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Abstract

Network distance prediction is important in many emerging applica-
tions, such as proximity-aware content redirection in CDNs and match-
making in network games. Network coordinate is one of the most popular
way to estimate the network distance. However, existing network coor-
dinate methods have weaknesses in accuracy and stability. According to
the problem of accurate network distance predictions, we propose a novel
cluster-based network distance prediction method PNDP. Firstly, it clus-
ters the nodes with EBinning and uses optimal landmark selecting strat-
egy. Secondly, it secures the coordinate by filtering malicious candidate
landmarks. Finally, it adopts a heuristic coordinate updating mechanism
and coordinate stabling mechanism to improve the convergency and sta-
bility of the coordinate computation. Experimental evaluation shows that
PNDP can predict the network distance scalably and accurately, with fast
convergence speed.
Keywords : network distance, network coordinate, clustering, latency
estimation, landmarks selection

1 Introduction

Network distance, often measured as RTT (the Round-Trip Time), is the basis
for network-aware overlay construction, proximity-aware server selection, and
many other network measurement applications. However, since the large-scale
and strong dynamic characteristics of distributed applications, fully measuring
all-pair network distances becomes very difficult. To this end, researchers turn to
estimate network distances. Network distance prediction is important in many
emerging applications, such as proximity-aware content redirection in CDNs and
match making in network games1.

During last few years, network coordinate schemes have been studied exten-
sively. However, previous proposals are still not practical enough for distributed
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applications. Many network coordinate schemes such as GNP (Ng and Zhang,
2002) and ICS (Lim, Hou and Choi, 2003) rely on a small set of fixed infras-
tructure nodes, which may incur single points of failure and limit the scalability.
Other proposals (Waldvogel and Rinaldi, 2002; Pias, Crowcroft and Wilbur, et
al, 2003) use decentralized nodes as the landmarks to compute each nodes co-
ordinate, which may decrease the convergency speed, and become vulnerable to
falsifying coordinates of malicious peers. In addition, existing work have not
fully solved the problem of coordinate drifting (Ledlie, Gardner and Seltzer,
2007), which may reduce the accuracy of distance estimation.

Accordingly, we introduce a novel cluster-based network distance prediction
method PNDP. It scales well since it does not rely on any infrastructure nodes
and any node with coordinates can act as a landmark. Additionally, it uses
several novel coordinate optimization schemes to improve the accuracy, such as
the EBinning cluster mechanism, optimal landmark selection strategy, the coor-
dinates securing mechanism and the coordinate stabilizing mechanism. Finally,
PNDP makes use of a heuristic coordinate updating mechanism to improve the
convergency of the coordinate computation. Simulation results confirm that
PNDP is more scalable and accurate than state-of-art coordinate schemes.

2 Predicting Network Distance with PNDP

2.1 Background

We introduce two representative network coordinates. Other network coordinate
methods are similar with these methods in terms of the design principles.

GNP:GNP predicts network distances using d -dimensional Euclidean space.
It computes the coordinates using the Simplex Downhill method (Nelder and
Mead, 1965) with fixed landmarks in centralized manner. GNP does not scale
well with increasing number of nodes, as it causes single points of failure. Fur-
thermore, GNP suffers from the TIV(Triangular Inequality Violations) prob-
lem, which is quite common in wide-area networks.

Vivaldi: Vivaldi (Dabek, Cox and Kaashoek, et al, 2004) is fully decen-
tralized, in that any node can be the landmark node. Each node incrementally
updates its coordinate based on minimizing the estimation error of coordinate
distances and RTTs with respect to other nodes. Therefore, Vivaldi scales well
with increasing system size. Nevertheless, Vivaldi also suffers from the TIV
problem by the Euclidean space assumption. Besides, real-world deployments
show that Vivaldi is still not accurate enough (Choffnes and Bustamante, 2010).

2.2 Our Design

PNDN predicts network distances using Euclidean space for modeling, which
means that PNDN suffers from the TIV problem. However, we mitigate the
TIV problem through a novel technique. Additionally, PNDP uses a distributed
landmark strategy to enhance the scalability and updates the coordinates to
accommodate the dynamic changes of the coordinates.

We introduce Membership Server (MS) to store the information of nodes
whose coordinates have been computed. The information containing the IP
addresses of the nodes, the cluster numbers that the nodes belong to. With this
centralized server MS, the global information can be recorded and help for the
following coordinates computing process. As the amount of stored information
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in each node is not too large, so better performance server can easily satisfy this
requirement. The distance prediction in PNDP mainly includes four processes:

1. The EBinning clustering process for the new node (section 3.1 );

2. The landmarks selecting process for the new node (section 3.2 );

3. The malicious landmarks filtering process (section 3.3 );

4. The coordinates computing, updating and stabilizing process (section 3.4 ).

Firstly, the new attending node firstly visits MS to get some index nodes
information for clustering and obtains the cluster number by using the EBin-
ning clustering mechanism. Secondly, we adopt the optimal landmarks selecting
strategy to choose some nodes in the initial set of coordinates for the subsequent
calculation process. Thirdly, we secure the landmarks by filtering the malicious
ones to get the final landmarks. Finally, we update and stabilize coordinates
by the coordinate updating mechanism and coordinate stabilizing mechanism
respectively.

3 The PNDP method

3.1 The clustering process

Clustering is widely used for network distance prediction. In this paper, we
propose a novel distributed clustering mechanism EBinning. The basic idea of
EBinning is that two close nodes in metric space have the similar distance to
the other nodes. Similarly, if two nodes have the similar distance to the selected
reference nodes, then we can believe that the nodes are close, so they can be
divided into the same cluster. However, based only above idea is not enough,
as it may cause false clustering problem, which means that the two nodes have
the same number, but they are in different clusters. To solve this problem,
EBinning uses the extended probing to avoid it, which works as follows.

1. Node A gets k index nodes from MS, denoted as L1, L2, . . . , Lk;

2. Node A measures the distances d1, d2, . . . , dk to the k index nodes by Ping
method, where di denote the distance to the i-th index node;

3. Classify the distances into s levels, and the delay of i-level range in [(i −
1)∗m, i∗m], where m is a constant, and the s-level range in [m∗(s−1),∞];

4. Node A determines its own level according to the k distances. For in-
stance, given four distances to the index nodes are 123ms, 55ms, 211ms
and 322ms, then the nodes initial bin number is 2134 ;

5. Node A accesses a few (2-3) nodes of the cluster which corresponding to
2134 to avoid false clustering, probing the distances, and test the average
distance is whether nor not smaller than δ. If so, then the bin number is
the initial number, terminate; otherwise, do ahead with step 6;

6. Node A accesses to the extended k′(k′ ≤ 3) index nodes in MS, and
determines its own bin number as step 3 and 4, if the extended number is
ABC, then the final bin number of A is 2134ABC.

In the EBinning method, as for two nodes, if the final bin numbers are the
same, then we can consider that the nodes are in the same cluster. The bin
number here is the cluster number we discuss. After the clustering, we store the
cluster number to MS to facilitate the following processes.
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3.2 Landmarks selecting strategy

PNDP employs a distributed landmarks that any nodes whose coordinates have
been computed can be as landmarks for other nodes. Consequently, it greatly
improves the scalability. To further examine the effect of different landmarks
selecting strategies, we have implemented and compared three strategies to pick
landmarks, which are described as follows and shown in Figure 1.

Figure 1 Different landmark selection strategies

• Random: randomly choose k nodes as landmarks with uniform probability;

• Closest : pick the k closest nodes in the cluster as the landmarks;

• Hybrid : pick some nodes as in Random and others as in Closest.

The experimental results will be discussed later in section 4.1. Based on
the comparing, PNDP uses the best landmarks selecting strategy to improve
the accuracy of the coordinate computation. These strategies are similar to
the three landmark selecting strategies in PIC (Costa, Castro and Rowstron,
et al, 2004). However, due to PNDP with novel clustering mechanism, the
strategies are essentially different. As for the Closest strategy, if the number
of nodes in one cluster is small than k, then we can select landmarks in the
nearby cluster. As for the Hybrid strategy, we choice the landmarks distributed
in various clusters as possible, making the choice presented a better distribution
in the global. The experimental results in section 4.1 confirm that the Hybrid
strategy achieves lower relative errors than the other strategies.

3.3 Secure the landmarks

Network coordinate predicting methods are vulnerable to malicious nodes (Ledlie,
Gardner and Seltzer, 2007). Once the malicious nodes are selected as landmarks,
they can lie about their coordinates or interfere with the distance measurement.
The results of these attacks are a set of coordinates that can be arbitrarily
wrong. Thus, we introduce a novel mechanism to detect malicious nodes for im-
proving the landmarks before calculating the coordinates, which enhances the
network coordinate security and makes the results more accurate. Assume that
we know the candidate index node set L = {L1, L2, . . . , Ln}, the coordinates of
the index nodes Ci, and relative error ratio threshold ε , through the process.
The malicious nodes filtering process is shown as follows.

1. Choose d+ 1 index nodes from L to attend the computing and work out
the coordinate CH for the new attending node H;

2. Compute prediction distances pHLi , (1 ≤ i ≤ n) to L1, L2, . . . , Ln for node
H, where pHLi = ‖CH − CLi‖ ;
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3. Compute the relative error of the prediction distance between H and Li ,

which is relerrHLi =
‖pHLi−dHLi ‖

dHLi
;

4. Compute the mean relative error of the prediction distance between H

and all other nodes, which is relerravg =

∑n

i=1
relerrHLi

n ;

5. If the relative error ratio ofH for any index node i satisfies µ = relerri
relerravg

> ε,

then i is considered as a malicious node and we eliminate it from L;

6. Use the above method to eliminate the malicious nodes in L, until the
number of the index node meets n &= d+ 1 .

3.4 Dynamic Coordinates computation

3.4.1 Coordinates updating

PNDP computes the initial coordinates of all the nodes using Simplex Downhill
method. To meet dynamic changes in the environment, we propose a novel
heuristic for updating network coordinates. Unlike Vivaldi, nodes in PNDP
firstly interact with some landmarks and put different error weight factors to
the landmarks according to the standard errors to them. Secondly, nodes use the
standard errors with various weighting factors to recalculate the total weighted
error. Thirdly, nodes adopt Simplex Downhill method to minimize the total
error value and compute the corresponding coordinates. Finally, nodes employ
the verification process to check for the new total error with the new coordinates
and adaptively updates the coordinates.

The specific description of the coordinate updating process as follows.
1. Inquiry all the index nodes and compute the relative error rerrj =

|dij−‖Ci−Cj‖|
min(Ci,Cj)

, where dij is probing distance of i and j, Ci and Cj denote

initial coordinates of the current node and the index node respectively.

2. Compute error weight wj of each index node and the total prediction

error Ei, where wj =
rerrj

∑

k∈samples
rerrk

, Ei =
∑

k∈samples |dik − ‖Ci − Cj‖|2

3. Compute the new coordinate C ′
i, which minimizes the weighted total pre-

diction error
∑

k∈samples wk (dik − ‖C ′
i − Ck‖)2

4. Check for the new prediction error E′
i =

∑

k∈samples |dik − ‖C ′
i − Cj‖|

5. According to the relationship of E′
i and Ei to adjust the coordinate Cnew

i =

Ci + ε(C ′
i − Ci), where ε = min(E

′
i

Ei
, 1)

3.4.2 Coordinates stabilizing

Ledlie, Gardner and Seltzer(2007) have found that network coordinates are drift-
ing. It means that the coordinates will gradually deviate from the original
position after a long period, which will result in the coordinatesrealignment.

We stabilize the coordinates using the clustering again, since the cluster
structure keeps relative stable due to the stationary of delays. After a relatively
long period of time, PNDP runs the coordinates stabilizing process to stabi-
lize the network coordinates to prevent the occurrence of coordinates drifting.
Assume that we know all the nodes coordinates in each Binning, the related
probing distances, and the given average relative error threshold σ.The specific
coordinates stabilizing process is shown as follows.

1. Compute the average coordinate c̄ of all the coordinates in each cluster;
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2. Choose the closest node to c̄ in each cluster as the reference node for
stabilizing, labeled as li ;

3. Detect all the clusters by the above way and obtain a set of reference
points L = l1, l2, . . . , lk ;

4. For each node in L, compute the relative error relerrj to other nodes every
period T , and the average relative error relerravg to all the other nodes;

5. if relerravg > σ , recompute the coordinate according to the other nodes
in L and update the coordinates for all nodes in the cluster;

6. Use the same way to detect all the nodes in L and the corresponding
coordinates updating, until fininsh detecting all the ndoes in L.

4 Experimental evaluation

In the experimental evaluation, we use the MIT King data set consisting of pair-
wise delays between 1740 DNS servers, which are collected by the King method
(Gummadi, Saroiu and Gribble, 2002) for our simulation study. We compare
PNDP with GNP and Vivaldi methods and use three metrics for comparison:
the traditional metric Ralative Error and two new metrics SRRL (Smart Rel-
ative Rank Loss) and ECNL (Extended Closest Neighbors Loss), which are
proposed by Key, Thomson and Thomson (2008). SRRL is used to describe the
loss distance order, and it to some extent relaxes the loss of the order. ECNL
to some extent tolerates the error for the closest nodes by prediction.

4.1 Landmark strategies evaluation

We evaluate three landmark selecting strategies in PNDP. As shown in Figure
2, we can see that the accuracy of the Random and Closest are close, but
Hybrid is best among all strategies. It implies that Random landmark having
the best distribution in the overall, while the Closest strategy is to focus on the
landmark choice of locality. Both the two landmark strategies are two extremes,
could easily lead to inconsistencies in the coordinates. Since Hybrid combines
the advantages of Random and Closest, it achieves much lower errors.
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Figure 2 Comparison of differ-
ent landmark strategies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Relative Error

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(C

D
F)

Security Comparison

 

 

security on
30%macilious
15%macilious
no macilious

Figure 3 Comparison of coor-

dinate security

4.2 Security Evaluation

We have tested the security of PNDP. For testing the safety of coordinates,
we introduce malicious nodes in different proportions to study the influence
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of malicious nodes in the performance of coordinates. While in the test of
convergency of coordinates, we compare PNDP and Vivaldi with the accuracy
under different updating times with d = 2, Cc = 0.25. Figure 3 shows that
malicious nodes that have detected by PNDP, its performance are very close to
the performance with non-malicious. Compared to GNP and Vivaldi in terms
of security, the security of PNDP has significantly improved.
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Figure 4 Convergency Test
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Figure 5 Accuracy Comparison

4.3 Convergency Comparison

Next we test the convergency of PNDP. We also plot the convergence of Vi-
valdi for comparison. From Figure 4, we know that the performance of PNDP
which after sampling 50 times is far exceed Vivaldi after sampling 150 times.
Compared to the classic method Vivaldi, the convergence speed and accuracy
of PNDP has obvious advantages.

4.4 Accuracy Evaluation

Figure 5 shows that PNDP is the most accurate one under the metric of rel-
ative error. After updating 60 times, the relative error below 0.5 for PNDP
accounts for nearly 90%. Compared with other methods, its accuracy is higher.
Meanwhile, Figure 6 shows that PNDP achieves the best SRRL (dmin is set
to 10ms) after 50 times sampling. Figure 7 show that PNDP has much lower
ECNL (ε = 5%) value after 50 times. From all the comparisons above, we can
confirm that PNDP has the highest accuracy.
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Figure 6 Accuracy with SRRL
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5 Conclusion

This paper presents PNDP, a novel network coordinate method for estimating
the network distances in a distributed manner. PNDP is scalable as it adopts
distributed landmarks and does not rely on fixed infrastructure nodes. PNDP
is also robust as it can secure the coordinates by filtering the malicious nodes
and it can compute accurate coordinates even when part of nodes are malicious.
PNDP improves the accuracy and convergency by a coordinate stabilizing mech-
anism and a heuristic coordinate updating mechanism. We have verified that
the performance of PNDP is better than the classical method GNP and Vi-
valdi with the relative error, SRRL and ECNL metrics. Therefore, PNDP is
more practical for many large-scale distributed applications like network-aware
overlay construction and resources location in the network.
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