
buckets. We can see that two buckets being collapsed may not
be adjacent with each other in the original RDA. Since we
need to iterate over each bucket, Algorithm 2 requires O(km)
time.

After collapsing all banks, we next compute the standard
deviation based on Eq (3). Algorithm 3 shows the computation
using a pair of vectors of collapsed buckets.

Algorithm 3 Estimate the Standard Deviation

1 STD(I ′1, I ′2, μ̂)
input : I ′1, I ′2: collapsed RDAs, μ̂: estimated average

latency.
2 SqSum = 0, Count = 0;;
3 for each i in |I ′1| do
4 Count=Count+I ′1 [i].Δ;
5 SqSum = SqSum+ (I ′1 [i].TS - I ′2 [i].TS)2;

6 return SqSum
Count - μ̂2 ;

VI. RDA THEORETICAL GUARANTEES

We state performance guarantees for RDA in this section.
Detailed derivations can be found in the Appendix, which is
available in the online supplemental material.

Theorem 2: Let SS and SR be the set of packets recorded
at the sender and the receiver, respectively. Let d = |SS ⊕ SR|
be the cardinality of the set difference. Let k be the number of
hash functions. Let the number m of buckets per bank be 2d.
The failure probability to reconcile all lost and reordered
packets SS ⊕ SR is at most O(d−k).

We next analyze the number of useless packets for latency
measurement due to the decoding failure.

Lemma 3: For a RDA with k banks of buckets, where each
bank is of size m. Let n be the total number of packets that are
recorded into this RDA. Let {Li} for i ∈ [1, k], Li ∈ [0, m]
denote the numbers of buckets that cannot be repaired in each
bank. The expected number of useless packets for the latency

measurement amounts to n ·
�k

i=1 Li

mk .
RDA preserves most packets using multiple banks. For a

RDA with two hash functions, i.e., two banks of buckets, let
the percentage of buckets that cannot be repaired in two banks
be 0.1 and 0.1, respectively, then the expected percentage of
useless packets amounts to L1

m · L2
m = 0.1 · 0.1 = 0.01. There-

fore, most packets are useful for the latency measurement.
We next analyze the effect of the skew of the time synchro-

nization on the aggregation accuracy.
Lemma 4: Assume that a pair of clocks between two mea-

surement points are shifted by a constant δ. Let n be the
total number of packets. The estimated average latency will
be shifted by δ from the one with the perfect time synchro-
nization, while the expected standard deviation are shifted by
2δ · μ (n − 1).

Having bounded the effect of the time drift, we next ask
how many samples are enough to bound the accuracy to
estimate the latency metric. Intuitively, if the latency does not
change, one sample is enough to compute an accurate average
metric and the standard deviation is zero. While if the latency
constantly varies, we need more samples to approximate the
expected latency metric.

Lemma 5: Let μ and σ be the actual average and stan-
dard deviation of the packet stream, respectively. For ε, φ ∈
[0, 1], given 2σ2 (log 2 − log φ) /

(

ε2μ
2
)

sampled packets, the
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TABLE I

STATISTICS OF THE TRACE

estimated average latency is bounded within (1 ± ε) times
the actual average latency holds true with a probability at
least (1 − φ).

We further discussed the sampled requirements for approx-
imating the standard deviation, which can be found in the
online supplemental material.

VII. SIMULATION

Having presented the theoretical results, we next evaluate
the performance of RDA using real-world traces.

A. Simulation Setup

We built a simulator written in Java that replays real-
world traces in the experiments, enforces different loss and
reordering rates on the packets, and passively measures the
average and the standard deviation using different approaches.

Data Set: The measurement of the latency requires packet
traces that involve two monitoring endpoints with synchro-
nized clocks. Unfortunately, no such traces are publicly avail-
able to the best of our knowledge. Therefore, we resort to the
same network traffic traces collected at one endpoint used in
existing studies [22], [28].

We use two data sets for the following simulation, as sum-
marized in Table I:

• DC [7]: This trace is collected at routers that contain the
arrival time and the packet header information for packets
recorded in the ethernet interface.

• Univ: We collect packets at a server with the tcpdump
tool [3] in a small data center located in our laboratory.

Delay Model: We set the delay distribution to the same
with that used in LDA and FineComb [19], [22]. We draw the
one-way delay using the Weibull delay distribution with cumu-
lative distribution function P (X ≤ x) = 1− exp

(

(−x/α)β
)

where α and β denote the shape and the scale parameters,
respectively. We use the same shape parameter 0.6 ≤ α ≤ 0.7
used in the evaluation of LDA and FineComb.

Network Model: We follow the same loss and reordering
models in FineComb [22]: The loss model simulates random
packet losses, since each lost packet is mapped to a random
bucket in the synopsis even for two back-to-back packets;
the reordering model simulates the problematic reordered
packets occurred at the beginning and the ending period of the
measurement interval, while the reordered packets that arrive
at the receiver within the same measurement interval does not
affect the synopsis, since both endpoints record such packets.

Previous researchers have shown that the synopsis’
performance is independent of the loss or reordering dis-
tribution [19], [22]. This is because the hashing opera-
tion randomizes the mapping locations of incoming packets,

as a result, correlated lost or reordered packets are decor-
related after hashing to randomized locations. Therefore,
random loss or reordering distributions should be sufficient for
simulation.

Compared Methods: As our objective is to estimate the
aggregated one-way latency under packet loss or reordering
between a pair of measurement points, we compare RDA
with two state-of-the-art methods LDA and FineComb. Other
studies [27], [28] directly rely on LDA or FineComb to
bypass buckets that contain lost or reordered packets. For fair
comparison, we set the same storage size for these synopses.
Further, FineComb maintains a stash of elements that is of the
same size as the number of buckets as recommended in [22].
RDA maintains a cache of packets at both the sender and the
receiver.

Metrics: We evaluate the decoding efficiency and the mea-
surement accuracy using two metrics: (i) Decoding success
probability: the ratio between the number of packets decoded
by RDA and the size of the set difference. (ii) Relative
error: the ratio between the absolute value of the subtraction
between the ground-truth metric fg and the estimated metric
fe: |fg−fe|

fg
. The smaller the relative error, the closer the

estimated metric to the ground truth.
All experiments are repeated in ten times. We report both

the mean value and the 95-th confidence interval of the above
two performance metrics. All experiments are performed on
a PC with a Intel Core i7-3520 CPU (2.90GHz), 8 GB RAM
and a Java runtime environment 1.7.0.

Due to space limitations, we briefly reported the comparison
results, more simulation results are presented in the Appendix,
which is available in the online supplemental material.

B. Results Comparison

For RDA, we set the number of hash functions to two and
allocate an optimized number of buckets based on Theorem 2
when the size of the set difference is known, otherwise,
we allocate a static number of buckets per bank. We use the
recommended parameters for LDA [19] and FineComb [22].
We replay all packets in the trace.

1) Decoding Time: We compare the decoding time of RDA
and FineComb. For RDA, we set the number of hash functions
to two and the number of buckets to 4,000. For FineComb,
we have implemented the proposed brute-force approach to
repair the buckets.

Figure 6 shows that RDA is orders of magnitude faster
than FineComb. We can see that the decoding time of
RDA increases gracefully with increasing number of lost
and reordered packets, however, the computation time for
FineComb is unacceptably long even for a stash of size 40,
since we need to enumerate any combinations of packets in
the stash for each impaired bucket in FineComb.

As a result, for the rest of the evaluation, we implemented an
“ideal” repairing procedure for FineComb, given that we know
the actual set of lost and reordered packets that are inserted at
each bucket. Note that this approach is not implementable in
practice, as we will not know these values in a real scenario.
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Fig. 6. The decoding time of RDA and FineComb.

Fig. 7. The relative errors as we enlarge the set difference for LDA,
FineComb and RDA on the DC data set. Negative numbers are omitted for
the error bar due to the logarithmic-scale y-axis. (a) Average. (b) Standard
deviation.

2) Varying Set Difference: We next compare the relative
error of prediction results when the loss and reordering rates
are unknown a priori.

We set the number k of hash functions to two and the
number of buckets of RDA to 5,000. We dimension LDA and
FineComb with the recommended parameters in [19] and [22].
We set the loss rate and the reordering rate to be identical
with each other and vary the set difference from 0 to 10,000.
Varying the loss or reordering rates changes the curves, but
the same conclusion still holds. We report the average latency
for brevity.

Figures 7 and 8 show the relative errors of the estimated
average latency and the standard deviation. For RDA, some
lower confidence-interval values are negative and not shown in
the plots. We see that all methods increase the relative errors as
we increase the set difference, since more packets are useless
for the latency calculation. LDA has the highest relative error,
since LDA is agnostic of the packets inserted into each bucket.

RDA consistently outperforms FineComb and LDA. For
example, when the size of the set difference is smaller than
2,000, RDA’s average-latency estimation incurs over 10 orders
of magnitude smaller relative errors than those of FineComb
and LDA. This is because when the set difference is smaller
than 2,000, we can decode nearly all problematic packets.

The real-world decoding performance is better than the
bound provided by Theorem 2. From Theorem 2, we can
see that when the size d of the set difference is smaller
than 5,000

2·k ≈ 1, 250, the decoding fails with a probability at
most O(d−2).

Moreover, RDA’s performance experiences a sharp transi-
tion with increasing problematic packets. after the set dif-
ference is greater than 2,000, RDA’s relative error increases
sharply, from 10−14 to around 10−4, The sharp transition

Fig. 8. The relative errors as we enlarge the set difference for LDA,
FineComb and RDA on the Univ data set. Negative numbers are omitted for
the error bar due to the logarithmic-scale y-axis. (a) Average. (b) Standard
deviation.

Fig. 9. The pipelined measurement interval.

is due to a fraction of useless buckets that consist of
lost or reordered packets. However, RDA is still much more
accurate than FineComb since RDA can repair more packets
than FineComb. Predicting the sharp transition is still an
open problem, as estimating the number of failed decoding
is challenging [18]. Our theoretical results in Section VI only
loosely bound the failure probability of the decoding process.

We can see that the standard-deviation estimation is less
accurate than the average metric, since the estimation of the
standard deviation is not precise, while the average met-
ric is an unbiased estimator of the ground-truth number.
However, RDA’s standard deviation estimation still incurs
around 0.5 orders of magnitude smaller relative errors than
that of FineComb, since RDA uses more packets to derive the
standard deviation.

VIII. IMPLEMENTATION

We have implemented the RDA based passive latency aggre-
gation in the software layer. This software captures packets
using libpcap [3] from user space, maintains RDAs in the
main memory and continuously calculates the latency analytics
between a pair of measurement points.

A. Architecture

We continuously monitor the end to end latency via the
pipelined measurement interval, as shown in Figure 9. At the
beginning of a measurement interval, each measurement point
keeps incoming packets into a separate RDA for this mea-
surement interval. At the end of this measurement interval,
the measurement point performs concurrent packet aggregation
and triggers the next measurement interval.

The software can be flexibly deployed in data center
networks. First, we may deploy the software on servers to
track server-to-server one-way latency information. Second,
we may place a pair of dedicated measurement nodes that
passively capture streams of packets from mirror ports of a pair
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of switches, which should be less intrusive with respect to
server performance.

Identifier Generation and Hash Function: In order to
correctly aggregate the timestamp for each packet, hashing
should ensure that different packets correspond to different
identifiers. Therefore, the hash functions should minimize the
collision probability of mapping different packets to identical
identifiers, otherwise, the program will incorrectly aggregate
the latencies for these packets. Further, as hashing computation
consumes CPU cycles, we need to maximize the efficiency
of the hashing algorithm to process as many packets as
possible.

Each packet contains a number of checksums, including
Ethernet-level, IP-level, and transport-level checksums. Unfor-
tunately, checksums have several limitations to be used as
identifiers: (i) A packet’s checksum may be modified. First,
as a packet usually traverses multiple Ethernet segments in
data center networks, the Ethernet-level checksum needs to
be recomputed for each Ethernet segment. Second, since the
switch decreases the TTL field in the IP header per routing
hop, the IP-level checksum also needs to be recomputed by the
switch. Third, when a packet traverses NAT devices or trans-
port congestion options are enabled, some transport-level
fields need to be modified, as a result, the transport-level
checksum needs to be recomputed as well. Consequently,
modified checksums become useless to uniquely identify a
packet. (ii) Checksum calculation leads to high collision
possibilities. Checksums are used for checking errors in the
packet header and payload, which is calculated by summing up
packet contents for fast processing. Although the sum operator
is faster than other alternatives, it increases the collision
probability [4]. Consequently, two different packets may have
identical checksums. (iii) Captured packets may not have
calculated checksums. If the packet checksum computation is
offloaded to hardware, then the packet checksum captured by
libpcap becomes useless to uniquely identify a packet.

Henke et al. [16] have extensively studied the collision
performance of a set of hash functions and found that the Bob
hash function overall provides the best performance. In this
paper, we choose the Bob hash function to create the identifier
of each packet and to compute the bucket indexes. We assign a
distinct 64-bit identifier for each unique packet in the packet
stream using the distinct information of the packet, including
the entire packet payload at the IP layer to minimize the
overhead of extracting packet information.

Further, if NAT is used, then a packet’s address becomes
non-unique, therefore, we do not use the addresses of packets
for creating the identifier. Moreover, if the packet header expe-
riences modifications across the routing path, e.g., the TCP
header is modified, then this packet would lead to two different
identifiers at two measurement points. As a result, these
two identifiers would become problematic for the latency
aggregation. Fortunately, we can decode these problematic
identifiers, since this pair of identifiers are equivalent to a lost
packet and a reordered packet.

Pipelined Measurement Interval: In order to bootstrap
the pipelined process, the software sets up the beginning
timestamp of the first measurement interval for the sender
and the receiver. To that end, the sender selects a timestamp

that is larger than both clocks so that both the sender and
receiver have enough free time to start the first measurement
interval. Then the sender exchanges this timestamp with the
receiver. Afterwards, both measurement points register the first
measurement interval event at the specified timestamp and the
successor measurement interval. When reaching the specified
timestamp, both measurement points independently begin the
measurement.

Late-Binding RDA Maintenance: According to Theorem 2,
we need to set the number m of buckets in each bank to twice
the size of the set difference, in order to reconcile the lost and
the reordered packets with failure probability at most O(d−k).
Unfortunately, the size of the set difference is unknown a priori
until the measurement interval ends.

In order to decode all problematic packets, we adopt a
late-binding approach to configure the RDA data structure.
During the measurement interval, we extract the identifier
of each intercepted packet, and store the corresponding
timestamp into an in-memory hash table. The receiver’s RDA
is transmitted to the sender during the latency aggregation
procedure, while the cache is never transmitted and is flushed
after the latency aggregation.

After the measurement interval ends, we estimate the size
of the set difference via the MinHash estimator [9], [10]
based on a pair of caches at two measurement points. Next,
we configure the RDA such that the number of buckets per
bank amounts to twice the estimated size of the set difference.
Finally, we insert each cached packet into the RDA data
structure and trigger the latency aggregation procedure.

Latency Aggregation: After the measurement interval ends,
the sender requests and obtains the receiver’s RDA. When the
receiver receives this request, it sends its RDA data structure
immediately back to the sender. Then, the sender determines
whether any of the buckets contain lost or reordered packets
and decodes them if necessary. After the decoding process,
the sender obtains a set of packets identifiers for lost and
reordered packets.

Next, the sender needs to request the timestamps of the
reordered packets from the receiver if any, since the lost
packets are stored in the sender’s cache, while the reordered
packets are stored at the receiver’s cache. Then, the sender
deletes the lost packets from its own RDA using its own cache,
and deletes the timestamps and the identifiers of the reordered
packets from the receiver’s RDA. Finally, the sender calculates
the average and the standard deviation of the latency using the
repaired RDAs.

Timing: During a measurement interval, the sender and
the receiver aggregate the identifiers and the timestamps of
packets. If two measurement points’ clocks drift significantly,
then the two measurements may not capture the same set of
packets. Therefore, the measurement process heavily depends
on a good time synchronization and precise event timing.
We implemented the precise timing using IEEE 1588 Preci-
sion Time Protocol and events are timed using Linux high-
resolution timers.

B. Parameter Configuration

Number of Hash Functions: The selection of the number
of hash functions is a trade-off between the decoding failure
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probability and the time complexity. Let d be the total number
of lost and reordered packets. When the number of buckets per
bank is at least 2d, the decoding failure probability decreases
exponentially according to Theorem 2. Further, we empirically
found that, when we fix the total number k·m of buckets in the
RDA, increasing the number k of hash functions from one to
two increases the percentage of decoded problematic packets,
while more than two hash functions decreases the decoding
probability. Therefore, we set the default number k of hash
functions to two.

Bucket Width: We represent a timestamp using a 64-bit
unsigned fixed-point value based on RFC-1305 [1]. We rep-
resent the Δ field using a 64-bit long integer. In addition,
the ID field takes 64 bits as discussed in Subsection II-B.
Thus, a bucket takes up to 64 · 3 = 192 bits. For an RDA
with two banks and 100 buckets in each bank, the storage
size is 4.69 KB.

Cache Size: To bound the size of the cache, we can simply
adapt the number of stored packets according to the link
speed or sample the incoming packets. By varying the sam-
pling rate, we can adapt to different traffic rates. For example,
with a 1% sampling rate on a 500,000 packets-per-second
link, the sampled packet rate would become 5,000 packets
per second in the worst case, and a measurement interval
of 1 million packets would last at least 200 seconds. We need
to ensure that both the sender and the receiver sample the same
subset of packets in order to calculate the one-way delay using
the sampled packets. To that end, we sample packets based on
a flow identifier that uses the same hash function at the sender
and the receiver, which enables the synopsis and the cache to
record the same set of packet identifiers. The sampling process
reduces the number of packets for latency measurement. As we
are interested in the aggregated latency, we are still able to
accurately compute the latency.

IX. PROTOTYPE EVALUATION

In this section, we evaluate the performance of the prototype
on two servers in the same rack. Both servers connect to a
gigabit top-of-rack (ToR) switch with a 1 Gbits/s Ethernet
network interface card. Each server has two Intel Xeon
E5-2640 2.5 GHz processors with 12 threads and 48 GB RAM.
A server runs iperf to generate traffic (5 TCP flows) to the
other server. Other servers in the same rack have been
allocated to several tenants that create a variety of background
network traffic that compete for the processing capacity of the
same rack-level switch.

Our prototype is multi-threaded event-driven, which incurs
negligible performance reduction for co-located tasks on the
server. We cache all packets in the measurement interval in
order to obtain the finest-grained results. For RDA, we set
the number of hash functions to two, and set the number of
buckets per bank to twice the size of the set difference that is
estimated by the Min-wise Estimator [9].

Validation

We first validate whether the software continuously pro-
duces useful results. We set the measurement interval to

Fig. 10. One-way latency results between two servers reported by RDA
based passive latency measurement software.

Fig. 11. The variations of relative errors of estimated average latency and
the standard deviation. (a) Relative errors for the average results. (b) Relative
errors for the standard deviation results.

one second and thus report latency statistics of aggregate
packets per second.

Figure 10 plots the dynamics of the average and the standard
deviation of the one-way latency between the two servers.
We can see that the software captures detailed fluctuations
of the one-way latency: the average latency approximately
centers around 0.05 ms, while the standard deviation varies
from 0.05 ms to 1 ms. As a result, the software provides
fine-grained information of underlying network flows.

We next verify the prediction quality of each measure-
ment interval. We stored the cached packets into the disk
and extracted the ground-truth one-way latency results by
reading packet timestamps that are cached at the sender and
the receiver. Figure 11 plots the dynamics of the relative
errors of the software compared to the ground-truth one-way
latency. We can see that the relative error of predicting the
average latency incurs varies from 10−7 to 10−8, while the
relative error of predicting the standard deviation keeps around
0.01 to 0.1 in most cases. The accuracy varies primarily due
to the dynamics of available packets and the percentage of
repaired buckets, however, the relative error is low enough to
monitor fine-grained one-way latency.

Further, we also aggregated the minimum RTT values via
the ICMP protocol based Ping that should be insensitive to
system noises, which yielded a minimum RTT 0.15 ms and a
standard deviation 0.42 ms. As the routing path is symmetric,
halving the minimum RTT approximates the one-way average
latency in Figure 10.

Overhead

Having shown that RDA captures fine-grained latency
dynamics, we next quantify the overhead of producing
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Fig. 12. Stacked delays to produce measurement results.

Fig. 13. iPerf generated loads (left y-axis) VS. Overall delays (right y-axis).

latency results: (i) transmitting the RDA to the other mea-
surement point; (ii) decoding the set difference with a pair of
RDAs; (iii) requesting missing timestamps of decoded pack-
ets; (iv) erasing timestamps of packets in the set difference;
(v) computing the latency statistics with a pair of repaired
RDAs.

Figure 12 plots the stacked delays of these subprocesses for
each measurement interval. We can see that the overall delay
is around 20 ms, which enables fast network troubleshoot-
ing. Further, transmitting RDAs and requesting timestamps
of missing packets takes up over 70% of the overall delay,
while decoding the set difference, erasing the missing packets
and computing the statistics take less time. Recall that the
measurement interval is of one second, so a few tens of
milliseconds incurs a low overhead.

Next, we contrast the measurement overhead with network
traffic between two servers. Figure 13 plots the overall delay to
produce measurement results and the network traffic generated
via the iPerf software. We can see that the traffic vary slightly
around 940 to 942 Mbits per seconds, while the overall delay
is approximately around 20 ms.

Scalability

Having illustrated that RDA produces useful latency infor-
mation with modest overhead, we next test the system
scalability.

(a) RDA Transmission: We first measure the variation of
the time needed to send the RDA data structure with an
increasing number of buckets. The time required to transmit
the RDA data structure includes the processing time at the
network stack of the two servers and the network transmission
time. Figure 14 plots the dynamics of the time needed to
transmit RDA between two servers. We can see that the
time increases modestly with the number of buckets due to
a compact design of the bucket structure.

Fig. 14. The time of transmitting RDAs and that of sending the packet
records that consist of the timestamps and identifiers of missing packets.
(a) Sending RDA. (b) Sending packet records.

Fig. 15. Computing delays of the average and those of the standard deviation
with an increasing number of buckets. (a) Calculating the average metric.
(b) Calculating the standard deviation.

(b) Missing-Packets Transmission: We next test the vari-
ation of the time required to request missing timestamps
of decoded packets. Figure 14(b) plots the requesting delay
with an increasing number of sent records. We can see that
the transmission delay increases linearly with respect to the
number of records, as both timestamp and identifier need to
be sent for each missing packet.

(c) Latency Aggregation: We next evaluate the processing
scalability to calculate the average and the standard deviation
of the latency as we increase the number of buckets.

Figure 15(a) plots the time required to calculate the average
latency. We can see that the cost is modest, as averaging
over 20,000 buckets only requires three ms. Further, the cost
increases linearly with the number of buckets, since comput-
ing the average requires a linear scan of all buckets. Next,
Figure 15(b) shows the time required to compute the
standard deviation. We can see that the cost is super-linear to
the number of buckets, since the standard deviation calculation
needs several passes over the buckets.

X. CONCLUSIONS AND FUTURE WORK

The synopsis based passive latency measurement approach
scales well with increasing traffic volumes, however, the
estimation accuracy degrades significantly under the presence
of reordered or lost packets. Unfortunately, identifying these
problematic packets from the synopsis is still a challenging
problem. In this paper, we unify this problem within a set
reconciliation framework that has been independently studied
in the theoretical field. We propose a space-efficient synopsis
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named RDA that uses a multi-bank data structure to maximize
the percentage of useful packets under the lost or reordered
packets. RDA accurately estimates the average latency and
the standard deviation. Our theoretical analysis shows that
RDA preserves nearly all useful packets, while the space
complexity is proportional to the number of packets that are
lost or reordered. We designed and implemented a passive
latency measurement system based on RDA. Our experimental
results show that RDA obtains accurate latency statistics
under the presence of loss and reordering events with modest
overhead. As future work, we plan to extend RDA to support
other tail statistics.
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Supplement Information for
Every Timestamp Counts: Accurate Tracking of Network Latencies

using Reconcilable Difference Aggregator

I. DECODE LOST PACKETS AND REORDERED PACKETS IN
SRDA

Algorithm 1 summarizes the loop to find problematic pack-
ets in the subtraction sRDA. Lines 3 to 5 scan the array of
the subtraction sRDA to find the indexes of all pure buckets.
Next, lines 6 to 27 iteratively locate a problematic packet and
remove this packet from the subtraction sRDA. Line 7 selects
a bucket index from the stored indexes. Then line 8 checks
whether this bucket is still pure, since this bucket may become
empty (i.e., it has no packet records, see lines 22 to 27) during
the last iteration. If this bucket is pure, then we store the ID
field of this bucket into the set difference from lines 11 to
14. Next, we delete the packet in this pure bucket from the
subtraction RDA from lines 15 to 27. To that end, we list the
unique bucket indexes where this packet is mapped to in lines
19 to 21. Then, we remove this packet from each of these
bucket indexes in lines 22 to 25, and add new pure buckets
from lines 26 to 27.

Algorithm 1 resolves a pitfall in the decoding algorithm
proposed by [1]. In the pseudocode of the decoding algorithm
[1], after scanning the whole array to construct a list of indexes
of pure buckets, the main loop iteratively removes a bucket
index from this original list, but does not check whether new
buckets become pure due to removing an item in the set
difference. Unfortunately, some buckets usually become pure
during the iterations, unfortunately, such buckets will not be
detected in [1], as a result, the decoding in [1] is incomplete.

II. RDA THEORETICAL GUARANTEES

A. Bad Buckets in FineComb

Theorem II.1. Suppose that a number nl of lost packets are
inserted into a FineComb with m buckets using a perfectly
random hash function. The expected number ml of buckets
that contain at least one lost packet is m ·

(
1− e−nl/m

)
.

Proof. Let

I [i] =

{
1 bucket i contains no lost packets
0 otherwise

Since we map each packet to a bucket that is sampled uni-
formly at random, we see that P [I [i] = 1] = (1− 1/m)

nl ≈
e−nl/m. Therefore, the expected number of buckets that con-
tain no lost packets amounts to

E

[
m∑
i=1

I [i]

]
=

m∑
i=1

E [I [i]] =

m∑
i=1

P [I [i] = 1] = me−nl/m

Algorithm 1: Decode lost packets and reordered packets
in sRDA.

1 Decode(I)
input : I: A subtraction sRDA.
output: Sl: lost packets, Sr: reordered packets.

2 PureIdx = ∅, Sl = {}, Sr = {};
3 for each i ∈ [1,m] do
4 if H(I(i).ID) = I(i).IDSH ∧ I(i).∆ = ±1 then
5 PureIdx = PureIdx ∪{i};

6 while PureIdx 6= ∅ do
7 Remove an index i from PureIdx ;
8 if bucket i becomes empty, i.e., I(i).∆ = 0, I(i).ID = 0,

I(i).IDSH = 0 then
9 continue;

10 else
11 id = I(i).ID;
12 if I(i).∆ = −1 then
13 Sl = Sl ∪ {id};
14 else
15 Sr = Sr ∪ {id};
16 idHs = I(i).IDSH;
17 delta = I(i).∆;
18 UniqueIndex = ∅;
19 for each j ∈ [1, k] do
20 idx = hj(id);
21 UniqueIndex =UniqueIndex ∪{idx};
22 for each idx ∈ UniqueIndex do
23 I(idx).ID = I(idx).ID ⊕ id;
24 I(idx).IDSH = I(idx).IDSH⊕ idHs;
25 I(idx).∆ = I(idx).∆− delta;
26 if H(I(idx).ID) = I(idx).IDSH ∧ I(idx).∆ = ±1

then
27 PureIdx = PureIdx ∪{idx};

28 return Sl, Sr;

As a result, the expected number of buckets that contain at
least one lost packet amounts to

ml = m− E [I] = m ·
(

1− e−nl/m
)

(1)

which completes the proof.

B. Decoding

We first compute the expected probability that a non-pure
bucket is regarded as a pure one. A non-pure bucket Inp
is identified as a pure one iff Inp.∆ = ±1 and h(Inp.ID)=
Index(Inp) simultaneously hold, where h(·) denotes the hash



2

function of a bank and Index(·) denotes the index of a bucket.
As h(Inp.ID)= Index(Inp) holds with a probability 1

m assuming
the perfect randomness of hash functions, the probability
amounts to

1

m
· P (Inp.∆ = ±1) (2)

We derive the probability of a bucket’s ∆ field being 1 or
-1 in Theorem II.2.

Theorem II.2. Let m denote the bank size, dl the number
of lost packets, dr the number of reordered packets. Let dlr
= min (dl, dr). For a non-pure bucket Inp in the subtraction
RDA, the probability P (Inp.∆ = ±1) holds with a probability(

1− 1

m

)d dlr∑
a=1

((
d− 2a

a (m− 1)
2a+1

)(
dl

a+ 1

)(
dr
a+ 1

))
(3)

Proof. Assuming that the hash functions are perfectly random,
the lost packets and the reordered packets are placed in
buckets that are selected uniformly at random. Consequently,
we can approximate the number of lost packets (the number
of reordered packets) in each bucket using the binomial
distribution:

P (Xl = x) =

(
dl
x

)(
1

m

)x(
1− 1

m

)dl−x
(4)

where dl denotes the number of lost packets. Similar to Eq (4),
we can derive the probability distribution of reordered packets.

P (Xr = x) =

(
dr
x

)(
1

m

)x(
1− 1

m

)dr−x
(5)

For a pair of buckets where Inp.∆ = ±1 holds, we can see
that the number of lost packets and the number of reordered
packets must differ by one. Let dlr = min (dl, dr). We next
enumerate the sum of the probabilities of these events.

P

(
dlr∑
a=1

((Xl = a
⋂
Xr = a+ 1) ∪ (Xl = a+ 1

⋂
Xr = a))

)
=

dlr∑
a=1

(P (Xl = a)P (Xr = a+ 1) + P (Xl = a+ 1)P (Xr = a))

(6)
due to the independence of loss and reordering events.

Based on the binomial distribution of the number of lost
and reordering packets, we have

dlr∑
a=1

(P (Xl = a)P (Xr = a+ 1) + P (Xl = a+ 1)P (Xr = a))

=
dlr∑
a=1

((
1
m

)2a+1(
1− 1

m

)d−2a−1
(

d−2a
a

(
dl

a+ 1

)(
dr
a+ 1

)))
=
(
1− 1

m

)d dlr∑
a=1

((
1

m−1

)2a+1
(

d−2a
a

(
dl

a+ 1

)(
dr
a+ 1

)))
=
(
1− 1

m

)d dlr∑
a=1

((
d−2a

a(m−1)2a+1

)(
dl

a+ 1

)(
dr
a+ 1

))
where d = dl + dr.

For example, let m = 1,000, dl = 40, dr = 50, the probability
of Inp.∆ = ±1 amounts to 0.08. Moreover, the overall
probability that this bucket is considered to be a pure one
with a probability 1

1,000 · 0.08 = 8*10−5.

Next, we bound the failure probability of decoding the lost
and reordered packets for RDA. We can construct a hyper-
graph based representation for the failure condition of the
decoding process. Let each bucket be represented as a vertex.
For each common packet in a pair of buckets, we assign an
edge between the corresponding pair of vertices. Then, if no
buckets are pure, any vertex on the hyper-graph has either no
edges or at least two edges. Therefore, the probability of the
decoding process is equal to the probability of finding a 2-
core (all vertices have at least two edges) in the hyper-graph.
Theorem II.3 provides a loose bound of the failure probability:

Theorem II.3. Let SS and SR be the set of packets recorded
at the sender and the receiver, respectively. Let d = |SS ⊕ SR|
be the cardinality of the set difference. Let k be the number
of hash functions. Let the number m of buckets per bank be
2d. The failure probability to reconcile all lost and reordered
packets SS ⊕ SR is at most O(d−k).

Proof. Each bank of RDA is a sRDA with one hash function
and m buckets. This sRDA has a failure probability of O(d−1)
to decode the set difference SS ⊕ SR based on the Corollary
1 in [1]. Further, since we use independent hash functions for
different banks, the failure events to decode the set difference
SS ⊕ SR for different banks are independent with each other.
As a result, the probability that all banks fail to decode the
set difference SS ⊕ SR amounts to the product of the failure
probabilities of each bank, which amounts to O(d−k), which
completes the proof.

Further, RDA’s decoding failure probability depends on the
size d of the set difference, but is independent of the distribu-
tion of lost packets and reordered packets in the measurement
interval. As a result, only the total amount of lost and reordered
packets are relevant to the decoding capability for RDA.

C. Useless Packets

Lemma II.4. For a RDA with k banks of buckets, where each
bank is of size m. Let n be the total number of packets that are
recorded into this RDA. Let {Li} for i ∈ [1, k], Li ∈ [0,m]
denote the numbers of buckets that cannot be repaired in each
bank. The expected number of useless packets for the latency
measurement amounts to n ·

∏k
i=1 Li

mk .

Proof. A packet is useless iff all buckets that this packet is
mapped to contain lost packets or reordered packets, other-
wise, as long as at least one of these buckets is repaired in
the reconciliation process, then this packet is useful for the
latency measurement.

Let Li be the number of buckets that cannot be repaired
in the i-th bank, for i ∈ [1, k] and Li ∈ [0,m]. Then, the
probability that a bucket cannot be repaired amounts to:

k∏
i=1

(
Li
m

)
=

∏k
i=1 Li
mk

(7)

For n packets that are recorded at both ends, the expected
number of packets that are useless amounts to n ·

∏k
i=1 Li

mk ,
which completes the proof.
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D. Time Synchronization Skew

Lemma II.5. Assume that a pair of clocks between two
measurement points are shifted by a constant δ. The estimated
average latency will be shifted by δ from the one with the
perfect time synchronization, while the expected standard
deviation are shifted by 2δ · µ (n− 1).

We consider a simplified case where a pair of clocks
between two measurement points are shifted by a constant δ.
We can see that the estimated average latency will be shifted
by δ from the one with the perfect time synchronization.

Next, we analyze the shifted estimated standard deviation.
Let x denote a packet. Let ax be the timestamp of packet x
at the sender. Let bx and b̃x be the ground-truth timestamp
without drift and the drifted timestamp of packet x at the
receiver, respectively. We derive the squared subtraction of
each pair of timestamps as:(∑

x sxb̃x −
∑

x sxax
)2

=
(∑

x sx (bx + δ)−
∑

x sxax
)2

=
(∑

x sx (bx − ax) +
∑

x δsx
)2

=
(∑

x sx (bx − ax)
)2

+ δ2
(∑

x sx
)2

+
2δ
(∑

x sx
) (∑

x sx (bx − ax)
)

=
(∑

x sx (bx − ax)
)2

+ δ2
(∑

x sx
)2

+
2δ
∑

x,x′ sxsx′ (bx′ − ax′)

=
∑

x,x′ sxsx′ (bx − ax) (bx′ − ax′) + δ2
∑

x,x′ sxsx′+
2δ
∑

x,x′ sxsx′ (bx′ − ax′)

=
∑

x s
2
x(bx − ax)2 +

∑
x 6=x′ sxsx′ (bx − ax) (bx′ − ax′)+

δ2
(∑

x s
2
x +

∑
x 6=x′ sxsx′

)
+

2δ
(∑

x′ s
2
x′(bx′ − ax′) +

∑
x 6=x′ sxsx′ (bx′ − ax′)

)
The expectation of the cross terms E [sxsx′ ] is zero. Therefore,
we have that

E

[(∑
x sxb̃x −

∑
x sxax

)2]
= E

[∑
x (bx − ax)

2
]

+
(
δ2 + 2δ · E [

∑
x (bx − ax)]

)
= E

[∑
x (bx − ax)

2
]

+
(
δ2 + 2δ · µ · n

)
Therefore, the expected standard deviation can be represented
as:

E

[(∑
x sxb̃x −

∑
x sxax

)2
− µ̃2

]
= E

[(∑
x sxb̃x −

∑
x sxax

)2]
− E

[
µ̃2
]

= E
[∑

x (bx − ax)
2
]

+
(
δ2 + 2δ · µ · n

)
− (µ+ δ)

2

= E
[∑

x (bx − ax)
2 − µ2

]
+
(
δ2 + 2δ · µ · n

)
−
(
δ2 + 2δ · µ

)
= E

[∑
x (bx − ax)

2 − µ2
]

+ 2δ · µ (n− 1)

Therefore, the expected standard deviation are shifted by
2δ ·µ (n− 1). We can see that the standard deviation is much
more sensitive to the skew than the average latency, as a
result, controlling the skew is vital to the standard-deviation
estimator.

E. Sampling

Average: Let n be the number of packet samples. Let µ and
σ be the actual average and standard deviation of the packet
stream, respectively. Let µ̃ be the estimated average latency.

Lemma II.6. Let µ and σ be the actual average and standard
deviation of the packet stream, respectively. For ε, φ ∈ [0, 1],
given 2σ2 (log 2− log φ) /

(
ε2µ

2
)

sampled packets, the esti-
mated average latency is bounded within (1 ± ε) times the
actual average latency holds true with a probability at least
(1− φ).

We next bound the estimated average with the Hoeffding
inequality [2] as follows:

Pr [|µ̃− µ| ≥ εµ] ≤ 2 exp
(
−ε2nµ2/2σ2

)
where ε is a nonnegative constant. We represent the right side
with a parameter φ ∈ [0, 1]:

φ = 2 exp
(
−ε2nµ2/2σ2

)
Then we derive the number n of samples with respect to φ:

n = 2σ2 (log 2− log φ) /
(
ε2µ

2
)

(8)

In other words, setting the number of sampled packets at
least with respect to Eq. (8), we guarantee that the estimated
average latency is bounded within (1 ± ε) times the actual
average latency holds true with a probability at least (1− φ).
We can see that decreasing the probability φ or reducing the
constant ε requires more samples, since we will obtain a tighter
bound for the estimation. While increasing the variance of
the latency distribution or decreasing the average latency also
increases the number of samples, which is consistent with our
intuition.

Standard deviation: We can derive the number of samples
for the standard deviation similar to the average metric. Let
F be defined according to

F =

∑
j∈{i|D̃A[i].C=D̃B [i].C }

(
D̃B [j] .T − D̃A [j] .T

)2
∑
D̃A[i].C=D̃B [i].C D̃A [i] .C

(9)

, let E [F ] and V ar [F ] be the expectation and the variance
of F , respectively. We can bound the estimated F̃ value as:[∣∣∣F̃ − E [F ]

∣∣∣ ≥ εE [F ]
]
≤ 2 exp

(
−ε2nE [F ]

2
/2V ar [F ]

)
according to the Hoeffding inequality [2]. Let φF =

2 exp
(
−ε2nE [F ]

2
/2V ar [F ]

)
. We have

n = 2V ar [F ] (log 2− log φF ) /
(
ε2E [F ]

2
)

(10)

According to [3], the expectation of F amounts to E [F ] =
1
n

∑
x (bx − ax)

2, and the variance of F is upper-bounded by

1

n2

n− S̃
S̃

∑
x

w4
x + 2

∑
x 6=x′

w2
xw

2
x′


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Fig. 1. Percentage of decoded packets with respect to the set difference size
on the DC data set.

where S̃ amounts to
∑
D̃A[i].C=D̃B [i].C D̃A [i] .C. We have

n =
2
∑
x 6=x′ w2

xw
2
x′ −

∑
x w

4
x

ε2(
∑

x (bx−ax)2)
2

2(log 2−log φF ) −
∑

x w
4
x

S̃

(11)

Therefore, setting the number n of sampled packets at least
with respect to Eq. (11), the estimated F value is bounded
within (1± ε) times the actual F holds true with a probability
at least (1− φF ).

Finally, as n denotes the number of useful packets, the
number of sampled packets should be larger than n, since
some packets may not be repaired by the decoding process.

III. ADDITIONAL SIMULATION RESULTS

A. RDA Parameter Sensitivity

We first evaluate the sensitivity with respect to the decoded
lost and reordered packets as we change the set difference
d and the number of hash functions. We further evaluate the
communication overhead.

1) Set Difference
We first study how the decoding success probability varies

as we fix the number of buckets but gradually increase the
size of the set difference from 0 to 900. We set the number
of buckets to 1,000 and the number of hash functions to two.
We replay all packets in two traces. Varying the parameters
yields consistent conclusions.

Figures 1 and 2 show the percentage of the decoded packets
as the set difference increases. We can see that when the size
of the set difference is not larger than 500, RDA decodes
almost all packets in the set difference. Since the number of
buckets per bank is only 500, while Theorem II.3 requires
the number of buckets per bank to be twice the set difference
to ensure a high decoding probability, we see that Theorem
II.3 is not tight. Moreover, for a larger set difference, the
percentage of decoded packets decreases gracefully as the set
difference increases. Consequently, RDA adapts well under
unknown network conditions.

2) Hash Functions
Having shown that the decoding probability decreases

gracefully as more packets are either lost or reordered, we
next test how many hash functions are required to obtain the
best decoding success probability.

We set the measurement interval to capture the whole
packets in the trace. Varying the parameters changes the

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Set difference d

D
e

c
o

d
in

g
 S

u
c
c
e

s
s
 P

ro
b

.

 

 

n=1K

n=10K

n=100K

n=1M

Fig. 2. Percentage of decoded packets with respect to the set difference size
on the Univ data set.
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Fig. 3. Percentage of decoded packets as we increase the number of hash
functions on the DC data set.
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Fig. 4. Percentage of decoded packets as we increase the number of hash
functions on the Univ data set.

plots, but we still draw consistent conclusions. We fix the
total number of buckets to 1,000 and vary the number of
hash functions from one to eight to see how the decoding
probability varies.

Figures 3 and 4 show the percentage of decoded packets
with increasing numbers of the hash functions. We can see
that when the actual size of the set difference is smaller than
the upper bound, we can decode nearly all packets in the
set difference when we use more than one hash function.
In contrast, when the size of the set difference is larger
than the upper bound, choosing two hash functions yields
the best decoding success probability. This is because when
we use more than two hash functions, the buckets are filled
with too many lost or reordered packets, while for one hash
function, the decoding process fails to list the packets in the
set difference when a bucket contains more than one packet
in the set difference.
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Fig. 5. The variation of bit rates of sending the RDA as well as those
of sending the identifiers and timestamps of all cached packets (denoted as
Direct), as we change the sampling rate (5(a)) and the set-difference size
(5(b)).

3) Communication Overhead
We next evaluate the communication overhead of sending

the RDA. For comparison, we also compute the overhead
of directly sending cached packets (denoted as the Direct
approach).

We set the number n of packet records to 105, the measure-
ment interval to one second, the number k of hash functions to
two, and the number of buckets to four times the set-difference
size d. Varying parameter configurations lead to consistent
results.

(i) Numerical Computation: First, we numerically test
when RDA scales better than the Direct approach. For 64-bit
identifiers and timestamps, the size of a RDA bucket is 192
bits. So the overall storage overhead of the RDA amounts to
4·d·192 bits, while the storage required by the Direct approach
is of 128·n bits. When d

n >
128
4·192 ≈ 0.17, we have 4·d·192

128·n > 1
holds, so RDA is less efficient than the Direct approach. As a
result, when the set difference is below 0.17 (i.e., the number
of lost and reordered packets is less than 17% of the total
traffic), RDA is more efficient than the Direct approach.

(ii) Simulation Results: Next, we compute the bit rates
required to send the measurement data as a function of the
sampling rates as well as the size of the set difference. First,
we report bit rates as we vary the sampling rate from 0.001
to 1. From Figure 5(a), we can see that the bit rates of RDA
increase linearly with respect to the sampling rate, as the RDA
size is linearly proportional to the set-difference size. Further,
when the percentage of packets in the set difference is larger
than 0.2, we can see that RDA’s bit rate is higher than the
Direct approach.

Second, we show the bit rates as we change the relative size
of the set difference from 0.01 to 0.5. From Figure 5(b), we
can see that RDA’s transmission overhead gradually increases
due to the increase of the set difference size. Further, RDA
incurs a higher transmission overhead when the relative size
of the set difference exceeds 0.17, which matches well with
the numerical results.

Consequently, in order to reduce the communication over-
head, we must carefully consider the trade-off between the
decoding success probability and the storage size. As the
decoding success probability gracefully degrades with fewer
buckets, we may dimension the size of the RDA to be smaller
than four times the set-difference size. For example, when
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Fig. 6. Percentage of useful samples for LDA, FineComb and RDA on the
DC data set.
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Fig. 7. Percentage of useful samples for LDA, FineComb and RDA on the
Univ data set.

setting RDA to twice the set-difference size, the decoding
success probability is still greater than 90%. In this case,
the RDA is more efficient than the Direct approach until the
relative size of the set difference exceeds 0.34.

B. Comparison

1) Percentage of Useful samples
We next compare the percentage of useful samples for

latency aggregation among LDA, FineComb and RDA as
we vary the loss rates and the reordering rate. During the
simulation, we set the size of the measurement interval to the
whole set of packets in the trace. We extract the size d of
the set difference for configuring the size of the synopsis. For
RDA, we set the number of hash functions to two and set the
number of buckets to 4d with respect to Theorem II.3. LDA
and FineComb set the same number of buckets.

We vary the loss rate and the reordering rate in Figures 6
and 7. We keep the reordering rate pr to 0.1 as we change the
loss rate and the loss rate pl to 0.1 as we vary the reordering
rate. Varying the parameters yields consistent results.

We see that the percentage of useful samples for RDA
reaches one in most cases, which is better than Theorem II.3,
as the failure probability in Theorem II.3 is not tight. Further,
the percentage of useful samples depends on the decoding
success probability, as shown in subsection III-A.

LDA has the smallest number of useful packet samples,
since LDA does not repair any lost or reordered packets.
In addition, the number of useless buckets becomes steady
quickly. FineComb’s percentage of useful samples varies in
the reverse direction depending on whether we change the loss
rate or the reordering rate. FineComb decreases the percentage
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Fig. 8. The relative errors of the estimated average latency for RDA,
FineComb and LDA on the DC data set. RDA’s curve has a missing portion
due to zero relative errors.
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Fig. 9. The relative errors of the estimated average latency for RDA,
FineComb and LDA on the Univ data set. Negative numbers are omitted
for the error bar due to the logarithmic-scale y-axis.

of useful samples as the loss rate increases, since FineComb
cannot repair buckets that contain lost packets. Meanwhile,
we can see that FineComb’s percentage of useful samples
increases with increasing reordering rates, since more buckets
are filled with only reordered packets, which can be repaired
by FineComb.

2) Varying Delay Distribution
We next evaluate the relative error of prediction results as

we change the parameters of the delay distribution. We replay
two traces and set the size of the measurement interval to
the number of packets in the trace. We obtain the size d of
the set difference and configure the number of buckets to 4d
according to Theorem II.3. For RDA, we set the number of
hash functions to two.

We set the default scale parameter β to 6.647 and the default
shape parameter α to 0.7 as in [3], [4]. We set the packet loss
probability to 0.1 and the packet reordering rate to 0.1. We plot
the relative errors of the average and the standard deviation as
we change the α and β parameters in the delay distribution,
respectively.

Average: From Figures 8 and 9, RDA’s relative error is
over ten orders of magnitude smaller than that of FineComb,
and 15 orders of magnitude smaller than that of LDA, since
RDA repairs all lost and reordered packets in most cases. LDA
mistakenly considers some buckets having lost and reordered
packets as useful for latency estimation. In contrast, FineComb
cannot repair buckets that contain lost packets.

Standard Deviation: From Figures 10 and 11, we can see
that LDA has a much higher relative error than FineComb and
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Fig. 10. The relative errors of the estimated standard deviation for RDA,
FineComb and LDA on the DC data set.
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Fig. 11. The relative errors of the estimated standard deviation for RDA,
FineComb and LDA on the Univ data set.

RDA, since for a pair of LDAs, two buckets with the same
counters may still have disjoint packets. Moreover, both LDA
and FineComb may collapse buckets that either have some
lost or reordered packets or are empty. As a consequence,
many collapsed buckets are useless for estimating the standard
deviation. FineComb uses the parity string to filter out the
collapsed buckets that contain lost or reordered packets. RDA’s
relative error is smaller than FineComb, since RDA can use
almost all packets in most cases.

IV. RELATED WORK

Table I compares our work with existing approaches. Our
key contribution is to design an accurate pipelined end-to-end
passive latency measurement mechanism. Further, we spread
packets to multiple banks and detect the lost packets and
the reordered packets in order to maximize the percentage of
useful packet samples for latency measurement.

A. Round-Trip Time (RTT) Measurement

Pairwise network latencies can be obtained with RTT mea-
surement [11], [12]. The most distinct character of the RTT
measurement is that no time synchronization is required.

RTT measurements can be made passively by instrumenting
the TCP variables of the protocol stack [13]. For each TCP
packet delivered by a measurement point A, we embed the
current clock Ts to the timestamp option field of this packet;
when node B receives this TCP packet from A, node B
acknowledges node A a packet that records the timestamp
Ts; after node A receives the acknowledge packet from node
B that contains the timestamp Ts, node A obtains an RTT
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TABLE I
PASSIVE LATENCY MEASUREMENT METHODS.

Approach goal timestamp
embed

time
sync

measurement
interval de-
limitation

storage hashing detect problematic
packets

LDA [3] End-to-end
latency

no yes delimiting
packets

array of buckets 1 no

FineComb [4] End-to-end
latency

no yes delimiting
packets

array of buckets 1 reordering packets

RDA End-to-end
latency

no yes synchronized
clock

a cache and multiple
banks of buckets

Multiple lost packets and
reordering packets

LDS [5] Per-flow la-
tency

no yes delimiting
packets

multiple banks of
buckets

Multiple no

CNF [6] Per-flow la-
tency

no yes delimiting
packets

two timestamps per
flow

1 no

RLI [7] Per-flow la-
tency

yes yes delimiting
packets

three counters per
flow

1 no

COLATE [8] Per-flow la-
tency

no yes delimiting
packets

an array of counters 1 no

MAPLE [9] Per-packet
latency

yes yes delimiting
packets

a Bloom filter based
packet latency store

1 no

OPA [10] Per-packet
latency

yes yes delimiting
packets

a vector of sent
packets

1 lost packets and
reordered packets

value by subtracting the timestamp Ts with the current clock.
As a result, the TCP stack eliminates the need of injecting
additional packets to collect the RTT metric of a TCP flow.

Unfortunately, RTT based measurement is still insufficient
for many fine-grained network troubleshooting tasks. First, the
RTT metric mixes the delay of the forward path and that of
the backward path, consequently, it is generally impossible to
faithfully extract the one-way delay from the RTT measure-
ments, because of the multi-path routing and transient network
congestions. Second, TCP based RTT instrument does not
support non-TCP protocols, as a result, we still need more
general approaches to measure non-TCP network flows.

B. End-to-End Latency Aggregation
LDA [3], FineComb [4] map packets to an array of buckets

based on a hash function, exchange these buckets between
the sender and the receiver and compute the average latency.
To decrease the probability to meet a lost or reordered packet,
LDA proposes a packet-sampling approach to sample a packet
into a number of banks of buckets with decreasing probabil-
ities. Unfortunately, since the total amount of packets may
be quite large, LDA may still meet the lost or reordered
packets. In addition, the sampling also decreases the chance of
capturing important latency variations. FineComb [4] assign a
party string to each bucket that contains the XOR result of
packets inserted into a bucket. If two buckets have different
parity strings, then these two buckets must have some different
packets. When a bucket contains only some reordered packets,
FineComb can also detect the reordered packets in this bucket.
However, only RDA is able to reconcile the lost and reordered
packets in a unified way.

C. Per-flow Latency
Synopsis based per-flow latency measurement has also been

studied. Lossy Difference Sketch (LDS) [5], Consistent Net-
Flow (CNF) [6] and Reference Latency Interpolation (RLI) [7]

exploit the temporal correlation of different flows to interpolate
the average latency of each flow. The temporal locality may
not hold when multipath routing and flow priority scheduling
policies exist. COLATE [8] mixes the packet timestamps of
different flows and estimates each flow’s average latency based
on the maximum likelihood estimation. These studies rely on
the mechanisms proposed in LDA and FineComb to deal with
the packets that are lost or reordered that can discard many
useful packets under the packet loss or reordering.

D. Per-packet Latency
MAPLE [9] embeds a timestamp to each packet’s header

and calculates the latency by subtracting the timestamps of
departure and arrival. Further, order preserving aggregator
(OPA) [10] estimates per-packet latency by transmitting the
ordering and the compressed timestamp information of each
packet between a pair of measurement points. Our work is
complementary to these work.

E. Set Reconciliation
Our unifying framework connects the identification of prob-

lematic packets with the set reconciliation problem. Exchang-
ing the item set is the most straightforward approach to
identify the set difference, however, the communication cost
amounts to the set size and the computational complexity
amounts to the power of the set size.

The Invertible Bloom filter (IBF) [14] maintains a flat array
of buckets where each bucket contains the XOR value of
entire items and proposes an iterative decoding process to
list the items that are inserted into the IBF. [1] defines a
subtraction operation on the IBF data structure to estimate the
set difference. Our work differs from [1] in several aspects:
• Organization: RDA organizes buckets into a multi-bank

structure. While [1] consists of a flat array of cells. Multi-
bank structure enables accurate estimation of the standard
deviation.
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• Bucket: RDA records the XOR values of the packet
identifiers, while [1] records the XOR values of both
identifiers and hashing values of identifiers. As a result,
[1] doubles the storage cost of the identifiers compared
to RDA.

• Decoding: RDA detects problematic packets based on the
property of the XOR operation of packet identifiers, while
[1] decodes problematic packets based on the XOR values
of both packet identifiers and packet hashing values.

• Application: RDA correctly estimates the average latency
and the standard deviation. While [1] does not support the
latency aggregation.

• Implementation: We implement a user-space passive
latency measurement system that integrates with the
network stack that continuously aggregates the packet
timestamps between a pair of measurement points. While
[1] implements a file synchronization software.

• Theoretical results: Our theoretical results systemati-
cally quantify the effectiveness of the RDA data structure.
Besides the failure probability of detecting the lost pack-
ets and reordered packets, we analyzed: the probability
of treating a non-pure bucket as a pure one, the expected
percentage of useful packet samples, the estimation accu-
racy under packet sampling, and the accuracy degradation
under time synchronization drifts. While [1] primarily
quantifies the failure probability of the set reconciliation.
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