
3016 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

MCR: Structure-Aware Overlay-Based
Latency-Optimal Greedy Relay Search

Yongquan Fu and Ernst Biersack

Abstract— Geo-distributed network applications typically use
relays to process and forward timely messages among clients.
The state-of-the-art approaches greedily locate a relay that is
closer to clients based on an overlay that favors neighbors in the
immediate vicinity of the current node. Unfortunately, as clients
are unknown a priori, the optimal relay is generally outside of the
immediate vicinity of the current node. Consequently, the search
process often terminates at a poor local minimum. In this paper,
we address these challenges by designing and implementing a dis-
tributed relay-search system called MCR. In order to accurately
locate a relay closer to clients, by observing that the latency space
exhibits a proximity clustering phenomenon where nodes in the
same cluster are typically within close proximity, we propose
an overlay called MCRing that is aware of global proximity
clusters. In order to scale well under dynamic relays, we maintain
the proximity clusters via a gossiping-based clustering process.
Furthermore, we propose a series of algorithms to accurately
locate a relay that is closer to clients and satisfies the load
constraints. We prove that the relay-search process achieves
close to optimal results based on a doubling dimension-based
analysis in an inframetric model. Finally, extensive evaluation
via simulation and PlanetLab experiments shows that MCRing
is able to locate near-optimal relays.

Index Terms— Relay communication, latency, concentric ring,
inframetric, doubling dimension.

I. INTRODUCTION

A. Motivation

ALTHOUGH the Internet was designed to enable pair-
wise communication among end hosts, direct com-

munication may not be possible for various reasons: For
example, many end hosts behind NATs or firewalls cannot
directly reach each other. Also, detour routing [1]–[3], online
multiplayer game [4], [5], VoIP [6], anonymous communi-
cation [7], outsourced middlebox processing [8] explicitly
require a relay to act as an intermediate that forwards messages
in real-time to clients. The forwarding latency must be as
small as possible in order to meet the soft deadlines of the
applications since a high latency may severely degrade the
quality of experiences (QoE) of experienced by clients.

Manuscript received August 7, 2016; revised March 2, 2017 and
June 6, 2017; accepted June 9, 2017; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor Y. Yi. Date of publication June 27, 2017; date
of current version October 13, 2017. This work was supported by the National
Natural Science Foundation of China under Grant 61402509. (Corresponding
author: Yongquan Fu.)

Y. Fu is with the Science and Technology Laboratory of Parallel and
Distributed Processing, College of Computer, National University of Defense
Technology, Changsha 410073, China (e-mail: yongquanf@nudt.edu.cn).

E. Biersack, retired, was with Eurecom, Sophia Antipolis 06410, France
(e-mail: erbi@e-biersack.eu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. It provides a rigorous
theoretical model based study of the effectiveness of locating optimal relays.

Digital Object Identifier 10.1109/TNET.2017.2715331

Network-Level Relay Communication: Detour routing [1],
[2], [9]–[11] and outsourced middlebox processing [8] choose
a relay on the direct path between a pair of communicating
clients and forward real-time network packets close to the line
speed. While network-level relay communication assumes a
pair of clients, we envision that the same technique can be
extended to a multicasting context that consists of more than
two clients.

For example, [8] proposes to select servers from the
Amazon cloudfront content distribution network (CDN) to
detour packets that consists of 59 geo-distributed sites
as of 2017 [12]. Akamai SureRoute [13] leverages over
170,000 edge servers in over 1,300 networks in 102 countries
for detour routing [14], which probes the network latency
between relays and between them and the clients, and then
selects an optimized relay primarily based on the network
latency towards a pair of clients.

Unfortunately, making centralized routing decisions does
not scale well with increasing numbers of relays and clients,
as relay communication requires on-demand delay probes
to select the relay, instead of geographic distances for the
following reasons: First, the geographic distances are static,
however, wide-area delay values are dynamic due to changing
load in the Internet. Second, the geographical distances assume
the triangle inequality to hold. However, various empirical
studies [1], [8], [15] have shown that the triangle inequality
violations (TIV) are frequent. The TIV is defined as follows:
Let d represent a pairwise distance function, if dAC + dCB <
dAB holds for a triple (A, B, C), then an TIV arises. In fact,
rerouting via a relay exploits the TIV to provide a better path.
Therefore, choosing a suitable detouring relay that minimizes
the performance overhead is the key for fast network-level
relay communication.

Application-Level Relay Communication: Online multi-
player game [4], [5], VoIP [6], anonymous communication [7]
offer multiparty-communication where a server explicitly for-
wards messages among a group of clients. For instance, VoIP
applications use the relay to forward voice data between users
and to bootstrap the communication between end hosts that
are behind NATs or firewalls; online multiplayer game servers
not only relay game updates to clients that join in the same
group in order to keep the game states up-to-date for every
player, but also filter out unwanted messages and broadcast
notices. As humans are within the critical path of interaction,
the delay from the relay to clients must be as low as possible
since humans are acutely sensitive to delays.

Due to the large number of clients, service providers
need to provision enough servers for handling group

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3017

sessions. In practice, these servers are placed in geo-
distributed data centers. For example, the Amazon AWS cloud
hosts over 20 geo-distributed regions, Microsoft Azure hosts
38 regions around the world. However, it is still an open
problem on how to provision low-latency relays using geo-
distributed servers for application-level multiparty communi-
cation. As each group is assigned to a fixed server, it is likely
that the relay handling the traffic for a group may have large
latency to clients in that group. This is may be because of
large geographic distances or high queueing delays.

In summary, determining the relay with minimal network
latency in a scalable way is challenging for both, network-level
and application-level relay communication. Moreover, we need
to be aware of the load status (e.g., CPU, memory, bandwidth)
of the relays and avoid using overloaded servers as relays.

B. Existing Studies

A straightforward approach to optimal relay selection is to
measure on demand the network latency between candidate
relays and each client. However, this not only requires a
centralized entity to collect all-pair network latencies but also
consumes a lot of bandwidth resources. Furthermore, the set-
up delay is considerable since the probing process needs to be
completed before one can use the optimal relay.

Network coordinate methods embed nodes into
low-dimensional synthetic coordinate systems and predict the
pairwise RTTs using the pairwise coordinate distances. For
example, [4] selects game players whose pairwise network
coordinate distances are minimized based on the optimized
Vivaldi network-coordinate algorithm [16]. Unfortunately,
the network coordinate methods are still not widely adopted,
since the pairwise RTTs are not strictly low-dimensional, the
network coordinate system has a degree of latent prediction
errors, which degrades the accuracy to minimize the latency
between the relay and clients.

Meridian [17] and later improvements [18], [19] organize
relays into an overlay that retains a relatively large number
of nodes in vicinity, and uses on-demand measurements to
recursively select a relay that is closer to clients. Unfortunately,
we found that the optimal relay is generally outside of the
immediate vicinity of the current node (see Subsection II-C.3).
This is because as clients may be located arbitrarily in the
Internet, the nearest relay with respect to a group of clients
may be also arbitrary. However, when the current node is far
away from clients, most of its neighbors are also far away
from these clients, as each node favors nodes within its own
immediate vicinity. As a result, the search process terminates
at poor local minimum.

C. Our Work

In this paper, we present the design and implementation of
a distributed system MCR that finds load-aware and latency-
optimal relays for arbitrary combinations of geo-distributed
clients.

First, we propose a novel overlay structure named
maximum-coverage ring (MCRing for short) that addresses
the limitations of existing approaches. Our key observation

is that nodes in immediate vicinity in the latency space have
similar distances towards other nodes. Therefore, in order to
locate a closer relay, we need to be aware of the proximity
clustering in the latency space. A naive approach would
perform pairwise proximity clustering based on the all-pair
network latency, which does not scale for large-scale systems.
In order to scale the clustering process, as nodes from the same
proximity region share similar distances towards other nodes,
nodes from the same proximity region should have similar
distances towards the current node. As a result, instead of
pairwise proximity clustering, we only need to map network
latency from other nodes to the current node into proximity
clusters.

To that end, for each node P , we compute the proximity
clusters of network latency from itself to other nodes based
on K-means clustering and keep a modest number of relays
in each proximity cluster. The clustering process relies on a
gossiping process, which is lightweight and adapts well to
dynamic relays.

Second, we propose a series of algorithms to accurately
locate a relay that is closer to clients and satisfies the load
constraints. Existing approaches fail to bound the relay-search
performance with theoretical models that adapt to the trian-
gle inequality violations in the network latency space [15].
We resolve this issue by proposing an analysis framework
based on the doubling dimension that allows us to provide tight
performance bounds of the relays found, which is available in
the online supplemental material.

Finally, extensive experimental results and a PlanetLab
deployment confirm that MCR is able to choose close-to-
optimal relays for varying sizes of clients within 0.5 second
and with modest bandwidth costs.

Going forward, Section II presents the problem model.
Next, Section III introduces the overview of our approach.
Section IV next presents MCRing management. Afterwards,
Section V presents the process of selecting load-aware latency-
optimal relays. Section VI presents the experiments using
popular latency data sets and a real-world deployment on the
PlanetLab. Finally, we conclude in Section VII.

II. PROBLEM STATEMENT

We next formulate the relay-search problem and identify
the performance requirements. Then, we provide a realistic
theoretical model to shed light on how to find good candidate
relays. Finally, we summarize existing relay-search approaches
and discuss their weaknesses to fulfill the performance require-
ments.

A. Problem Formulation

We next formulate a relay-search optimization framework.
Table I lists key notations used in the paper.

Let S denote the whole set of nodes. Let ST denote a
specific group of clients that require the relay based message
forwarding. Let Sr denote the set of relays. Let Srv ⊆ Sr

denote the set of relays that violate the load constraints. Let
Srv ⊆ Sr be the complement set of Srv that satisfy the load
constraints.

3018 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

TABLE I

KEY NOTATIONS IN THE PAPER

For a relay P from Srv ⊆ Sr, an unbiased estimator
of the expected delay amounts to the average latency from

P to clients :
�

j∈ST
dPj

|ST | . Generally, we can quantify the
responsiveness of each relay P with respect to clients ST using
a weighted latency:

d̄PST =
∑

j∈ST

wPjdPj (1)

where wPj denotes the weight of the latency dPj . To represent
the expected delay to deliver each message to all clients, we set
wPj = 1

|ST | .
Our objective is to select a node P∗ from the set Srv as the

relay that has the minimal average latency to clients and does
not violate the load constraints:

Definition 1:

P∗ = arg min
P∈Srv

d̄PST (2)

We identify two fundamental requirements for the
relay-search approach:

• Scalable: As each relay’s storage, computing and com-
munication resources are limited, the relay-search process
should minimize the overhead with increasing number
of relays. Moreover, the overhead should be smoothly
amortized among each relay.

• Accurate: The relay-search process needs to use the
ground-truth latency to find the relay, such that the found
relay optimizes forwarding latency as much as possible.

B. Understanding the Relay Search Problem
Using the Inframetric Model

As the network latency space exhibits a degree of TIVs,
we must consider a general theoretical framework that faith-
fully models the real characteristics of the Internet delay space.

Fraigniaud et al. [20] have proposed the inframetric model
for triples of nodes that accounts for TIV to occur. The
inframetric model is defined as follows: A distance function
d : V × V → �+ is a ρ-inframetric (ρ > 1), if d satisfies
the following conditions for any pair of nodes u and v: (i) if
d(u, v) = 0, then u = v; (ii) d(u, v) = d(v, u); (iii) d(u, v) ≤

ρ max {d(u, w), d(w, v)}, for any arbitrary node w satisfying
w /∈ {u, v}.

The original inframetric model is defined for triples of nodes
and requires the symmetry of pairwise RTTs, i.e. d(P1, P2) =
d(P2, P1). However, in the Internet, pairwise latency can be
asymmetric [18], [21]. Therefore, we extend the inframetric
model as follows:

Definition 2: A distance function d is called
a (ST , ρ)-inframetric (where ρ ≥ 1), iff d satisfies the
following conditions: (i) For any pair of nodes P1 and P2,
where P1, P2 ∈ V , d(P1, P2) = 0, then P1 = P2; (ii) For a
triple (P, Q, ST), where P, Q ∈ V and the relays in ST

dPQ ≤ ρ min
{
max

{
dPST , dST Q

}
, max

{
dPST , dQST

}}

dPST ≤ ρ min
{
max

{
dPQ, dQST

}
, max

{
dPQ, dST Q

}}

dQST ≤ ρ min
{
max

{
dQP , dPST

}
, max

{
dQP , dST P

}}

(3)

hold.
We next bound the set of candidate relays that are closer

to the relays ST than the current node P using Lemma 3.1
in [19]. For a set Sr of nodes from the set V , let BP (r) be
a closed ball centered at node P covering the set of nodes
whose distances to node P are at most r:

BP (r) = {Q|d(P, Q) ≤ r, P, Q ∈ Sr} (4)

where r denotes the radius. We have:
Lemma 3: Assume that there exists a node Q that is at least

β (β ≤ 1) times closer to relays, then node Q must be included
in the closed ball BP (ρdPST).

We sketch the key ideas of the proof due to its importance
for the relay search. Based on Eq (3), we see that

dPQ ≤ ρ min
{
max

{
r, dST Q

}
, max

{
r, dQST

}}

Since the minimum of a pair of numbers is never larger than
any of these two numbers, we have

dPQ ≤ ρ max
{
r, dQST

}

Since we know that dQST ≤ βr and β ≤ 1, we can see
that dPQ ≤ ρr. As a result, node Q is covered by the ball
BP (ρr) = {x|d(P, x) ≤ ρr, P, x ∈ Sr}.
Lemma 3 shows that, in order to locate a node Q that is β
times closer to the relays than the current node P , we need to
scan the nodes within the closed ball BP (ρdPST).

C. Analysis of Existing Approaches

Having formulated the requirements of the relay search
problem, we next summarize existing approaches and discuss
their weaknesses.

1) Exhaustive Approach: In order to obtain the most accu-
rate relay, a straightforward approach is to collect all-pair
latency values from each relay to the given group of clients.
Then, we sort the latency values from each relay satisfying
the load constraints to clients and select the relay with the
smallest average latency towards clients. A special case is
to select a relay for two clients. Detour [1], RON [2] and
Nakao and Peterson [22] choose the optimal relay node to

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3019

forward packets between a pair of nodes. VIA [23] keeps
a centralized-managed overlay that consists of stable servers
from geo-distributed data centers, and selects relays based on
historical measurements and network tomography with better
scalability.

The exhaustive approach does not scale well with increasing
numbers of relays and clients. For a single request, the overall
probing cost is O(N · |ST |) for N relays and |ST | clients,
and the computing complexity is O(N log N) based on the
heap-sort method. Further, the exhaustive approach needs to
frequently update the latency measurement from all relays to
clients, since clients may join the system at will and the wide-
area network latency varies dynamically.

2) Greedy Approach: A more scalable approach is to recur-
sively choose the relay that has a smaller average latency to
clients than the current node, which avoids the performance
bottleneck of the exhaustive approach by allowing any relay
to answer the relay-search requests.

Definition 4 (Greedy Relay Search): Each relay maintains
a set of online relays (called neighbors). A greedy relay-search
process starts at a random relay P ; node P tries to select a
relay Q from its neighbor set that is β times closer to clients
than node P :

d̄QT < βd̄PT (5)

where β ∈ (0, 1]. If such a relay Q exists, then node Q
recursively selects a relay that is β times closer to clients
than d̄PT. The search terminates when no such a node Q can
be found.

PeerWise [3] and IRS [24] relay for a pair of nodes that
have a high embedding error, hoping to exploit the TIV to
reduce the end-to-end delay via the relaying path. While
the embedding error is correlated with the TIV [3], it is
caused by a combination of factors such as changing network
distances, convergence of the embedding algorithm, coordinate
drifting [25]. As a result, the relaying performance lacks
guarantee.

Based on the discussions of the greedy approach, we can see
that there is a fundamental trade-off between the accuracy and
the maintenance overhead. We call a maintained set of relays
compact if the number of relays is at most a polylogarithmic
function of the total number of relays. A compact relay set
scales well with an increasing number of relays.

Although the greedy approach scales well, guaranteeing the
optimality of the relay found is challenging due to the missing
of global information, which leads to the problem we tackle
in this paper.

3) Meridian Approach: Meridian is a greedy approach. For
a request, Meridian locates a next-hop node that is β times
closer to clients than the current node. A Meridian node P
measures its delay dPST to the targets ST , then node P
selects candidate neighbors whose delays to P are within
[(1− β)dPST , (1 + β)dPST].

The key component of Meridian is a compact data structure
called concentric ring that is centered at each node P .
A concentric ring keeps a number C of rings, where neighbors
are put in the i-th ring if their latency values towards node P
are within the interval

(
αsi−1, αsi

]
, with i > 0, α a constant, s

a multiplicative increase factor (α = 1, s = 2 ms by default).
Each ring keeps a fixed number of neighbors on the order
of O(log N) for N relays. The inner-most and outer-most
rings also collapse potential neighbors whose latency values to
node P are smaller than α and greater than αsC , respectively.

To fill nodes into a concentric ring, each node periodically
finds new neighbors via an anti-entropy gossip protocol.
Meridian selects a subset of found nodes into the concentric
ring by maximizing their geographic diversity via a maximum
hypervolume polytope algorithm [17].

Unfortunately, our experiments show that Meridian may be
trapped at the local minimum [18], [26], which naturally raises
the question whether the exponential rule to organize rings is
necessary for the relay search process. To that end, we quantify
the relation between the distance from the current node to the
optimal relay and the accuracy of the found relay.

(i) Experimental methodology: We have built a simulator
whose details are given in Subsection VI-A.3. We sample a
set of relays and a group of clients from real-world RTT data
sets (details introduced in Section VI-A.1), we configure each
relay’s concentric ring as sixteen nodes per ring, nine rings
per node, α = 1, s = 2. We set the termination threshold β
to one. We next greedily search the best relay that is closest
to clients via Meridian; meanwhile, we globally determine the
optimal relay that has the shortest average distance to clients.

We measure the accuracy of the found relay using the ratio
between the average distance from the found relay to clients
and that from the globally optimal relay to clients. We can see
that the ratio is greater than or equal to one, and the smaller
the ratio, the more accurate the found relay.

(ii) Results: From Figure 1 we can see that when the
search terminates, the RTT values from the current node
to the optimal relay vary by over six orders of magnitude.
Consequently, the optimal relay is generally outside of the
immediate vicinity of the current node.

The greedy relay-search process inherently centers at clients
and requires to choose a relay in the immediate vicinity of
clients. As clients are located arbitrarily, the nearest relays vary
arbitrarily as well. For the concentric ring approach, each node
favors nodes within its own immediate vicinity and when the
current node is far away from clients, most of its neighbors
are also far away from these clients. Therefore, favoring the
immediate vicinity is not conclusive.

III. OVERVIEW

In this paper, we present a novel overlay MCRing for scal-
able and accurate relay search. We present detailed MCRing in
the next section and the relay-search algorithms in Section V.

A. Key Observation

As geo-distributed clients are unknown a priori, the relays
that are within the “immediate vicinity” of clients may be
arbitrary in the latency space. As a result, selecting a relay
close to clients needs to be aware of the proximity structure
of the latency space.

Our key insight is that, the wide-area latency space exhibits
proximity regions, where nodes in the same proximity region
typically have similar distances towards other nodes, as shown

3020 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 1. The ratio of the average distance from the found relay to clients
and that from the optimal relay to clients VS. the RTT from the current node
to the optimal relay for Meridian. (a) P2P1143. (b) M2500. (c) King3997.
(d) end479.

Fig. 2. Clustering structure of the delay space. The data sets are intro-
duced in the simulation section. We estimate the clustering structure of
the network delay space based on (a) P2P1143. (b) M2500. (c) King3997.
(d) end479. [27].

in Figure 2. As a result, in order to locate a nearby relay for
arbitrary combinations of clients, each node needs to sample
neighbors from each clustering region in the latency space.

B. Architecture

We propose a distributed relay-search system MCR.
Figure 3 summarizes major components.

The key substrate is a novel proximity-cluster-aware overlay
MCRing. It maintains a compact set of neighbors from prox-
imity clusters in the latency space. To maximize the coverage

Fig. 3. relay-search components.

of the cluster structure in the latency space, a naive approach
would find the proximity clusters based on all-pair latency
values among relays, which however, does not scale well for
large-scale and dynamic systems. Our key insight is that, for
each relay P , nodes from the same cluster should share similar
distances to node P , therefore, we can partition nodes to
proximity clustering according to their latency values towards
the current node P .

To tolerate the dynamics of the relay and to avoid the
single point of failure, we propose a gossiping based K-means
clustering method to discover the clustering structure in a
decentralized manner. Each node P independently computes
the proximity clusters during the gossiping process, and keeps
a modest number of neighbors from each of these proximity
clusters.

We next propose a load-aware distributed greedy relay-
search process. Each node P seeks a relay that simultaneously
fulfills the load constraint in the message and is at least β
(β ∈ (0, 1]) times closer to clients. The search terminates
when no such a better relay can be found. In order not to
miss relays that may be closer to clients, we present a series of
algorithms to locate a relay and establish rigorous performance
guarantees.

C. MCRing Structure

Based on the proximity clustering, MCRing maintains two
classes of rings:

• Vicinity rings: We maintain Cs (Cs = 2 by default)
rings with (0, 8] and (8, 16] as two latency intervals that
are derived from real-world RTT data sets in Subsection
VI-A.1. For each relay Q, if the latency dPQ falls within
a latency interval of a vicinity ring, we map relay Q to
this ring.

• Clustering rings: We partition found relays to Cc prox-
imity clusters. For each relay Q that is not included in
the vicinity ring, we map this relay to the ring whose
clustering centroid is closest to the latency dPQ.

Our analysis shows that, we only need O(log(N)) neighbors
in the MCRing in order to find approximately optimal relays.

We next present an example of a MCRing in Figure 4.
We randomly generate a number of latency samples from a
node P to other nodes and construct a MCRing for a node P .
There are five rings, where two innermost rings use (0, 8] and
(8, 16] as their latency intervals, respectively. For each relay Q
that is not mapped to the vicinity rings, we map node Q to the
ring whose clustering centroid is closest to the latency dPQ

from node P to node Q. The other three rings calculate the

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3021

Fig. 4. An example to construct the MCRing.

clustering centroids based on Algorithm 1, which are 33.25,
120 and 200, respectively. We assign the clustering centroids
to these rings in an ascending order.

We next map relays to the MCRing: we map Q1 to the
second ring since dPQ1 ∈ (8, 16], Q2 and Q4 to the third ring
since they are closest to the centroid 33.25, Q3 to be removed
since each ring has at most two relays, Q5 and Q6 to the fourth
ring since they are closest to the centroid 120, and Q7 and Q8
to the fifth ring since they are closest to the centroid 200.

We can see that the MCRing preserves typical latency
values from node P to other nodes, while for a concentric
ring approach with the latency intervals as

(
2i−1, 2i

]
where i

denotes the index of the ring. The latency intervals of five
innermost rings are (0, 2], (2, 4], (4, 8], (8, 16], (16, +∞],
respectively. We can see that Q1 is mapped to the fourth ring,
while the other nodes are mapped to the fifth ring. As we only
sample at most two relays for each ring, we can see that the
concentric ring fails to cover the typical clusters of the latency
values from node P to other nodes.

IV. MCRING MANAGEMENT

Having presented the overview of the relay-search system,
we next introduce the overlay MCRing that summarizes the
proximity clusters of the latency space in a compact way.

A. MCRing

1) Proximity Clustering: Given a vector of latency values
from a set SP of sampled relays to node P , we map this
vector into a number of clusters, where each cluster consists
of nodes that have similar distances to node P . Partitioning a
vector of latency values into clusters is essentially a vector
quantization problem: keeping optimized clusters of relays
is equivalent to a vector quantization process of the latency
values from the discovered neighbors to the current node. As a
result, we reduce the all-pair clustering problem into a “vector
quantization” problem, which has been extensively studied in
signal processing and machine learning fields. In order to scale
well and adapt to dynamic relays, the clustering process should
be lightweight and maintain the dynamic proximity clusters.
We select the well-known K-means clustering method [28] for
its simplicity and good performance. Other vector-quantization
methods may slightly improve the performance, but the same
conclusions still hold.

Let Cc denote the number of clusters. Let Γ = {Γ1, Γ2, . . . ,
ΓCc} represent a partition of the latency samples from node P
to its relays. The K-means clustering method seeks to mini-
mize the distances of each node in that cluster with respect to
this cluster’s centroid, where the centroid μl of the l-th group
(1 ≤ l ≤ Cc) amounts to:

μl =

∑
x∈Γl

x

|Γl| (6)

The clustering quality function F can be stated as follows:

F (Γ) =
∑

j∈SP

‖dPj − μ (dPj)‖2 (7)

where μ (dPj) denotes the centroid of the group to which dPj

belongs.
2) Immediate Vicinity: Moreover, we explicitly keep a small

number of neighbors from the immediate vicinity to comple-
ment the K-means clustering that captures a macroscopic-level
structure. When the current node P is close to clients, node P
needs to select a next-hop relay from its own immediate
vicinity.

B. MCRing Maintenance

We maintain the vicinity rings and clustering rings based
on a lightweight gossiping based process.

1) Gossiping Based Relay Discovery: We discover neigh-
bors based on a lightweight gossiping process. When a node P
joins the system, node P obtains a number of online nodes
as its initial relays from a bootstrapping server. Then, node P
probes latencies to these relays, and stores those with success-
ful responses to a temporary list.

To be aware of load conditions of neighbors in the MCRing,
each node piggybacks its load status to its neighbors through
the gossip messages during the MCRing maintenance period.

Further, we simultaneously perform the K-means clustering
within the gossip process. We optimize the clustering centroids
with the Lloyd method [28] that adapts well to dynamic
samples. We initialize the centroids to be random values and
iteratively adjust the centroids to stabilized positions based on
Algorithm 1. The K-means clustering method incrementally
adjusts its clustering structure in order to find a partition Γ
that minimizes the objective:

Γopt = arg min
Γ

F (Γ) (8)

Algorithm 2 summarizes the gossip process between two
online nodes. The probing cost is amortized using the gossip
process where a node contacts one relay and probes the latency
to one relay in one round. Moreover, the K-means clustering
does not incur additional bandwidth cost.

2) Relay Node Mapping: Along with the K-means cluster-
ing process, we dynamically maintain the mapping between
sampled neighbors and the corresponding ring. Line two in
Algorithm 1 summarizes the mapping logic. We assign the
clustering centroids to Cc rings in an ascending order, where
the i-th ring is assigned the i-th smallest clustering centroid.
Then, for each neighbor Q that is not included in the vicinity
ring, node P maps this relay to the ring whose clustering
centroid is closest to the latency dPQ based on Eq (9).

3022 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Algorithm 1: Latency Clustering

1 LLoydCluster(P ,dPQ,μ)

input : Node P , the latency sample dPQ, the clustering
centroids μ.

output: The centroids μ.
2 Cluster update. Node P maps the latency sample dPQ to

the closest centroid:

s = argmin
Γs∈Γ

|dPQ − μs| (9)

3 Centroid update. Node P updates the s-th clustering
centroid based on Eq (6);

Algorithm 2: Gossip Based Relay Sampling and Latency
Probe

1 GossipProbe(P)
input : A temporary list that consists of bootstrap-
ping nodes.

2 while TRUE do
3 Node P selects a relay Q uniformly at random from the

union of its own MCRing and the temporary list;
4 Node P sends node Q a request message consisting of

a randomly sampled relay RP from its MCRing at time
T 0Q;

5 if Node Q receives the request message from node P
then

6 Node Q stores the relay RP into its the temporary
list ;

7 Node Q sends P a response message comprising a
randomly sampled node RQ from Q’s own MCRing;

8 if Node P obtains the response message from node Q
at T 1Q then

9 Node P updates the latency to node Q using dPQ =
T 1Q − T 0Q;

10 μ = LLoydCluster(P ,dPQ,μ);
11 Node P probes the latency to the node RQ;
12 if Probe to the node RQ succeeds then
13 if dPRQ ∈ (0, 16] then
14 Node P puts node RQ to the corresponding

vicinity ring;

15 else
16 Node P saves node RQ to the temporary list;
17 μ = LLoydCluster(P ,dPRQ,μ);

18 Sleep t seconds;

3) Ring Replacement: To ensure a compact MCRing, we set
up a threshold to bound the maximum number of relays
each ring, which is a polylogarithmic function of the number
of relays. If the number of sampled relays in the MCRing
exceeds the threshold, we move a number of relays uniformly
at random into the temporary list that is not used for the relay-
search process.

Our experiments show that the random replacement of
neighbors leads to good performance. While [17] seeks to keep
relays that maximize pairwise distances among themselves,
however, we found that this sophisticated approach [17] not
only consumes additional probing overhead, but also is sensi-
tive to nodes that are far away from most of nodes, as these
nodes are useless for most relay-search requests.

4) Trade-Off: In order to balance the accuracy and the
scalability of the MCRing, several factors need to be balanced:

• Number of Rings: Increasing the number of clusters
decomposes the latency distribution to more fine-grained
clusters, however, the bandwidth cost also increases with
more rings.

• Number of relays in Each Ring: Increasing the number
of relays in each ring improves the coverage in a cluster,
but also increases the bandwidth cost.

V. RELAY SEARCH

Having presented the MCRing structure, we next propose
the relay-search process in details.

A. Workflow

When a relay-search request is sent to the system, the first
relay (denoted as the requestor) that receives the request ini-
tializes a greedy relay-search process. After the greedy process
successfully completes, the requestor obtains the address of the
found relay and returns to the upper-layer application.

The requestor builds a relay-search message that is
comprised of the requestor’ address, the set of clients’
addresses ST , a load threshold τ to filter overloaded relays,
and the addresses Sr of traversed relays to avoid self-loops:
If a candidate relay has appeared in Sr, i.e., it must have
forwarded the same message and should be filtered out.

For each relay P that receives the relay-search message, it
performs the following steps:

1) Node P probes clients and computes the average
latency r.

2) Node P selects candidate relays that may be closer to
clients from its own MCRing (Subsection V-B).

3) Node P locates a relay Q (node Q may be node P itself)
with the smallest average latency to clients (Subsection
V-C).

4) If node Q is at least β times closer to clients than
node P , node P forwards the relay-search message
to node Q; otherwise, node P terminates the search
process and sends node Q’s address to the requestor
(Subsection V-D).

B. Candidate Relay Search

First, node P probes the average RTT r towards clients that
are embedded in the request message. Then, node P iterates
from the innermost ring to outer rings in order to choose the
candidate relays. We show that (see Lemma 3), the latency
values from node P to candidate relays should be not larger
than ρr, where ρ denotes a global parameter of the latency
space, ρ = 3 by default.

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3023

Algorithm 3: Select Candidates From the MCRing

1 Candidate(P , r, msg)
input : Current node P , average distance from P
to clients r, the relay-search message msg.

output: SLc .
2 SLc = ∅ ;
3 for i = 1→ Cs + Cc do
4 if ρr < min

{Qi|Qi∈ring−i}
dPQi then

5 Break;

6 else if ρr ≤ max
{Qi|Qi∈ring−i}

dPQi then

7 SLc = SLc ∪ {Qi|dPQi ≤ ρr, Qi ∈ ring − i} ;

8 else
9 SLc = SLc ∪ {Qi|Qi ∈ ring − i} ;

10 return SLc ;

Algorithm 4: Determine the Closest Candidate to Clients

1 Closest(P , SLc , msg)
input : Current node P , candidates SLc , the
relay-search message msg.

output: The node A that is closer to msg.ST and corre-
sponding average distance dAST to clients.

2 if SLc �= ∅ then
3 Node P filters out relays from SLc that have been

included in msg.Sr or violate the load constraint msg.τ ;
4 Node A ← online relay with the smallest average

latency within SLc ;
5 return (A,dAST) as the node closest to clients msg.ST ;

6 else
7 return (P ,r) as the node closest to clients msg.ST ;

Algorithm 3 summarizes the steps of selecting candidates
from a MCRing. As the rings are organized in accordance with
increasing centroids of K-means clusters, we can see that if the
maximum RTT from the relays in a ring to node P is smaller
than ρr, then we select all relays in this ring as the candidates;
if the minimum RTT from the relays in a ring to node P is
greater than ρr, then we terminate the iteration process, since
no relays in this ring or more outer rings satisfy the selection
condition.

C. Load-Aware Filtering and Nearest Relay Search

After successfully locating candidate relays, we next deter-
mine the optimal candidate. Algorithm 4 shows the steps.
We filter out candidate relays that either violate the load
constraint, or have been recorded in the list Sr of traversed
relays. Next, we select the relay with the minimum average
RTT towards clients. Further, if no such candidate relays are
available, we directly skip the above process and set the current
node as the optimal relay.

Algorithm 5: Recursive Relay Search

1 Search(P , r, A, dAST , r, msg)
input : Current node P , average distance from
P to clients r, selected relay A, average distance
from A to clients dAST , average distance from P
to clients r, the relay-search message msg.

output: The next-hop node that is closer to msg.ST .
2 if dAST ≤ βr then
3 msg.Sr = msg.Sr ∪A;
4 Search(A, msg);
5 return ;

6 return (A,dAST) to msg.requestor;

Algorithm 6: Load-Aware Relay-Search Algorithm

1 Search(P , r, msg)
input : Current node P , average distance from P
to clients r, the relay-search message msg.

output: The next-hop node that is closer to msg.ST .
2 SLc = Candidate(P , r, msg);
3 (A,dAST) = Closest(P , SLc , msg);
4 (A,dAST) = Search(P , r, A, dAST , r, msg);

D. When to Stop

Afterwards, we determine whether we continue the recursive
search. Algorithm 5 summarizes the steps. The current node
forwards the message to the next-hop neighbor if we locate a
relay that is at least β times closer than the current node P ,
otherwise, the search terminates and we return the optimal
relay to the requestor.

E. Putting It All Together

Algorithm 6 summarizes the relay-search process. Line two
selects candidates from the MCRing whose loads may violate
the constraints (see Algorithm 3). Line three determines the
neighbor that satisfies the load constraint and is closest to
clients (see Algorithm 4). Line four decides whether to forward
the message to a next-hop neighbor A or to return the currently
optimal relay (see Algorithm 5).

VI. PERFORMANCE EVALUATION

We next perform experiments to show the performance of
choosing the optimized relays.

A. Simulation Experiments

1) Data Sets for Simulation: We use four real-world data
sets in this paper: (i) P2P1143, a symmetric RTT matrix
between 1143 DNS servers by the MIT P2PSim project [29]
with the King method [30]. (ii) M2500, a symmetric RTT
matrix between 2500 DNS servers collected by the Meridian
project [17] also with the King method [30]. (iii) King3997.
A symmetric delay matrix collected between 3997 DNS
name servers by Zhang et al. [31] using the King method.

3024 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

TABLE II

THE CHARACTERISTICS OF THE PAIRWISE RTTs IN THE DATA SETS

(iv) end479. An asymmetric delay matrix based on aggregated
delays from end hosts participating in BitTorrent [32].

We summarize the central tendency, the dispersion and the
shape of all-pair RTT values based on the mean, standard devi-
ation and the skewness metric that is defined as E(x−μ)3

σ3 [33],
where μ denotes the mean of all-pair RTTs, μ denotes the
standard deviation of all-pair RTTs, E(t) denotes the expected
value of t. The results are shown in Table II.

We can see that different data sets have varying mean and
standard deviation numbers. Further, the skewness is positive,
indicating that the right tail of the all-pair RTT distribution is
longer than the left portion, while the mass of the distribution
is concentrated on the left portion. Moreover, the skewness
varies across data sets due to the variation of the mean and
the standard deviation.

2) Comparison of the Different Methods: We compare
MCR’s performance with the following methods:

• Meridian: maintains the concentric ring via the
maximal hypervolume polytope algorithm and
selects candidate relays from the rings numbered[
log

⌈
(1− β)d̄PT

⌉
, log

⌈
(1 + β)d̄PT

⌉]
. We set β to one

in order to maximize the range of candidate relays.
• CR-infra: a modified Meridian approach based on the

inframetric model. It uses the concentric ring to organize
relays, but searches relays closer to clients based on the
load-aware greedy method. In each step, it selects candi-
date relays from the rings numbered

[
0, log

⌈
ρd̄PT

⌉]
of

a node’s concentric ring. We set ρ to three based on the
measurements on the latency data sets.

• Htrae-: predicts the pairwise latency based on [4] and
estimate the relay closest to clients based on the all-pair
estimated latencies. We implement the TIV avoidance and
history and the symmetric updates. But we are unable
to perform the geographic bootstrapping and the AS
correction due to the lack of domain knowledge. We set
the number of relays to 32 for each node. We update the
coordinates for each node in 50 rounds and then collect
the pairwise coordinate distances.

We set MCR’s default parameters to trade off between the
accuracy and the maintenance costs according to the sensitivity
analysis in Subsection VI-A.6: We set the number of rings
to ten, the maximal number of relays per ring to eight, the
inframetric parameter ρ to three, and the search threshold β
to one.

For a fair comparison of Meridian and CR-infra, we use the
same gossip process to obtain the relays and choose the same
number of rings, the same number of relays per ring and the
same search threshold β.

Fig. 5. The distribution of the fraction of relays mapped to each ring for
MCRing. (a) P2P1143. (b) M2500. (c) King3997. (d) end479.

We compute the absolute error to quantify the difference
of the average latency to clients between the found relay and
the optimal relay, which is defined as follows:

1
L

∣∣∣∣∣∣

L∑

j=1

dP∗Tj −
L∑

j=1

dOptimalRelayTj

∣∣∣∣∣∣
(10)

where L denotes the number of clients and (T1, . . . , TL)
represents the set of clients, P ∗ ∈ SC denotes the found
relay using the relay-search algorithm, OptimalRelay ∈ SC

represents the relay that has the minimal average latency to
clients.

3) Simulation Methodology: We have implemented a simu-
lator for relay search. The simulator initializes the relays at the
start of the simulation and performs event-driven simulations
by generating and processing the relay-search requests. Each
request concerns a set of clients sampled from the whole set
of nodes. A request is randomly delivered to a candidate relay
that initializes the relay-search process. The simulator sets up a
warm-up period of 1,000 seconds. During the warm-up period,
no relay requests are generated and each relay only maintains
its neighbors.

In order to obtain the expected performance, we randomly
sample a different set of clients for every four request, and
each request is assigned to a randomly sampled relay. The
simulation experiments consist of 10,000 synthetic requests.

4) MCRing Analysis: We report the percents of relays
mapped to each ring in the MCRing. We set the total number
of rings to ten. We configure two innermost rings with the
latency intervals (0, 8] and (8, 16], respectively. We set the
number of the clustering rings to eight. Then, we construct
the MCRing for each node.

From Figure 5, we can see that except for two innermost
rings that deliberately store relays with small latencies, the
other eight rings have balanced numbers of relays. The uni-
form distributions of relays are primarily due to the K-means

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3025

Fig. 6. Comparison of the mean absolute errors as a function of the
percent of relays that are filtered due to overloads. (a) P2P1143. (b) M2500.
(c) King3997. (d) end479.

clustering that maximizes the similarity of the latency values
in the same group. As a result, we can randomly sample relays
and obtain balanced rings.

5) Comparison: We next compare the performance of MCR
with other relay-search methods.

(i) Load-aware Search
We first test whether the load-aware filtering yields latency-

optimized relays. We select a fraction of relays of each node to
be filtered during the relay-search process. Then we compute
the absolute error between the found relay and the optimal one.

We set the number of clients to two, the number of rings
to ten, the number of relays per ring to ten, the inframetric ρ
to three, the threshold β to one.

Most search processes complete in two to three hops for
MCR, CR-infra and Meridian. As a result, the relay can
be found quickly. Therefore, our comparison focuses on the
accuracy and the stability of the search processes.

Figure 6 shows the mean absolute errors and their
95-th confidence intervals. We can see that MCR is able to
find near optimal relays with increasing numbers of filtered
relays, thanks to the fine-grained coverage in the latency space.
While CR-infra and Meridian increases the absolute errors
with increasing filtered relays due to the poor coverage by
the concentric ring. Further, Htrae- has the largest absolute
errors compared to the other three methods. This is because
we use the average latency to determine the closeness between
the relay and clients, which amplifies the prediction errors in
the network coordinate system.

(ii) Varying the number of clients
Having shown that MCR out-performs CR-infra and Merid-

ian under filtered nodes, we next set the percent of filtered
relays to zero in order to obtain the best absolute errors for
CR-infra and Meridian. We next vary the number of clients
and study the dynamics of the mean absolute errors.

Fig. 7. The mean absolute errors as we vary the number of clients.
(a) P2P1143. (b) M2500. (c) King3997. (d) end479.

As shown in Figure 7, MCR has the lowest absolute errors
with increasing clients, as a result, MCR is robust against the
choice of clients. Further, the absolute errors of all methods
decrease as we add more clients. This is because we randomly
sample clients, the average latency from the current node to
clients converges to the global average latency value with
increasing numbers of random samples.

(iii) Comparing with modified concentric ring
Having confirmed that MCR outperforms Meridian and

CR-infra under the same parameter configuration, we next vary
the configuration of the concentric ring such that it keeps the
same total number of neighbors as in MCR, but does not fix
the numbers of neighbors per ring.

For the modified concentric ring, first, we put as many
neighbors as possible in each ring via a random sampling
procedure; second, when the total number of neighbors in
the concentric ring exceeds MCR’s neighbor-set size, we iter-
atively remove neighbors from rings that have the largest
numbers of neighbors until the number of remaining neighbors
amounts to MCR’s neighbor-set size. Meridian and CR-infra
via the modified concentric ring are denoted as Meridian+ and
CR-infra+, respectively.

We compare the absolute errors of relays found by
Meridian+, CR-infra+ with those found by the original Merid-
ian, CR-infra and MCR. We set the number of clients to two,
the number of rings to ten, the number of relays per ring to
ten, the inframetric ρ to three, the threshold β to one.

First, we plot the distributions of the numbers of probes
required for a relay-search process. Figure 8 shows the com-
plementary cumulative distribution functions (CCDFs) of the
numbers of probes. We can see that Meridian+ and CR-infra+
probe much more neighbors than Meridian and CR-infra, since
most of neighbors in the modified concentric ring are not
included into the original concentric ring. Also, MCR probes
fewer neighbors than Meridian+ and CR-infra, as MCRing

3026 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 8. Comparing the CCDFs of numbers of probes for MCR, the modified
concentric ring based Meridian+ and CR-infra+, and the original concentric
ring based Meridian and CR-infra. (a) P2P1143. (b) M2500. (c) King3997.
(d) end479.

Fig. 9. Comparing the CCDFs of absolute errors of modified concentric
ring based Meridian+ and CR-infra+ and the original concentric ring
based Meridian and CR-infra, as well as MCR. (a) P2P1143. (b) M2500.
(c) King3997. (d) end479.

enforces a bounded size for each ring, while the modified
concentric ring approach relaxes the upper bound.

Second, we compare the absolute errors of the relay-search
process. Figure 9 presents the CCDFs of the absolute errors of
found relays. Meridian+ and CR-infra+ outperform Meridian
and CR-infra, since most neighbors are located in quite a few
rings, while the modified concentric ring is able to sample

Fig. 10. Absolute errors as we increase the number of relays. (a) Absolute
error. (b) Search hops.

more neighbors into corresponding rings than the original
concentric ring.

We can see that more neighbors do not necessarily translate
into better results. Meridian+ and CR-infra+ probe more
neighbors than MCR (c.f. Figure 8), however, MCR has a
much shorter tail of absolute errors than Meridian+ and
CR-infra+. This is because MCRing directly samples neigh-
bors from proximity clusters in the latency space, while the
concentric ring is agnostic of the proximity clusters. As a
result, MCRing based greedy relay search process has a higher
probability of locating a relay within the immediate proximity
of clients than the concentric ring based relay search process.

6) Parameter Sensitivity: Having shown that MCR obtains
the lowest absolute errors compared to existing methods on
four data sets, we next study MCR’s performance as we change
its parameter configuration. We report results on the M2500
data set. The same conclusions hold for the other three data
sets.

(i) Scalability
We study the accuracy as we increase the number of relays

in the system. From Figure 10 (a), we see that the average
absolute errors increase marginally from four ms to about
eight ms as we increase the number of relays from 400 to
2,000, since although the MCRing based greedy search process
guarantees the approximate performance, more local minimum
arise as we increase the number of candidate relays. Further,
Figure 10 (b) shows that the search hops keep around three,
which is consistent with the theoretical search-path length.
As a result, the search can terminates fast with increasing
numbers of relays.

(ii) Number of Rings
We next study the variation of the accuracy as we vary the

number of rings. From Figure 11, we see that increasing the
number of rings decreases the absolute errors of the found
relay, since more relays are stored in the MCRing, which
increases the coverage of the latency distribution. Further, six
to ten rings are sufficient, since there are a small number of
significant clusters in the latency distribution.

(iii) Number of relays per ring
Having shown that we can select a modest number of rings

to obtain close-to-optimal relays, we now study the effect of
the number of relays per ring on the search performance.

We vary the number of relays from four to twelve and
compute the absolute errors. From Figure 12, we can see that

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3027

Fig. 11. Absolute error as we vary the number of rings.

Fig. 12. Absolute error as we vary numbers of neighbors in each ring.

Fig. 13. Absolute error as we vary the inframetric parameter ρ.

the absolute error decreases as we add more relays per ring,
since we obtain a denser coverage of the latency distribution.
Further, the performance improvement becomes smoother as
we increase the number of relays from six to twelve, since
many relays in the same ring are from proximity regions in
the latency distribution.

(iv) Inframetric ρ
We next study how the inframetric parameter ρ, which

scales the radius of the closed ball for choosing the relays,
which impacts the accuracy of MCR. Figure 13 shows that
the average absolute error is reduced slightly as we increase ρ
from one to three, since increasing ρ expands the intervals of
candidate neighbors, which generally increases the probability
of locating a relay that is closer to clients. Furthermore, the
confidence intervals indicate that the relative error fluctuates
due to the varying relaying locations within the immediate
vicinity.

(v) Termination Threshold β
We further test the effect of the termination threshold β on

the accuracy of the relays found. The parameter β determines
when we need to stop the relay-search process: If no neighbors
are able to decrease the average latency to clients by at least

Fig. 14. Absolute error as we vary the termination threshold β.

(1 − β) times compared to that from the current node to the
clients, the search process terminates.

From Figure 14, we see that increasing β gracefully
decreases the absolute errors, since increasing β expands the
radius of the closed ball for choosing relays, consequently,
more relays are included into the candidate relays, which
increases the search accuracy.

B. Experiments on the PlanetLab

Having reported the simulation results based on static RTT
data sets, we next evaluate the efficiency of relay queries using
the PlanetLab platform that hosts geo-distributed clients with
stable connections.

1) Implementation: We have implemented a multi-thread
event-driven prototype in Java. The core logic is implemented
in about 3,000 lines of code. A relay exports an XML RPC
interface to others to receive the relay-search request for a set
of clients. All messages are sent via UDP sockets in order to
avoid the connection-setup and maintenance delays.

We represent a load constraint as a declarative value. For
example, the CPU load constraint can be stated as “CPU
≤ ΩCPU”, where ΩCPU is the threshold of the CPU load.
Measuring the load is out of the scope of this paper. For
example, reading the CPU and memory loads of a server is
trivial by parsing the “proc” directory on the Linux platform.

Each relay maintains a queue of incoming relay related
messages. The queue gives higher priorities to the RTT mea-
surement and relay-request messages than the gossip messages
in order to minimize the queueing delays of the search process.
To avoid relays being overloaded, each relay monitors its CPU
load with the command-line tool “top” and piggybacks its load
status to others during the gossip process.

We optimize the bandwidth cost and control the waiting
time of MCR based on the hybrid-ranking policy proposed
by HybridNN [18]. Briefly, each server maintains a network
coordinate via the Vivaldi network coordinate method [34]
and each server periodically adjusts its own coordinate with
respect to a sampled neighbor’s position during the gossiping
process for the maintenance of the MCRing. Next, the first
relay that receives a relay-search request, computes a stabilized
Vivaldi network coordinate for each of these clients based on
candidate neighbors’ coordinates and direct probes from them
to clients. These coordinates are embedded into the relay-
search request message and are forwarded to the next-hop
relay and henceforth. Other relays in the forwarding path then

3028 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 15. The PDF of the all-pair RTT values between PlanetLab nodes.

estimate the average RTT from the candidate neighbors to
clients using the Vivaldi network coordinate distances. Since
Vivaldi’s prediction inherently incurs some error, we select
k (four by default) neighbors whose coordinate distances are
top-k closest to clients, finally, we let these top-k neighbors
probe RTTs towards clients to select the one with the minimum
average RTT.

2) Setup: Since we are unable to access the end hosts in
home networks, we use a disjoint set of PlanetLab servers as
the end hosts. These servers are suitable to model the relays
in geo-distributed data centers and the stable end hosts in the
enterprise networks, however, they do not represent the end
hosts in home networks.

We choose 173 servers from distinct sites as relays, and
select another 412 servers uniformly at random as clients. The
measurements last for 24 hours. We keep all relays online
during the measurement. We measure the pairwise RTTs
among the relays and from the relays to the clients. We com-
pute the ground-truth relays for clients with the raw RTT
samples by using the Ping measurements (denoted as Direct).
Since the pairwise delays between PlanetLab machines vary
dynamically, for each node pair, we use the median value
of RTT samples to represent the stationary pairwise RTT.
Figure 15 shows the PDF of the pairwise RTT values.

3) Results: Accuracy: We compare MCR with Meridian and
iPlane [35], [36]. One of the motivating applications of iPlane
was to locate the optimized relays for Skype clients [35]. For
iPlane, we obtain pairwise RTTs between all-pair node from
the XML RPC interface. We then compute the relay that is
nearest to a set of clients. We set the same parameters for
MCR and Meridian as that in the Simulation section.

The results are shown in Figure 16(a). We see that MCR
has significantly lower errors than Meridian. This is because
Meridian is easily trapped at local minimum due to the
poor coverage in the latency space by its concentric ring,
while MCR is able to locate close to optimal relays thanks
to the MCRing that captures typical clusters in the latency
distribution. MCR still incurs a small degree of errors, since
the MCRing may not store the optimal relays towards clients.
For iPlane, in around 30% of the cases, the average latency is
20 ms higher for L = 2 and 40 ms higher for L = 10, since
iPlane does not use on-demand probes to find the optimized
relay.

Query Time: We evaluate the time required by indi-
vidual queries for MCR and Meridian. Figure 16(b) plots

Fig. 16. The CCDFs of the absolute errors for Meridian, iPlane and MCR
and the query time and the overhead for MCR and Meridian on the PlanetLab.
(a) Absolute errors. (b) Query time. (c) Query overhead.

the distributions of query time of MCR and Meridian.
Around 99% of MCR’s queries terminate in 500 ms, while
more than 95% of Meridian’s requests need over 500 ms
to complete. Since Meridian requires direct probes from all
candidate relays to clients, some candidate relays that are far
from the client take much longer time to send the response
to the requesting node. As a result, the total search period is
prolonged by these nodes. On the other hand, MCR avoids
most direct probes by delay predictions.

Query Overhead: We define the load of a query as the total
size of the transmitted packets. We plot the loads of MCR and
Meridian in Figure 16(c). The load of MCR is significantly
lower than that of Meridian. For L = 2, more than 90%
of MCR queries need less than two KBytes, while in more
than 50% of the cases the load of Meridian is more than
two KBytes, which is due to the large size of the candidate
relay set. Moreover, for L = 10, MCR has significantly much
lower loads than Meridian. Therefore, the delay estimation of
MCR substantially reduces the query overhead.

VII. CONCLUSION

Low-latency relay communication will be increasingly
important. Existing approaches typically use concentric rings
that favor nodes within the immediate vicinity of the current
node. Unfortunately, as clients are unknown a priori, the
optimal relay is generally outside of the immediate vicinity.

We address these limitations by proposing a structure-aware
overlay called MCRing that seeks to maximize the probability
of locating a relay closer to clients. We propose a distributed
method to recursively locate a relay node that meets the load
constraint and is closer to clients. We prove that we are able
to achieve close to optimal results based on the theoretical
framework of the doubling-dimension, which is more general

FU AND BIERSACK: MCR: STRUCTURE-AWARE OVERLAY-BASED LATENCY-OPTIMAL GREEDY RELAY SEARCH 3029

than the growth metric. Finally, experimental results and a
PlanetLab deployment show that our approach has a mean
error that is several times lower than those of the state-of-the-
art methods.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments.

REFERENCES

[1] S. Savage et al., “Detour: Informed Internet routing and transport,” IEEE
Micro, vol. 19, no. 1, pp. 50–59, Jan./Feb. 1999.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. SOSP, 2001, pp. 31–41.

[3] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in Internet routing overlays,” in Proc. NSDI,
2009, pp. 467–480.

[4] S. Agarwal and J. R. Lorch, “Matchmaking for online games and other
latency-sensitive P2P Systems,” in Proc. SIGCOMM, 2009, pp. 315–326.

[5] Y. Fu, Y. Wang, and E. Biersack, “A general scalable and accurate
decentralized level monitoring method for large-scale dynamic service
provision in hybrid clouds,” Future Generat. Comput. Syst., vol. 29,
no. 5, pp. 1235–1253, 2013.

[6] G. Caizzone, A. Corghi, P. Giacomazzi, and M. Nonnoi, “Analysis of
the scalability of the overlay Skype system,” in Proc. ICC, May 2008,
pp. 5652–5658.

[7] R. Chen, I. E. Akkus, and P. Francis, “SplitX: High-performance private
analytics,” in Proc. SIGCOMM, 2013, pp. 315–326.

[8] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. SIGCOMM, 2012, pp. 13–24.

[9] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind Akamai,” in Proc. SIGCOMM, 2006, pp. 435–446.

[10] D. Choffnes and F. E. Bustamante, “On the effectiveness of measurement
reuse for performance-based detouring,” in Proc. INFOCOM, Apr. 2009,
pp. 693–701.

[11] D. Sontag, Y. Zhang, A. Phanishayee, D. G. Andersen, and
D. Karger, “Scaling all-pairs overlay routing,” in Proc. CoNEXT, 2009,
pp. 145–156.

[12] (May 2017). Amazon-Cloudfront. [Online]. Available: https://aws.
amazon.com/cn/cloudfront

[13] (2017). Akamai-Sureroute. [Online]. Available: https://developer.akamai.
com/learn/Optimization/SureRoute.html

[14] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, Jul. 2015.

[15] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Triangle
inequality variations in the Internet,” in Proc. IMC, 2009, pp. 177–183.

[16] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris, “Vivaldi: A decentral-
ized network coordinate system,” in Proc. SIGCOMM, 2004, pp. 15–26.

[17] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network
location service without virtual coordinates,” in Proc. SIGCOMM, 2005,
pp. 85–96.

[18] Y. Fu, Y. Wang, and E. Biersack, “HybridNN: An accurate and scal-
able network location service based on the inframetric model,” Future
Generat. Comput. Syst., vol. 29, no. 6, pp. 1485–1504, 2013.

[19] Y. Fu, Y. Wang, and X. Pei, “Towards latency-optimal distributed relay
selection,” in Proc. IEEE/ACM CCGRID, May 2015, pp. 433–442.

[20] P. Fraigniaud, E. Lebhar, and L. Viennot, “The inframetric model for
the Internet,” in Proc. INFOCOM, Apr. 2008, pp. 1085–1093.

[21] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Triangle
inequality and routing policy violations in the Internet,” in Proc. PAM,
2009, pp. 45–54.

[22] A. Nakao and L. Peterson, “Scalable routing overlay networks,” ACM
SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 49–61, 2006.

[23] J. Jiang et al., “VIA: Improving Internet telephony call quality using
predictive relay selection,” in Proc. SIGCOMM, 2016, pp. 286–299.

[24] C. Ly, C.-H. Hsu, and M. Hefeeda, “Improving online gaming quality
using detour paths,” in Proc. Multimedia, 2010, pp. 55–64.

[25] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in the
wild,” in Proc. NSDI, 2007, pp. 299–311.

[26] V. Vishnumurthy and P. Francis, “On the difficulty of finding the nearest
peer in P2P systems,” in Proc. IMC, 2008, pp. 9–14.

[27] Y. Mao, L. K. Saul, and J. M. Smith, “IDES: An Internet distance
estimation service for large networks,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 12, pp. 2273–2284, Dec. 2006.

[28] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[29] P2PSim. (Oct. 2010). The P2PSim Project. [Online]. Available:
http://pdos.csail.mit.edu/p2psim/kingdata/

[30] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary Internet end hosts,” in Proc. IMW, 2002, pp. 5–18.

[31] B. Zhang et al., “Measurement-based analysis, modeling, and synthesis
of the Internet delay space,” IEEE/ACM Trans. Netw., vol. 18, no. 1,
pp. 229–242, Feb. 2010.

[32] D. R. Choffnes, M. Sanchez, and F. E. Bustamante, “Network posi-
tioning from the edge—An empirical study of the effectiveness of
network positioning in P2P systems,” in Proc. INFOCOM, Mar. 2010,
pp. 291–295.

[33] Wikipedia. (Jan. 2011). Sample Skewness. [Online]. Available: http://en.
wikipedia.org/wiki/Skewness

[34] G. Wang, B. Zhang, and T. S. Ng, “Towards network triangle inequality
violation aware distributed systems,” in Proc. IMC, 2007, pp. 175–188.

[35] H. V. Madhyastha et al., “iPlane: An information plane for distributed
services,” in Proc. OSDI, 2006, pp. 367–380.

[36] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “iPlane Nano: Path prediction for peer-to-peer
applications,” in Proc. NSDI, 2009, pp. 137–152.

Yongquan Fu received the B.E. degree in computer
science and technology from Shandong University,
Jinan, China, in 2005, and the M.S. and Ph.D.
degrees in computer science and technology from
the National University of Defense Technology,
Changsha, China, in 2007 and 2012, respectively.
Since 2013, he has been with the Science and
Technology Laboratory of Parallel and Distributed
Processing, College of Computer, National Univer-
sity of Defense Technology, where he is currently
a Lecturer. His research interests include network

measurement, social networks, and distributed systems.

Ernst Biersack received the degree in computer
science from the Technische Universität München
and the University of North Carolina at Chapel
Hill, the Dipl.Inform. (M.S.) and Dr.rer.nat. (Ph.D.)
degrees in computer science from the Technische
Universität München, Munich, Germany, and the
Habilitation à Diriger des Recherches degree from
the University of Nice, France. From 1989 to 1992,
he was a member of Technical Staff with the
Computer Communications Research Group of Bell
Communications Research, Morristown, NJ, USA.

From 1992 to 2014, he was a Professor with Eurecom, Sophia Antipolis,
France.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

