2014 9th IEEE International Conference on Networking, Architecture, and Storage

MCRTREE: A Mutually Cooperative Recovery Scheme for Multiple Losses in
Distributed Storage Systems Based on Tree Structure

Xiaoqgiang Pei, Yijie Wang, Xingkong Ma, Yongquan Fu, Fangliang Xu
Science and Technology on Parallel and Distributed Processing Laboratory
College of Computer, National University of Defense Technology
Changsha, Hunan, P. R. China, 410073
Email: {xiaogiangpei, wangyijie, maxingkong, yongquanf, xufangliang} @nudt.edu.cn

Abstract—To guarantee the reliability of distributed storage
systems, erasure coding, as a redundant scheme, has received
increasingly attention because it can greatly improve the space
efficiency compared with the replica schemes. However, it takes
a long time and consumes a lot of network bandwidth for
erasure coding to repair the lost data on failed nodes. The
state-of-art studies focus on the repairing optimization for
the single-node-failure context. Real-world experiments have
clearly shown that multi-node failures indeed happen in cloud
storage systems. Borrowing single-node repairing techniques to
the multi-node setting faces challenges on the efficiency.

We propose a mutually cooperative recovery scheme M-
CRTREE based on the tree structure for multiple node failures.
MCRTREE improves the bandwidth utilization and reduces
the repair time by the construction of regeneration trees
between each new node (denoted as newcomers) and alive nodes
(denoted as providers). Further, MCRTREE reduces the size
of the data volumes to be transmitted for the repair process.
Numerical experiments show that MCRTREE consumes less
storage cost and the maintenance bandwidth compared with
other redundancy recovery schemes. Trace-driven simulation
results reveal that the MCRTREE reduces the regeneration
time by 30% —50%, improves the successful regeneration prob-
ability by 10% — 20% and the data availability by 10% — 20%
compared with the typical repair schemes.

Keywords-Distributed Storage System; Erasure Codes; Repli-
ca; Regeneration Tree

I. INTRODUCTION

Distributed storage systems store data in a large number
of storage nodes, either in the context of data centers in
cloud computing systems, or in the context of peer-assisted
online storage systems e.g.,[1] [2] [3], such as GFS [4] and
HDFS [5]. Due to the inherent lack of reliability caused by
node departures and hardware failures, data may become
temporarily or permanently unavailable in such systems. In
fact, large data centers are designed to treat storage node
failures as rule, not the exception [6] [7] [8].

In order to provide high data reliability, distributed sys-
tems usually adopt redundant schemes, mainly including
replica and erasure codes. The replication scheme stores
replicas of the data in different nodes. While the erasure
codes firstly divide the original data into k blocks, and
then encode them into n blocks, where n > k, referred
to as (m, k). During the reading process, the system with

978-1-4799-4087-5/14 $31.00 © 2014 IEEE
DOI 10.1109/NAS.2014.33

158

the replication scheme only needs to read any one of the
replicas, while the system with erasure codes needs to read
any k blocks out of n blocks. Compared with replica, erasure
codes provide higher data availability with the same storage
cost. However, erasure codes incur more network traffic and
cause longer time than replica when repairing the failed data
blocks [9] [10].

To reduce the repair cost, Dimakis et al. [11] [12] intro-
duce regenerating codes, which combines the network cod-
ing and erasure coding. There are two typical regenerating
codes, one is minimum-storage regenerating (MSR) codes,
which minimizes the repair bandwidth while keeping the
same storage cost with erasure codes. The other is minimum-
bandwidth regenerating (MBR) codes, which minimizes the
repair bandwidth at the cost of larger storage cost.

The regeneration schemes mentioned above focused on
how to generate redundant data to reduce the regeneration
traffic, but the bandwidth capacity between nodes has not
been taken into account. Jun Li etc.[13] propose the Tree-
structured Data Regeneration with Regenerating Codes (RC-
TREE for short), where the data is transferred from providers
to the newcomer through a regeneration tree to accelerate the
data transmission and improve the repair efficiency.

To the best of our knowledge, the above redundancy
recovery mechanisms are designed for one node failure.
However, there are many situations with more than one
node failures. For example, some systems like Total Recall
[14] reconstruct fragments with lazy repair policy, where a
recovery is triggered only when the total amount of losses
reaches a given threshold. Besides lazy repair policy, there
are many other situations where multiple nodes fail at the
same time in real storage systems, such as churn or break
down of a cluster, i.e., a large percent of nodes often join
and/or leave the network simultaneously.

Borrowing single-node repairing techniques to the multi-
node setting faces challenges on the efficiency. For solving
the multiple node failure situation, Yuchong Hu etc. [15]
design a mutually cooperative recovery (MCR) mechanism.
MCR reduces the repair bandwidth cost by exchanging
data between newcomers. However, the star-structure MCR
adopts could not make good use of the network bandwidth,

@) CO‘ pute
1(!) I
& SOCIety

and prolongs the repair time.

In this paper we present a mutually cooperative the
recovery scheme based on tree structure (named MCRTREE)
mechanism for multiple losses. Different from RCTREE
where all the newcomers repair the lost data one by one,
MCRTREE repairs the lost data simultaneously on multiple
nodes cooperatively and allows the data exchanges among
multiple newcomers. Suppose there are r node failures,
RCTREE could only access n — r surviving nodes, while
each newcomer in MCRTREE could both access data from
n — r surviving nodes and other » — 1 newcomers. Different
from MCR, MCRTREE constructs a spanning tree for each
newcomer, and repairs r failed nodes simultaneously, which
makes good use of the higher bandwidth of network and
markedly reduce the repair time. With the extensive analysis
and quantitative evaluations based on the traces collected on
the PlanetLab [16], we are able to show that MCRTREE
reduces the recovery time for multiple losses and improves
the reliability of the system.

The reminder of the paper is organized as follows. We
describe the related works of repair in Section II and intro-
duce the basic principle of MCRTREE with an illustrative
example in Section III. Further, we introduce network model,
and present detailed analysis of MCRTREE in Section IV.
While Section V analyzes the performance of MCRTREE
through theoretical and numerical analysis. Finally, Sec-
tion VI concludes this paper.

II. RELATED WORK

Reduction of the repair cost of erasure coding has been
attracted much attentions. The typical recovery schemes
mainly include the regenerating codes proposed by Dimakis
et al. [11] [12], and the optimization of the bandwidth
capacity utilization between nodes from Jun li etc. [17] [13].

Dimakis et al. [11] [12] prove that the file reconstruction
problem in distributed storage systems is equivalent to the
multicasting problem. They also show that it will obviously
reduce the recovery bandwidth overhead if more than k&
providers participate into the repair process. For example,
they propose one symmetric mechanism, named minimum-
storage regenerating (MSR) codes. In the special case of the
(n, k) = (14,7), if the newcomer accesses k = 7 providers,
the recovery overhead is M, the same as the original data.
However, if the newcomer could access more than k = 7
providers, such as n — 1 = 13 providers, the newcomer only
needs to download 0.625M/ to repair a new fragment. They
generally call it Regenerating codes (RC for short). Wu et al.
[18] showed further analysis of the tradeoff between storage
overhead and repair bandwidth, and proposed a construction
method of Regenerating Codes.

Yuchong Hu etc. [15] adopt the regenerating codes and
design a mutually cooperative recovery (MCR) mechanism.
In MCR all the newcomers repair the lost data coopera-
tively and simultaneously. Not only there are data flows

159

between providers and newcomer, but there are data flows
between multiple newcomers. MCR significantly reduces
the data volumes to be transmitted, which decreases the
recovery time a lot. However, in MCR newcomers and the
providers compose a star structure, and the recovery time is
restricted by the bottleneck bandwidth between newcomer
and providers. Additionally, multiple newcomers come into
a full connected network, where there is one link between
any two newcomers. MCR could not make good use of the
higher available bandwidth in the network.

Traditionally, the erasure-code storage systems use the
star-structure recovery scheme, where the newcomer re-
ceives data from the providers directly, and constitute a star
structure with providers. However, the star-structure recov-
ery scheme can not make good use of the bandwidth even
there are links with higher bandwidth in the network, and
the recovery time is restricted by the bottleneck bandwidth
between the newcomer and providers. For better using the
higher bandwidth in the network, Jun Li etc.[17] introduce
a tree-structure recovery scheme, where the newcomer and
the providers come into a spanning tree, with newcomer
as the root and providers as the child nodes. During the
recovery process in a tree-structure recovery scheme, the
leaf nodes transmit stored data to their parent node, and the
parent nodes encode received data with their own data into
new blocks, which are transmitted to their parent nodes, until
the encoded data reaches the root newcomer. Based on this
study, they propose the Tree-structured Data Regeneration
with Regenerating Codes (RCTREE for short)[13]. RCTREE
combined the advantage of regenerating codes with a tree-
structured regeneration topology. By accessing more than
k providers, RCTREE constructs a spanning tree with the
newcomer as root and d(d > k) providers as child nodes.
However, the focus of this recovery scheme is repairing the
single node failure instead of multiple losses in distributed
storage systems.

III. A MOTIVATING EXAMPLE

We now introduce an illustrative example of data regen-
eration in the distributed storage system in Fig. 1. Fig. 1(a)
shows the network model, which consists of six storage
nodes, denoted by Xi, Xo, X3, X4, Y7 and Y;. We set
varying the bandwidth capacity of the link. We assume that
the redundancy is coded by a (6,3) MDS code, stored in
X1, X9, X3, X4, and two storage nodes that failed. Each
storage node stores a coded block of % bits, if the size
of the original data is M bits. In order to regenerate the
lost redundant nodes, Y; and Y5 are selected to be the
newcomers. Since (6,3) MDS code is used, Y; and Y5
need to receive data from at least three providers. If more
than k providers are used as providers in the regeneration,
regenerating codes [11][18] provide a way to reduce the
bandwidth usage in the regeneration.

(a) network model with
two newcomers and four
storage nodes

(b) MCR with X;, Xy, X3,
X4 and Y; as providers

NS

R

e
5 66

(¢) RCTREE with X, X,,
X3 and X4 as providers

25 30 40

5%
i

(d) MCRTREE with X, X,
X3, X4 and Y; as providers

o
o
©

Figure 1: Examples of Three Regeneration Schemes: MCR, RCTREE and MCRTREE

Fig. 1(b) - Fig .1(d) show illustrations of three regenera-
tion schemes. For the mutually cooperative recovery (MCR)
scheme in Fig. 1(b), the two newcomers Y; and Y> receive
data directly from the four providers X;, X2, X3 and Xj.
Additionally, in MCR scheme newcomers not only receive
data from providers, but also exchange data with each other,
illustrated by the edges between Y; and Ys in Fig. 1(b).
For an (n, k) MCR code, each storage node stores % bits
and only k(k) bits are transmitted on each link in the
regeneration. The time spent on regenerating r new coded

blocks is) 5 » when there are r failed nodes. MCR
ming <;<,
costs #fbm seconds to accomplish the regeneration for Y;

and Y5. We ignore the encoding time of MDS code because
the processors usually perform encoding operations much
faster than the network transmission, and the encoding can
be performed simultaneously with the transmission.

MCR, however, suffers from the bottleneck links between
newcomer and providers, such as the links of (Xo,Y7)
and (X3,Ys). If we consider the links between providers,
we can utilize links with higher bandwidth to bypass the
slow bottleneck links in MCR. In Fig. 1(c), we show an
example of the tree-structured regeneration with regenerating
codes(RCTREE), which could make good use of the links
with higher bandwidth. For there are r node failures, there
are at most n — r surviving nodes in the system, so the
data transmitted between nodes equals ﬁ During
the regeneration process, RCTREE will construct a spanning
tree for each newcomer with X7, X9, X3 and X, as its child
nodes. For the construction of Y7, X3 receives data from X5,
encodes the received data with the data it stores, and sends
the encoded data to X4. After receiving the data from X3,
X, does the same instruction as X3, Finally, Y7 receives
data from both X, and X; and then encodes into on new
redundant block. By streamlining the relay on X3 and Xy,
X3 and X4 encode the data byte-by-byte rather than after
receiving the whole block. The regeneration time of Y; will
be bottlenecked by the link between X3 and X4, and thus the

M/6
regeneration time of Y7 is —£=. However, in the situation
with multiple node failures, RCTREE will regenerate the
failed nodes one by one, therefore the time for regenerating

160

M/fs | M/6

Y1 and YQ is 25 + 30 *

RCTREE constructs spanning trees for newcomers to
lower construct time by utilizing the higher bandwidth of
the network. However, RCTREE extends the regeneration
time for two reasons. Firstly, RCTREE could at most visit
n —r providers when there are r node failures, which limits
the data volume to be transmitted, thus the data transmitted
between nodes is m Secondly, RCTREE con-
structs spanning trees for multiple newcomers one by one,
which could not make good use of the parallelism between
spanning trees. How could we find a way to efficiently utilize
the bandwidth between multiple newcomers? How could we
consider the parallelism between multiple spanning trees?

In Fig. 1(d), we present MCRTREE, which constructs two
regeneration trees with X;, X9, X3 and X, as providers
for Y7 and Y,. MCRTREE combines the advantages of
regeneration codes and tree-structured regeneration. During
the reconstruction process, MCRTREE accesses more than
k providers, which reduces the data transmitted during the
recovery. While MCRTREE constructs one spanning tree
for each newcomer, and repairs multiple newcomers si-
multaneously, which could efficiently utilize the parallelism
between spanning trees. As result, the regeneration time can
be further reduced to 201\]6/1? - seconds for constructing ¥;
and Y5. Compared with MCR in Fig. 1(b), the regeneration
time is reduced by 20%, while compared with RCTREE in
Fig. 1(c), the regeneration time is reduced by 63.64%.

IV. MUTUALLY COOPERATIVE RECOVERY SCHEME
BASED ON TREE STRUCTURE

In this section, we present an in-depth analysis of M-
CRTREE. We first introduce our network model for the
regeneration process in distributed storage systems. We then
will analyze how to construct the regeneration trees for mul-
tiple newcomers. Finally, we will present the assumptions
of MCRTREE, and analyze the bottleneck bandwidth of
multiple regeneration trees.

A. Network Model for MCRTREE

The redundant data is produced by an (n, k) MDS code,
which divides the original file into k blocks Fy, Fy, ..., Fi,

and encodes them into n coded blocks X, Xo,..., X,,.
These n coded blocks are discretely stored in n storage
nodes Vi, V5, ..., V,, with one coded block in one node.
Without loss of generality, we assume X is stored in V;, and
r nodes(referred to be X,,_,_1, Xp_s, ..., X;, get lost. To
ensure the redundancy of the system, another r newcomers
should be regenerated. Assume there are d active nodes
for regeneration, and to maintain the MDS property, the
newcomer should access at least k active nodes, so we
have k£ < d < n—r. Assume (V;,V;) be the undirected
link between two nodes V; and Vj, and w(V;,V;) be the
bandwidth capacity of V; and V;. We denote the above
presentation as MCRTREE(n, k,r,d).

To be specific, the model MCRTREE(n, k,r,d) contains
three detailed steps, illustrated in Fig. 2, [19] for reference.

o At the beginning, the original data in the source(noted
as Src in Fig. 2) is divided into k blocks, which are
encoded into n blocks. And an initial set of n nodes
X1,Xo,..., X,, are chosen to store the n blocks. The
destination (noted as Des in Fig. 2) could download
any k blocks to construct the original data.

o Assume there are r node failures in the system, referred
to be X,_r—1,Xn—r,..., Xp), leaving n — r active
nodes in the system, in order to maintain the normal
service ability of the system, the reconstruction of the
failed nodes should be triggered when r > (n—k). The
middle of Fig. 2 illustrates the above situation.

e In order to maintain the same level of redundan-
cy, the system selects another r» new nodes (denoted
as Y7,Ys,...,Y,) to reconstruct the lost nodes. After
repairing the lost nodes, the Des could connect to
any k nodes out of Xy, Xo,...., X, -, Y7,Y5,...., Y, to
download k blocks for the data reconstruction, which
is illustrated in the right of Fig. 2.

We next describe how to construct r parallel regenera-
tion trees for the lost nodes. And then we will analyze
the assumptions of the MCRTREE and how to obtain the
bottleneck bandwidth of the r regeneration trees based on
MCRTREE.

B. Construction of Regeneration Trees

In this section, we present MCRTREE regeneration al-
gorithm, based on the network model above. Firstly, we
show how the MCRTREE regenerates spanning trees for
newcomers. And then we give the encoding scheme for
linear coding.

1) Regeneration Algorithm:

Definition 1: In MCRTREE(n, k,r,d), an regeneration
tree (noted as 7T') is a spanning tree, where the root is
Y, i =1,2,...,r, and it covers n — r providers as its child
nodes.

Lemma 1: For each regeneration tree 71 in
MCRTREE(n, k,r,d), the regeneration time depends
on the edge with the minimal bandwidth. For r regeneration

Algorithm 1 Construct r optimal regeneration trees in
MCRTREE(n, k,r,d), 0 <r < (n—k)
Require:
T;: the ith regeneration tree
n: the total node number
r: the failed node number
rooty;: the edge between root of ith regeneration tree
and jth node the root connects to
edge(i, j): the edge between node; and node;
: for every T; in T' do

1

22 T+ ¢

3: end for

4: for 1 < 1 to r do

5: forj+<1ton—rdo

6: e;j + the edge with maximum bandwidth in root;

7 T; < T; U €ij

8: end for

9: end for

10: for ¢ <~ 1 to r do

11: forj+—2ton—r—1do

12: forg<—j+1ton—rdo

13: if root;; not in T; && Maz(root;) > bandwidth
of edge(j, g) then

14: T; « T;Jroot;;

15: else

16: search next edge(j,g) with maximum band-

width

17: T; < T; U edge(j, 9)

18: end if

19: end for

20: end for

21: Shuffle the bandwidth of network
22: end for

23: for ¢ < 1 to r do

24: for j+ 1 tor do

25: if i !=j then

26: e;; < edge between root of ith regeneration tree
and root of jth regeneration tree

27: T; «+ T;|J edge(i, j)

28: end if

29: end for

30: end for

trees 11,75, ..., T, the regeneration time depends on the

minimal bandwidth in all over the r regeneration trees.
Proof: We have known that the weight of each edge
in T, w(V;,V;),t,5 = 0,1,2,...,n — 1,i < j, denotes
the bandwidth capacity between V; and Vj. The traffic on
each edge in T is uniform. If the node encodes and sends
data after it receives all the data from its children, it will
waste a substantial amount of time for waiting. The optimal
transmission method is to use the principle of pipelining. The
node encodes and sends data to its parent node immediately

Source

Destination

Old node

New node

Figure 2: Network Model for MCRTREE

after it has received one byte/packet from all of its children.
So the bandwidth bottleneck is the minimal edge in the
regeneration tree.

Assume the bottleneck bandwidth of each regeneration
tree T; is wy, the regeneration time of r regeneration trees de-
pends on the slowest regeneration tree, namely the smallest
w;. So the regeneration time for constructing r newcomers
depends on the edge with the minimal bandwidth in all over
the r regeneration trees.]

Lemma 2: Let B(T;).4 1,2,...,r be the bottle-
neck bandwidth of the ¢th regeneration tree 7; in M-
CRTREE(n, k,r, d?\} Then the regeneration time of r new-
comers is mml%‘ké(u,
original file.

Proof: The amount of data to transferred on each
edge in T is % bytes. From Lemma 1, we know
that the regeneration time depends on the edge with the
minimal bandwidth in all over the r regeneration trees.
Accordin%lto the definition of B(T;), the regeneration time

Tn—F)
minlgigr B(T_Z) : u

According to the Lemmas above, we know the data
volume to be transmitted during the regeneration process
amounts to k(n%k bytes, and the regeneration time depends
on the bottleneck bandwidth of the r regeneration trees.
Algorithm 1 shows how to construct r optimal regeneration

trees, which contains three parts.

where M is the size of the

is

o At the beginning, the algorithm constructs r empty
spanning trees, and then finds » newcomers as the roots
of the regeneration trees, which will receive data from
their children, and encodes the received data with its
stored data into a new redundant block to replace the
failed one.

o After finding roots for r regeneration trees, the algo-
rithm begins to construct regeneration trees one by one.
Firstly, it will traverse the network to find edges with
the maximum available bandwidth between root and
providers. Secondly, it will set the root and the new
node joining in the tree as the new start to find new
edges with the maximum available bandwidth between
root and the other providers. The algorithm will con-
tinue to find the edges for constructing spanning tree
until the construction of this tree completes. Thirdly,

162

the algorithm will construct other » — 1 regeneration
trees in the same way until all the construction of r
regeneration trees finishes.

« Finally, based on the r regeneration trees constructed
above, the algorithm will link the roots of the r regener-
ation trees. At the end, each regeneration tree contains
n — 1 providers, including n — 7 active nodes and other
r — 1 newcomers.

MCRTREE reduces regeneration time from two aspects,
as illustrated in Algorithm 1. Firstly, any newcomer in
MCRTREE could not only visit the other n—r active nodes
when there are r node failures, but visit the other » — 1
newcomers, which could markedly reduce the data volume
to be transmitted during the regeneration process. The other
one is that MCRTREE constructs trees for each newcomer,
which could bypass the low bandwidth between newcomer
and providers, while make good use of the edges with high
bandwidth. Therefore, MCRTREE not only could reduce the
data volume to be transmitted, but could utilize the high
bandwidth in the network to reduce the regeneration time.

Fig. 3 shows the construction process of the example
showed in Fig. 1. The six steps correspond to the optimal
regeneration tree in Algorithm 1. In Fig. 3, the solid lines
present the construction process of newcomer Yi, while
the dotted lines correspond to the construction process of
newcomer Y. After constructing two regeneration trees for
Y; and Y5 respectively, then the algorithm will add the
link between newcomer Y; and newcomer Y5, illustrated in
Fig. 3(f). And the corresponding constructed regeneration
trees are showed in Fig. 1(d).

2) Encoding Scheme: During the regeneration, the new-
comers must receive data from one or more existing storage
nodes to construct a new storage node. For (n,k) -MDS
codes, the newcomers need to receive data from at least k
providers. In MCRTREE(n, k,r, d), the newcomers receive
data from n—r providers and other r—1 newcomers. Assume
that the data block stored in X; is B;,t = 1,2,...,(n —r),
and the corresponding coefficients are ¢;, 7 = 1,2, ..., (n—r).
While the data block combined in Y is B;,j =12,...,r
and the corresponding coefficients are c;-,i =1,2,...,7.

In one regeneration tree, if node X; does not receive data
from other nodes, it sends ¢;B; to its parent node. If X;

receives data from X; , Xy, ..., Xj,n(x,),» Where in(X;) is

(e) stepS

(f) step6

Figure 3: Regeneration Trees after 1st - 6th steps of Algo-
rithm 1 on the network model in Fig. 1(a)

the indegree of X;, assuming the data received from X;,
is Bij, it will encode the received and its stored data into
a new data block and then sends it to its parent node.
Therefore, the data this node sends is ¢;B; + Z;Z(f() B;,.
Other nodes in the regeneration tree follow the same way
to encode and send data to its parent node, until reaches
the root. As a result, the root could get > ¢;B; from
its children . After that, newcomers start to exchange data.
The newcomer Y; sends its encoded data block c;B’ to
other newcomers. Finally, each newcomer encodes the data
received both from its providers and other newcomers with
its stored data. Therefore, the data each newcomer finally
gets equals to Y1 ¢;B; + 301 ¢, BL.

Fig. 4 illustrates the encoding scheme when there are
two node failures Y7 and Ys. In Fig. 4, the bottom nodes
represent the leaf nodes, which will send data to its parent
nodes. While the non-leaf nodes showed in the middle of
Fig. 4 firstly receive data from their children, and then
encode the received data with its own data into a new data
block, and sends it to their parent nodes until reaching
the root, illustrated in the top of Fig. 4. Finally, the two
newcomers exchange data and encode into a new data block.

C. Assumptions in MCRTREE

In Section IV-B2, we know that the data block stored
in X; is B;,i = 1,2,...,(n — r), and the data block
combined in Y; is Bj,j = 1,2,..,7. Assume the data
transmitted between newcomer and providers is Bj;,¢ =

163

; i
et Byt B+ Y, By
= =

tc, *B, +c *B]

Dy *By e B+ Y, *B,

+c¢, *B, +c,*B)

T T T

Figure 4: Encoding Scheme of Two Node Failures

1,2,..r,j = 1,2,...,(n — r), the data transmitted between
newcomers is Bj;,i = 1,2,..r,j = 1,...,7, and the data
transmitted between providers is B;;-,z' =1,2,..(n—-1),j =
1,2, (n—r).

From a practical view, a distributed storage network will
very difficult to be implemented and managed if the data
B;;, B, and B;; are not equal. So we assume that B;;, Bj;
are the same as 3. We know (8 = ﬁ where
M is the size of original file.

D. Bottleneck Bandwidth of the r Regeneration Trees

From Lemma 1, we know that for r regeneration trees
T1,T5,...,T,, the regeneration time depends on the edge
with the minimal bandwidth in all over the 7 regeneration
trees. In this section, we analyze the how to get the bottle-
neck bandwidth in r regeneration trees.

In a regeneration tree 7;,7 = 1,2, ..., r, there are n nodes,
including n — r providers and r — 1 newcomers. There
are w edges, and let £ = {ej,ea,...,} be the edges
in T;, where w(e;) > w(ea) > -+ > w("("T_l)) The
bandwidth each edge is assumed to be different from each
other, as it realistically reflects real-world networks with
high probability.

According to the order statistics lemmas in [17], [13],
assume X7, Xo, ..., X, are n independent random variables,
for each of which the cumulative distribution function is
F(z) and the probability dendsity function is f(z). Let
f(jm) () denote the probability density function of the jth
variable X(j:,,L),XU:n) > X(Q:,,L) > e > X(n:n). If Xi is
with continuous distribution [17], [13],

_ T (@)[L - F(@)]" f(x)
B (n—r)!(r—1)

Lemma 3: The edge with bottleneck bandwidth is the jth
edge in T; if and only if the minimal edge in maximum
spanning tree T; is the rth maximal edge of E.

We know that the lower bound of the data to be transferred
during the regeneration process is equal to —-4—, when the

k(n—k)’

fiim) (@) (D

Table I: End-to-End bandwidth distribution in [16]

[Capacity(C)(Mb/s) | Number of paths | Percentage(%) |

0.3<C <20 6733 30.8

20 < C <50 1910 8.74

50 < C <80 1303 5096

80 < C <120 11744 53.72

120 < C <200 139 0.64

200 < C < 500 21 0.096
500 < C < 682.9 11 0.05

newcomer receives data from n — r surviving providers and
r—1 other newcomers. To be specific, there are "<" D edges
in T; of MCRTREE(n, k, r, d). According to the Lemma 3,
the edge with bottleneck bandwidth in T; is the (n — 1)th
maximum edge of 7;. Assume the edge with bottleneck
bandwidth in T; is B;, the edge with bottleneck bandwidth
in T(T1,T5,...,T,) is the edge with minimum bandwidth
among B;, namely min;<;<, B;.

V. EVALUATION

In this section, we will compare MCRTREE with other
existing symmetric redundancy recovery mechanisms RC-
TREE and MCR in scenarios both from the real environment
and the simulation that emulates the real-world distributed
storage systems, based on the availability trace of Planet-
Lab and the bandwidth distribution measured in PlanetLab
network.

Firstly, we compare the storage overhead and maintenance
bandwidth of RCTREE, MCR and MCRTREE, which rep-
resent the storage cost and the bandwidth cost to repair the
lost blocks; Secondly, we test the transfer time of RCTREE,
MCR and MCRTREE when transmitting the same volume
data in the real environment; Finally, we compare the three
regeneration schemes from three aspects: (1) regeneration
time: how much time it will take from the start of a
regeneration to the end? (2) probability of the successful
regeneration: the probability that a regeneration finishes
successfully, not interrupted by the node departures; (3) data
availability: the probability that a file is available.

Our event-driven simulator simulates the nodes’ events
based on the trace file of PlanetLab and bandwidth distribu-
tion measured in PlanetLab network (Measuring bandwidth
between PlanetLab nodes). Lee et al. [16] showed the
bandwidth distribution of PlanetLab, illustrated in Table I.

A. Storage Overhead And Maintenance Bandwidth

Consider the following situation. The original file (size
M) is divided into k blocks, and then encoded into n
blocks, which are stored in n storage nodes separately.
Each node stores a. As the time goes by, there are r
storage nodes failures, and then the multi-loss recovery
scheme is triggered. During the regeneration, each of the r
newcomers receive 3 bytes data from d providers. Therefore,
the maintenance bandwidth v = df bytes. Based on the

164

Table II: Storage Cost and Bandwidth Comparison of RC-
TREE, MCR and MCRTREE

Total node storage cost
RCTREE My n [

Mamtenance bandwidth

()

]\k[n—r— k:+1 o~
MCR (E)'n [’f] (M) r
MCRTREE A0y =17 (A0

Table lIl: n =7,k =4,r =3

Total node storage cost | Maintenance bandwidth

RCTREE 1.75M 3M
MCR 1.75M 1.5M
MCRTREE 1.75M 1.5M

scenario above, we analyze the storage cost and maintenance
bandwidth of RCTREE, MCR and MCRTREE.

RCTREE: In [13], when using RCTREE, if a newcomer
is allowed to access to d active providers, it needs to store
2L and cost a traffic of [—2 +1] (22) to repair the data. So
the storage cost is (41) - n, and the maintenance bandwidth
: d M k
is (=) - () -7

MCR: In [15], when using MCR, if a newcomer is
allowed to access to d active providers, it needs to store
2L and cost a traffic of [—% +1] (2) to repair the data. So

the storage cost is (J)CI) - n, and the maintenance bandwidth
d M
is [g=71]- (%)

MCRTREE: From the above analysis in this paper, when
using MCRTREE with CYMCRTREE = a'YMCRTREE =
(n—1)rg and g = [k(7y]» the storage cost is (LY. n and
the maintenance bandwidth is [2=F] - (4£) - r.

It is proved that [18] we could get better tradeoff of
storage cost and maintenance bandwidth if d increases.
In RCTREE, when there are r storage node failures, the
maximum d could be n — r, so we set d as n — r for
RCTREE. While for MCR, the maximum d could be n — 1
for the newcomer could download data from both n — r
providers and other » — 1 newcomers. So we set d as n — 1
for MCR. Table II shows the storage costs and maintenance
bandwidths of different redundancy recovery.

Compared with RCTREE, MCR and MCRTREE reduce
50% maintenance bandwidth while keeping the same storage
cost with n =7,k = 4,r = 3, illustrated in Table III. Com-
pared with RCTREE, MCR and MCRTREE reduce 58.3%
maintenance bandwidth while keeping the same storage cost
with n = 11,k = 6,r = 3, illustrated in Table IV. While
MCR and MCRTREE consume the same storage cost and
maintenance bandwidth.

Table IV: n =11,k =6,r=3

Total node storage cost | Maintenance bandwidth
RCTREE 1.375M 3M
MCR 1.375M 1.25M
MCRTREE 1.375M 1.25M

ONONOIORONO

(a) RCTREE Example

(b) MCR Example

(¢c) MCRTREE Example

Figure 5: Transmission Time Example

60

T
RCTREE
1 MCR
MCRTREE

50

40

30

20

transmission time(s)

2MB 1GB
data valume

Figure 6: Transmission Time Comparisons of RCTREE,
MCR and MCRTREE

B. Transmission Time

In order to test the transmission time of RCTREE, MCR
and MCRTREE, we deployed 19 machines for experimenta-
tion, and each represents middle-range commodity hardware.
Each server contains a 64-bit Intel processor with 24 cores,
16GB of RAM, and the servers are connected with 1GB
switches. The operating system is Cent-OS, version 6.2.
During the test, we transmit different size of data along with
the topology for two newcomers with three providers. For
RCTREE, we construct two regenerating trees and send the
data along the tree from children to root serially, illustrated
in Fig. 5(a), while for MCR, we construct the structure and
transmit the data in a parallel way, illustrated in Fig. 5(b),
and for MCRTREE, we construct two regenerating trees and
transmit the data simultaneously, illustrated in Fig. 5(c).

The transmission time comparisons of RCTREE, MCR
and MCRTREE under different data volume is illustrated
Fig. 6, which shows that the transmission time becomes
longer as the data volume increases, and RCTREE shows
the longest transmission time and MCRTREE costs the
least, while the transmission time of MCR is between them.
The results reveal that MCRTREE performs the highest
transmission efficiency.

C. Simulation

In this section, we compare MCRTREE with RCTREE
and MCR from there aspects: regeneration time, probabil-

165

Table V: Simulation parameters
Avedown A’Ueup Nodenum Repnum
0.137 0.135 1000 100

M
1G

Time
1000

ity of successful regeneration and data availability, which
are analyzed in [20] and [21]. Our event-based simulator
simulates the nodes’ join and leave activities based on the
PlanetLab trace, including the network bandwidth distri-
bution between nodes, as illustrated in Table I. And the
simulator lasts for a period of Time days, and deals with the
node-join/leave events. Each node in the simulator joins the
network Ave,,, times and leaves Avegoy,, times on average
per day. We assume the data object is denoted by its size M
and the simulator repeated for Rep,,yy, times on Node,,ym
nodes.

1) Regeneration Time: How much time is spent from the
start of a regeneration to the end? Which is one of the main
metrics measuring the performance of recovery schemes.

2) Probability of Successful Regeneration: Probability
of the successful regeneration. The probability that a re-
generation finishes successfully, not interrupted by the node
departures. The probability that data are available is the ratio
of the available time to the total simulation time.

3) Data Availability: The probability that a file is avail-
able. For (n, k)—linear coding, data are available when there
are at least k active storage nodes.

The parameters of the simulator are showed in Table V,
where we configure 1000 nodes for simulation, lasts for
1000s and repeats 100 times. We adopt the (n,k) = (k +
5, k)-random linear coding and set k as 2,4,...,10 and r
from 2 and 3.

Regeneration time is defines as §/w, where 3 is the data
volume to be transmitted during the repair, and w is the avail-
able bandwidth for repair. For RCTREE, £ = W,
while for MCR and MCRTREE, 3 = % The available
bandwidth w of RCTREE is determined by the link with the
minimum bandwidth in the spanning tree, and the available
bandwidth w of MCR is determined by the link with the
minimum bandwidth between the providers and newcomer
or between the newcomers, while the available bandwidth w
of MCRTREE is determined by the link with the minimum

EzzEs RCTREE SN MCRTREE

B MCR
9=

regeneration time (s)
o =2 N W A o N
regeneration time (s)

O =-NWHAOO N

(a) number of data blocks

Figure 7: Regeneration Time of RCTREE, MCR and M-
CRTREE

(b) number of data blocks

emmmE RCTREE vy MCR =<3 MCRTREE

o

o
©

o
™

successful probability
successful probability

\
:s
N
A

o
3

2 4 6 8
(a) number of data blocks

10
(b) number of data blocks

Figure 8: Probability of Successful Regeneration of RC-
TREE, MCR and MCRTREE

bandwidth of the spanning tree or between the newcomers.

Fig. 7 shows the regeneration time comparisons of the
RCTREE, MCR and MCRTREE, where Fig. 7 (a) shows
the regeneration time comparisons of 2 failures while Fig. 7
(b) shows the regeneration time comparisons of 3 failures.
As the number of data blocks k increases, the regeneration
time of the three repair schemes decrease, for bigger k
reduces the data volume to be transmitted for repairing.
Compared with RCTREE and MCR, MCRTREE reduces the
regeneration time significantly, and reduces about 49% and
35% respectively when the failure number equals to 2. In
fact, as the number of failures increases, the regeneration
time increases for RCTREE, MCR and MCRTREE, as
illustrated in Fig. 7 (b), while compared with RCTREE and
MCR, the regeneration time of MCRTREE reduces 50% and
34% respectively.

The probability of successful regeneration is the ratio of
the number of blocks regenerated successfully and the total
number of failed blocks. Different repair schemes brings
different probabilities of the regeneration. The repair scheme
with higher probability brings better repair performance,
so the higher the probability is, the quicker the repair
scheme is. Fig. 8 illustrates the probability comparisons of
RCTREE, MCR and MCRTREE, and Fig. 8(a) shows the
successful regeneration probability when there are 2 failed
blocks, while Fig. 8(b) shows the the successful regeneration
probability when there are 3 failed blocks. Fig. 8 tells us that
as the number of data blocks k increases, the regeneration
time decreases, while more providers participating into the

166

XY MCRTREE

data availability
data availability

2 4 6 8
(a) number of data blocks

(b) number of data blocks

Figure 9: Data Availability of RCTREE, MCR and M-

CRTREE

regeneration will bring higher probability of failure. Thus,
the probabilities of successful regeneration do not change a
lot.

For a (n, k)—linear code, data are available when there are
at least k active storage nodes. As the nodes show the same
probabilities to loss, the regeneration could be interrupted by
node failures. So it is possible that a data object becomes
invalid if the active block number is smaller than k. Fig. 9
(a) and Fig. 9(b) show the data availabilities for constructing
2 and 3 newcomers respectively.

Fig. 9 shows that the data availabilities increase slightly
with the growing of number of data blocks. For the de-
creased regeneration time will improve the data availability,
while the increased failure probabilities will reduce the data
availabilities. Fig. 9(a) shows that, when the number of
providers is less than 6, MCRTREE could increase about
30% and 20% data availabilities respectively compared
with RCTREE and MCR when constructing 2 newcomers.
MCRTREE could still show larger data availabilities when
the number of providers is larger than 6. Fig. 9(b) shows
the similar performance with Fig. 9(a) when constructing 3
newcomers.

VI. CONCLUSION

In this paper, we address the challenges in minimizing the
maintenance bandwidth and repair time. We analyze a mo-
tivating example to show the characteristics of MCRTREE
and then construct a network model for MCRTREE. Based
on this model, we discuss the MCRTREE constructing
algorithm and then analyze the bottleneck bandwidth of
regeneration trees. Considering the fluctuation of nodes in
distributed storage system, we analyze the storage cost
and maintenance bandwidth with numerical analysis, and
then discuss the regeneration time, probability of successful
regeneration and data availability with experiment com-
parisons. The numerical comparison and simulation results
show that MCRTREE reduces repair bandwidth while keep-
ing the same storage cost, and improves the repair efficiency
and data availability.

ACKNOWLEDGMENT

This work was supported by the National Grand
Fundamental Research 973 Program of China (Grant
No0.2011CB302601), the National Natural Science Foun-
dation of China (Grant No.61379052), the National High
Technology Research and Development 863 Program of
China (Grant No.2013AA01A213), the Natural Science
Foundation for Distinguished Young Scholars of Hunan
Province (Grant No0.S2010J5050), Specialized Research
Fund for the Doctoral Program of Higher Education (Grant
No0.20124307110015).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer er al., “Oceanstore: An architecture for global-
scale persistent storage,” ACM Sigplan Notices, vol. 35,
no. 11, pp. 190-201, 2000.

Y. Wang and S. Li, “Research and performance evaluation of
data replication technology in distributed storage systems,”
International Journal of Computers and Mathematics with
Applications, vol. 51, no. 11, pp. 1625-1632, 2006.

X. Lu, H. Wang, J. Wang, J. Xu, and D. Li, “Internet-based
virtual computing environment: Beyond the data center as a
computer,” Future Generation Computer Systems, vol. 29, pp.
309-322, 2011.

S. Ghemawat, H. Gobioff, and S. Leung, “The google file
system,” in ACM SIGOPS Operating Systems Review, vol. 37,
no. 5. ACM, 2003, pp. 29-43.

D. Borthakur, “The hadoop distributed file system: Architec-
ture and design,” Hadoop Project Website, vol. 11, p. 21,
2007.

D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in
globally distributed storage systems,” in Proceedings of the
9th USENIX conference on Operating systems design and
implementation. USENIX Association, 2010, pp. 1-7.

M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur, “Xoring
elephants: Novel erasure codes for big data,” in Proceedings
of the 39th international conference on Very Large Data
Bases. VLDB Endowment, 2013, pp. 325-336.

Y. Wang, X. Li, X. Li, and Y. Wang, “A survey of queries over
uncertain data,” Knowledge and information systems, vol. 37,
no. 3, pp. 485-530, 2013.

H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs.
replication: A quantitative comparison,” Peer-to-Peer Systems,
pp.- 328-337, 2002.

R. Rodrigues and B. Liskov, “High availability in dhts:
Erasure coding vs. replication,” Peer-to-Peer Systems IV, pp.
226-239, 2005.

167

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

(21]

A. Dimakis and P. Godfrey, “Network coding for distributed
storage systems,” Information Theory, IEEE Transactions on,
vol. 56, no. 9, pp. 45394551, 2010.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A
survey on network codes for distributed storage,” Proceedings
of the IEEE, vol. 99, no. 3, pp. 476489, 2011.

J. Li, S. Yang, X. Wang, and B. Li, “Tree-structured data
regeneration in distributed storage systems with regenerating
codes,” in INFOCOM, 2010 Proceedings IEEE. 1EEE, 2010,

pp. 1-9.

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker,
“Total recall: System support for automated availability man-
agement,” in Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation, vol. 1,
2004, pp. 25-25.

Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative
recovery of distributed storage systems from multiple losses
with network coding,” Selected Areas in Communications,
IEEE Journal on, vol. 28, no. 2, pp. 268-276, 2010.

S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca,
“Measuring bandwidth between planetlab nodes,” in PAM,
2005, pp. 292-305.

J. Li, S. Yang, X. Wang, X. Xue, and B. Li, “Tree-structured
data regeneration with network coding in distributed storage
systems,” in Quality of Service, 2009. IWQoS. 17th Interna-
tional Workshop on. 1EEE, 2009, pp. 1-9.

Y. Wu, A. Dimakis, and K. Ramchandran, “Deterministic re-
generating codes for distributed storage,” in Allerton Confer-
ence on Control, Computing, and Communication. Citeseer,

2007.

K. W. Shum, “Cooperative regenerating codes for distribut-
ed storage systems,” in Communications (ICC), 2011 IEEE
International Conference on. 1EEE, 2011, pp. 1-5.

7. Huang, Y. Lin, and Y. Peng, “Robust redundancy scheme
for the repair process: Hierarchical codes in the bandwidth-
limited systems,” Journal of Grid Computing, vol. 10, no. 3,
pp. 579-597, 2012.

S. Weidong, W. Yijie, and P. Xiaoqgiang, “Tree-structured
parallel regeneration for multiple data losses in distributed
storage systems based on erasure codes,” Communications,
China, vol. 10, no. 4, pp. 113-125, 2013.

