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Abstract

Proximity ranking according to end-to-end network dis-
tances (e.g., Round-Trip Time, RTT) can reveal detailed
proximity information, which is important in network man-
agement and performance diagnosis in distributed systems.
However, to the best of our knowledge, there has been no
similar work on this subject in the P2P computing field.
We present a distributed rating method iRank, that enables
proximity rankings by providing discrete ratings in a dis-
tributed manner. It formulates the proximity ranking as a
rating problem that faithfully captures the proximity based
on noisy distance measurements scalably and practically.
The primary challenge in inferring proximity rankings is
enforcing distributed ratings with complex rating policies.
Our solution is based on reconstructing ratings by decom-
posing a centralized rating method Maximum Margin Ma-
trix Factorization (MMMF) into independent sub-problems,
that can be efficiently solved in a decentralized manner. By
relaxing the dependence on infrastructure nodes that are a
single point of failure and limit scalability, iRank can grace-
fully handle network churns. Through real network latency
data sets, we demonstrate that iRank can predict ratings
with low distortion, which are smaller than 20 percentage
worse than the centralized method, in the context of syn-
thetic complex rating policies.

1 Introduction

This paper introduces a proximity ranking problem into
the P2P computing field, which asks to provide ranking in-
formation of a set of decentralized nodes which may join or
leave independently, based on their pairwise network dis-
tances, (e.g., Round Trip Time, RTT, router-level hops, or
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routing-path weights). For simplicity, we assume the RTT
metric is adopted to represent the proximity. Informally, the
proximity ranking can be described as for each nodei, sort-
ing the rest of nodes in the system by their RTTs towards
nodei in an ascending order.

The motivations behind the proximity ranking prob-
lem are as follows: 1) when diagnosing Internet-scale dis-
tributed systems in case of performance degradation in data
delivery, users can decide the gains in switching to a new
server compared to all the rest of candidate servers, with
the proximity ranking results; 2) In the context of network
management in the overlays, we may wish to provide the
proximity ranking as public performance information for
research purpose, thereby anonymizing performance details
to avoid the network inference activities by potential mali-
cious users.

Providing proximity ranking in the context of decentral-
ized nodes involves several non-trivial challenges. First,
since end hosts may dynamically join or leave systems, the
number of hosts constantly changes, so it is hard to assign
system-wide ordinal numbers towards the other nodes. Sec-
ond, each node can not communicate with all nodes in the
system due to limited network bandwidths and processing
speeds. Third, deploying centralized servers that maintain
the memberships of nodes or the ranking information in-
troduce potential single points of failures or performance
bottlenecks.

To resolve above challenges, This paper formulates a
weak ranking probleminstead, by relaxing the constraint
of providing globally unique ranking positions as follows.
First, we compress the global ranks into a deterministic
number of ratings, e.g, “5 stars”, by aggregating network
distances into a set of intervals. For each node, the ranks
of other nodes with identical ratings are also the same. As
a result, network proximity are preserved while avoiding
global rankings. Second, each node computes ratings to a
small number of nodes, according to chosen rating func-
tions, then infers ratings of other nodes that are not directly
rated in a distributed manner. To the best of our knowledge,
we are the first to formulate and solve the proximity ranking



problem in the context of decentralized nodes.
The weak ranking problem has close relation with the

collaborative rating field, which seeks to find efficient ma-
trix factorizations to estimate a partial observed rating ma-
trix. Maximum Margin Matrix Factorization (MMMF) is
a popular approach to approximate rating matrices [6, 8].
However, it assumes that the matrix are stored in a central
repository, which is reasonable for movie or product rat-
ings. On the contrary, in our decentralized rating context
where nodes may join or leave independently, we can not
store ratings in a centralized manner.

In this paper, to estimate ratings in a distributed man-
ner, we propose a novel weak ranking method, iRank based
on decomposing the well-established fast MMMF [6] into
independent sub-problems. First, two rating functions are
designed as motivating examples of rating policies. Sec-
ond, each node maintains a low-dimensional vector triple
by solving fast MMMF with a small number of sampled
nodes (called landmarks); then the ratings between any pair
of nodes are reconstructed based on rounding the products
of vectors triples into discrete values with thresholds. We
demonstrate through real network latency data sets that rat-
ings can be reconstructed accurately with low dimensional
vectors, in a distributed manner.

2. Related work

Ranking by network distances has close relation with the
research of network coordinate methods for latency estima-
tion [3, 2, 1]. For example, GNP [3] represents the first co-
ordinate computation methods for network distance estima-
tion, where nodes update their coordinates based on a non-
linear optimizing process. Vivaldi [1] is a popular decen-
tralized coordinate method with the spring field simulation.
IDES [2], which is based on Singular Value Decomposition
(SVD) or Nonnegative Matrix Factorization (NMF), tries to
factorize the network distance matrix into two low dimen-
sional sub-matrices with small errors. Network coordinates
are suitable for long-term latency estimation, but fail to pre-
serve the ranking information of network distances [10]. In
this paper, we seek to directly estimate ranking information,
based on predicting ratings of network distances, which can
include application preferences and communication histo-
ries to enhance the reliability and stability of ranking.

On the other hand, our distance ranking by rating
methodology is inspired by well-known collaborative filter-
ing techniques. Both our weak ranking problem and the col-
laborative filtering could be formalized as a matrix comple-
tion problem [8]: completing entries in a partially observed
data matrixD (network distance rating matrix in our set-
tings) with an approximated matrixX ; moreover, for practi-
cal storage and processing, both of them demand a low rank
representation ofX . However, finding a low-rank matrix

minimizing discrete rating distortions is a non-convex prob-
lem, with multiple local minima [8]. To this end, MMMF
[8, 6] provides an alternative convex optimization formula-
tionX = UV by constraining the norms ofU andV instead
of their dimensionality, which can be viewed as constrain-
ing the overall “strength”of the factors in a factor model. As
a result, this low-norm factorization formulation of MMMF
leads to a convex constraint [6, 9].

We are aware that Rish and Tesauro [7] have adopted
MMMF to predict the binary performance metrics of end-
to-end continuous bandwidth and latencies, in a centralized
manner. Besides, they incorporate active learning tech-
niques to choose the best training samples for classifier
accuracy. Instead, we are interested in providing ranking
information by estimating ratings in a distributed manner.
Furthermore, we incorporate semantics of users to design
flexible rating functions.

3. Motivation

3.1. Weak Ranking Problem

Assumes that there exists arating alphabet Y =
{1, . . . , m} where m ≪ N , and each node determines
its ranking policy by defining a rating function that maps
RTT measurements towards other nodes to items inY . The
rating function can be seen as a mapping function from
the ranges of RTT measurements to discrete values, i.e.,
f : [rleft, rright] → N . Theweak ranking problemis to
estimate ratings based on local information in a distributed
manner. Specifically, each node maintains ratings to a small
number of nodes according to chosen rating functions, then
infers ratings of other nodes that are not directly rated in a
distributed manner.

Target to the weak ranking problem, we seek to design
distributed algorithms that predict weak rankings between
end nodes with low-dimensional vectors, inspired by the re-
search of network coordinates. The algorithmic effective-
ness builds upon several principles: (i)Fine-granularity.
The rating function should map pairwise distances into
variable-length intervals according to application prefer-
ences. (ii)Accuracy. The estimated ratings should be close
to real ratings, based on low dimensional vectors. (iii)Scal-
ability. The prediction process should be implemented in a
distributed manner, and avoid the situation that any nodes
may be performance bottlenecks. (iv)Resilience. The per-
formance of ranking predictions should degrade gracefully
when a subset of nodes are unreachable or measurements
are failed.
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3.2. Background of MMMF

Assume that we are given a partially observed rating ma-
trix, then the missing items can be filled with the MMMF
method. Here we introduce the idea, which is the basis of
our method. Given a pairwise rating matrixDn×n, where
Dij ∈ {0, 1, . . . , R}, R represents the maximum rating,
andDij = 0 indicates that nodei does not rated nodej.
Let Ω denote the whole set of nodes. For any matrixY , let
Yi∗, Y∗j denote theith row andjth column ofY , respec-

tively. Let ‖Z‖F denotes the Froebenius norm:
√

ΣijZ
2
ij .

Let X be the approximated rating matrix.
MMMF [6, 8] approximates the rating matrixD with a

linear factor modelX = UV , whereinU is n× d, andV is
d × n, and the dimensiond is d ≪ n for efficient computa-
tion and storage. To find appropriate matrices ofU andV ,
MMMF minimizes a regularized loss function with Froebe-
nius norms ofU andV for capacity control and overfitting
prevention [9]. More specifically, MMMF minimizes the
objectiveJ(U, V, θ) with loss functionh:

J(U, V, θ) =

R−1
∑

r=1

∑

i,j∈Ω,Dij >0

h(T r
ij(θir − Ui∗V∗j))

+
λ

2
(‖ U ‖2

F + ‖ V ‖2
F ) (1)

where

T r
ij =

{

+1 r ≥ Dij

−1 r < Dij

That is,T r
ij imposes penalty on each thresholdθir violated

by current predictionUi∗V∗j . Furthermore, smoothed hinge
lossh(z) = max(0, 1 − z) (as in Support Vector Machine)
makesJ differentiable and optimization easier. Lastly,λ is
the regularization parameter for the norms ofU andV .

MMMF predicts the discrete ratings ofXij ∈ R (Xij =
Ui∗V∗j) by comparingXij with R−1 thresholdsθir learned
by node i. An efficient implementation of MMMF is
based on the Polak-Ribiere variant of Conjugate Gradients
adopted by [6], with the consecutive gradient independence
test, in order to find when to restart the direction of explo-
ration. This approach is verified to be efficient and fast [6].

4. iRank

4.1. Design Overview

The main idea of iRank is to predict discrete ratings of
network distances with low dimensional vectors based on
MMMF [6], in a distributed manner. First, a small sub-
set of landmark nodes initialize the vector triples based on
MMMF process. Second, newly-joining nodes or existing

nodes update their vector triples by probing a set of nodes
that have initialized their vector triples. The benefits of
adopting MMMF are as follows. First, viewed as a factor
model to approximate the data, MMMF can model an infi-
nite number of factors where a few of them are allowed to be
very important. That is, even each node has complex rating
functions, MMMF can still accurately predict ratings. Sec-
ond, MMMF leads to convex optimization problems that are
separated into subproblems and tractable with current opti-
mization techniques.

iRank includes the following components: (i)Rating
Function: Each node can have its personalized rating func-
tion specified according to its preferences. For simplicity,
we present two simple rating functions, as motivating ex-
amples in Section 4.2. (ii)Vector Space: Each nodei is as-
signed a low dimensional rating vector triple< ui, vi, θi >.
The first two vectorsui, vi which are of dimensiond, pre-
dict continuous rating scores, and the third vectorθi speci-
fies thresholds for final discrete ratings. This formulationis
based on MMMF, and is resilient to missing measurements
or node failures. (iii)Distributed Rating Computation: we
present a decentralized low-dimensional vector optimiza-
tion process based on separating MMMF into independent
problems, without the reliance of any infrastructure nodes.
First, a set of nodes compute their rating vector triples to
bootstrap the computation process. Second, all nodes inde-
pendently contact a set of randomly sampled online nodes
that has computed their rating vector triples to update their
vector triples. As a result, iRank can gracefully adapt to the
network churns.

4.2. Rating Functions

It should be reminded that different nodes can use dif-
ferent rating functions, to satisfy their specific preferences.
To demonstrate example rating functions, we introduce two
simple rating functions named Uniform Intervals (UI) and
Exponential Intervals (EI). Assume that we have learned the
maximum distance of all node-pairs as∆, and the maxi-
mum number of distance ranges asΛ. For simplicity, the
maximum distance can be set as a threshold value, such that
all latency measurements above the threshold value are put
into the maximum range. UI is defined as[ i∆

Λ ,
(i+1)∆

Λ ] →
N, i ∈ [1, Λ], where all distance ranges are identical. EI
is defined as[ai, ai+1] → N, i ∈ [1, Λ], where distance
ranges are exponentially increased according to the param-
etera, whose default value is 2. UI-based ratings assign
equal importance to different distance ranges; while EI-
based ratings express preferences towards short distances
against long distances. Clearly, there is a natural tradeoff
between the number of distance ranges and the granularity
of the rating functions. More distance ranges produce finer-
granularity ratings, but may lead to lower stability of ratings
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Figure 1. An illustration of weak ranking
problem, the parameter a=4
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Figure 2. Stability of ratings, where the x-axis
corresponds to the indexes of nodes

due to dynamic network conditions.
For instance, network distances could be mapped to “5

stars” range intervals, as shown in Figure 1. Note that low
network latencies correspond to smaller ratings, due to the
definitions of UI and EI for convenience.

4.3. The Stability of Ratings

We conduct stability test of our example rating functions,
with a ping trace file which records the network distance
measurements between 226 PlanetLab nodes during a four-
hour-long period [5]. The maximum distance for rating
functions is set as the 90th percentile of all pairwise dis-
tances to balance the distributions of mapped rating values.
The size of the rating alphabet is 10.

We compute the absolute error of the ratings for each
available pair of hosts, defined aserrort+1(i, j) = α ×
errort(i, j) + (1 − α) × |Lt+1(i, j) − Lt(i, j)|,whereα is
a weight factor, set as 0.9, andLt(i, j) denotes the rating
of nodej by nodei at time t. The missing item is set as
0. As seen from Figure 2, with UI or EI based discrete
ratings, the median absolute errors for most hosts are≤ 2

for UI based ratings and≤ 1 for EI based ratings; moreover,
90th percentile of absolute errors of most EI based ratings
are below 2, while 90th percentile of most UI based ratings
incur comparatively larger absolute errors, which are also
below 3. It can be concluded that the ratings are around the
initial ratings.

We also quantify the perturbation of ratings by each
node, defined as the ratio of the number of rating changes
to the number of overall measurements. Figure 2 indicates
that the median value and 90th percentile of perturbation ra-
tios are rather small, mostly are below 30%. Furthermore,
most of the median rating changes of UI and EI are smaller
than 0.1. As a result, the ratings can be cached for appli-
cations. Meanwhile, there are several nodes which incur
relatively larger absolute errors or rating changes, this is be-
cause the changes of network distances span more than one
distance ranges specified by UI or EI rating functions. Also,
we found that the degrees of the rating instability become
severe, when the length of the rating alphabet increases.

4.4. Distributed Rating Computation

A. Centralized Rating Computation. A centralized rat-
ing process is straightforward based MMMF in Section 3.2.
First, each nodei selects a subset of nodes as neighbor
nodes; then nodei computes the ratings of these neighbor
nodes based on its rating function; and nodei sends the
rating vectors of its neighbor nodes to a centralized node.
Second, the centralized node uses MMMF to estimate the
low dimensional factorization matricesU andV .

Based on MMMF, the vector space for rating estimation
can be described as follows: each node is assigned a rating
vector triple, with the form< ui, vi, θi >, whereui is the
ith row vector ofU , vi is theith column vector ofV , and
θi is theith row vector ofθ. Then, the rating prediction for
nodej by nodei is computed ast, whereθi(t−1) ≤ uivj ≤
θit, t ∈ [1, R].

B. Distributed Implementation. The distributed compu-
tation of iRank is based on decomposing MMMF into sep-
arable sub-problems. More Specifically, by decomposing
the objective (1) of MMMF into independent problems as
follows:

J(U, V, θ) =
∑

i∈Ω

Ji,Ω (2)

Ji,Ω =
R−1
∑

r=1

∑

j∈Ω,Dij>0

(h(T r
ij(θir − uivj)) + h(T r

ji(θjr

− ujvi))) +
λ

2
(‖ ui ‖

2
F + ‖ vi ‖

2
F ) (3)

After decomposition, nodei can minimize the optimization
objective (3), by independently contacting each nodej in Ω.
By taking full use of objective decomposition of MMMF,
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we propose a novel distributed rating computation process,
which is divided into two phases as follows.

Initialization: A set of random nodes (named as land-
marks) select their personalized rating functions, probe each
other, then compute the ratings of other landmarks based
on measurement results, and send the ratings to a bootstrap
nodeRn (Rn could be any node in the system). With the
rating matrix about landmark nodes, nodeRn adopts the
MMMF process in Section 3.2 to compute the rating vec-
tor triples for landmarks. Then, nodeRn disseminates the
vector triples to the corresponding landmarks.

The communication and computation overheads of the
initialization process are typically low, which depend on the
size of landmarks. Furthermore, the initialization process is
robust to missing items due to unreachable measurements
in the real world. Specifically, by simply setting the ratings
of missing items in the rating matrix as zeros, MMMF can
easily handle incomplete rating matrix.

Update: Existing nodes periodically update their rating
vector triples to adapt to the dynamic network conditions;
meanwhile, newly-joining nodes need to initialize their vec-
tor triples, both in a decentralized manner.

To compute the rating vector triple scalably, nodei ran-
domly samples a set of nodesB, and optimizes the objective
in the form of (3), by contacting nodes inB instead of the
whole set of nodesΩ. Observe that the optimization process
needs both ratings from nodei to each node inB, and the
ratings in reverse directions. The gradients of the optimiza-
tion process can be shown as:

∂J

∂uia

= λuia−

R−1
∑

r=1

∑

m|m∈B,Dim>0

T r
imh′(T r

im(θir−uivm))vma

∂J

∂via

= λvia−
R−1
∑

r=1

∑

m|m∈B,Dim>0

T r
mih

′(T r
mi(θmr−umvi))uma

∂J

∂θir

=
∑

m|m∈B,Dim>0

T r
imh′(T r

im(θir − uivm))

Now we can adopt the conjugate gradient method as the
MMMF, over a randomly subset of nodesB, in a distributed
manner.

Remark: The size of landmarks in the initialization
process is a natural trade-off between the system-wide ac-
curacy and the efficiency: smaller size incurs lower com-
munication overheads, but may lead to less accurate local
minima due to sparseness coverage of the network distance
space; while larger size increases the network communica-
tion costs, however, by covering a broader range of nodes,
it can improve the prediction accuracy. The neighborhood
size|B| represents the local view of each node, which is a
trade-off similar with the set of landmark nodes in the ini-
tialization process. The size ofB is equal to the size of
landmarks by default.
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Figure 3. Distributions of ratings.

5. Evaluation

5.1. Experiment Setup

We have implemented iRank with Matlab 7.6. We set
the tradeoff parameterλ of iRank and MMMF as10

1

1.9 ,
which performs quite well empirically. The performance
metrics include: Zero-one error (ZOE) and Mean absolute
error (MAE) between predicted ratingŝX and actual ratings
D. ZOE and MAE are popular metrics in the collaborative
rating field [6, 8]. LetS = {ij | Dij > 0} represents the set
of pairs of nodes with non-zero ratings. ZOE is defined as
ZOE(X̂, D) = 1

|S|

∑

ij∈S 1
X̂ij 6=Dij

, which accounts for
the percentage of mis-predicted ratings. MAE is defined
as MAE(X̂, D) = 1

|S|

∑

ij∈S |Dij − X̂ij |, representing
the degrees of dissimilarities between predicted ratings and
original ones.

We compare iRank with MMMF and IDES [2]. Note that
IDES is not designed to predict ratings, it estimates contin-
uous network latencies. We only intend to show the feasi-
bility of predicting ratings with network coordinates. The
maximum iterations of iRank, MMMF and IDES are 100.

The real-world network latency data sets we evaluated
include a pairwise RTT matrix of 512 DNS servers from
the p2psim project [4], and network latency matrices from
PlanetLab (denoted as PL) from [2]. We presented median
results from 10 repeated experiments.

The distributions of ratings of all nodes on the K512 data
set are shown in Figure 3. The ratings are clearly separated,
when the sizes of the rating alphabets are 10, 15 and 20, ex-
cept 5. There are also several rating numbers corresponding
to small-sized items when the sizes of the rating alphabets
are 15 and 20. Similar results are found on the PL data
set. Finding rating functions that optimally partitions rat-
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ings with balanced pairs of nodes are open problems.

5.2. Results

We compare the rating performance of iRank with
MMMF [6] and IDES. Due to space limits, rating results
on the K512 data set are presented, similar results are found
on the PL data set. The size of neighbors of iRank and
IDES are set as 35, since we found that more neighbors do
not significantly improve the rating performance. The num-
ber of ratings (denoted as layers) varies from 5 to 20. 50%
nodes use the UI rating function and the others use the EI
rating function. To ensure fair comparisons, we compute
network coordinates for all nodes, then we convert the esti-
mated network distance matrix into a rating matrix based on
rating policies adopted by each node. The results are shown
in Figure 4.

First, the rating accuracy of MMMF is better than that
of iRank or IDES, for the formal case, since MMMF and
iRank share the same optimization process, while MMMF
find optimal solutions with global rating information, and
iRank use only local information to find local minima; for
the latter case, this is because IDES is easily caught by bad
local minima when predicting RTTs. Second, iRank per-
forms much better than IDES, and with the increment of di-
mensions, the performance gains become larger. Third, all
three methods converge to stable rating estimation when the
size of the rating alphabet exceeds 10. These results indicate
that iRank can estimate relatively accurate ratings, whose
ZOE and MAE is about averaged 15% and 20% worse than
those of the centralized MMMF.

Furthermore, We vary the degree of missing items on
the network distance matrix, to further evaluate the perfor-
mance of rating estimation. We find that both iRank and
MMMF approaches do not evidently change the accuracy
of rating estimations, as the growth of missing percentages
from 0 to 40%; while IDES incurs significantly larger errors
as the increments of missing elements, with ZOE around
0.85 and MAE over 2 when the missing percentage is 40%.

6. Conclusions and Future Directions

We introduce the weak ranking problem for P2P applica-
tions based on ratings; and design a novel distributed rating
estimation method, iRank for scalable and accurate weak
ranking. We demonstrated with low dimensionality and
small-sized neighbors, iRank can efficiently estimate rat-
ings with promising accuracy, through experiments on real-
world network latency data sets.

Two directions are quite interesting. First, the rating
functions can embed information from complex application
preferences, and thus are expected to be extended broadly.
Second, incorporating partial order information of pairwise

5 10 15 20
0

0.1

0.2

0.3

0.4 d=5

Layers

Z
O

E

5 10 15 20
0

0.1

0.2

0.3

0.4 d=10

Z
O

E

Layers

5 10 15 20
0

0.1

0.2

0.3

0.4 d=15

Z
O

E

Layers
5 10 15 20

0

0.2

0.4

0.6 d=20

Z
O

E

Layers

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5 d=5

M
A

E

Layers
5 10 15 20

0

0.1

0.2

0.3

0.4

0.5
d=10

M
A

E

Layers
5 10 15 20

0

0.1

0.2

0.3

0.4

0.5 d=15

M
A

E

Layers
5 10 15 20

0

0.3

0.6

0.9

1.2

1.5 d=20

M
A

E

 

 

Layers

iRank MMMF IDES

Figure 4. Comparisons of rating accuracy on
the K512 data set by varying the dimension d
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network latencies into iRank may improve the rating esti-
mation quality substantially.
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