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Abstract

Predicting network latencies between Internet hosts can
efficiently support large-scale Internet applications, e.g.,
file sharing service and the overlay construction. Several
study use the Hyperbolic space to model the Internet dense-
core and many-tendril structure. However, existing Hyper-
bolic space based embedding approaches are not designed
for accurate latency estimation in the distributed context.
We present HyperSpring, which estimates latency by mod-
elling a mass spring system in the Hyperbolic similar with
Vivaldi. HyperSpring adopts coordinate initialization to
speed up the convergence of coordinate computation, uses
multiple-round symmetric updates to escape from bad local
minima, and stabilizes coordinates by compensating RTT
measurements to reduce the coordinate drifts. Evaluation
results based on a network trace of 226 PlanetLab nodes
indicate that, compared to Euclidean-space based Vivaldi,
HyperSpring provides performance improvements for most
nodes, and incurs slightly higher distortions for a small
number of nodes.

1 Introduction

The Network latency (e.g., Round Trip Time, RTT)
between Internet hosts has been an important parameter
for distributed sapplications, e.g., content distribution net-
works can direct hosts to nearby replicas based on latency
estimates; file sharing applications, e.g., BitTorrent, pick
low-network-latency hosts as cooperating swarming peers.
Overlays can select closest peers to minimize the interactive
latency and increase the throughput of data dissemination.

A scalable network latency estimation technique be-
tween Internet hosts is to embed hosts into a geometric
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space with low errors [1, 5, 4]. Hyperbolic space based
Internet latency estimation receives increased study [5, 3],
since it can model the Internet AS topology structure more
accurately than the Euclidean model, and it can guaran-
tee greedy routing to enable geographic forwarding in a
wireless ad-hoc network [2]. However, existing Hyperbolic
space based embedding approaches are not designed for
accurate latency estimation in the distributed context, ei-
ther due to the centralized computation process [5] or high-
distortion compared to embedding nodes into Euclidean
space [3].

The main contribution of this paper is a new latency es-
timation scheme called HyperSpring that operates on the
Hyperbolic space, based on minimizing the energy configu-
ration in a mass-spring system, similar with that of Vivaldi
[1]. HyperSpring consists of three main components: the
bootstrap process which initializes the participants’ posi-
tions according to a small set of landmarks, to increase the
convergence speed of coordinate computation; the multi-
round symmetric update process which refines coordinates
in both directions of each communicating node pair, in order
to avoid high-erroneous local minima; and the stabilization
process that reduce the significant movements of positions
for stability and robustness.

Evaluation results with real-world network traces from
226 hosts on the PlanetLab show that HyperSpring provides
performance improvements with slack: with low dimension
and small-sized landmarks, it is more accurate and stable
than Euclidean space based Vivaldi for most nodes, and in-
curs mildly higher distortions for small fraction of nodes.

2 Related work

Latency estimation based on network coordinates has
received great attention since the coordinate model pro-
vides a compact and powerful model by exploring the ge-
ometric structure of the Internet, e.g., GNP [4] and Vi-
valdi [1]. However, since the Internet latency space con-
tains asymmetric routing and triangle inequality violations
(TIV), which distorts the estimated accuracy. To reduce the



TIV impacts, Vivaldi uses height vectors to capture the time
to traverse the access links from a node to the core of the In-
ternet.

By treating the Internet structure with curvature in a Hy-
perbolic space, the tendency of Internet distances towards
the core can be efficiently represented. Shavitt and Tankel
[5] model the Internet distance map with a centralized em-
bedding procedure based on minimizing energy of a set of
particles. However, it is not clear to extend their methods
to the distributed fashion. Lumezanu and Spring extend
the Vivaldi method into the Hyperbolic space, by formulat-
ing the virtual forces of springs based on the Hyperboloid
model [3]. However, the formulation of directions of vir-
tual forces consists of mistakes in Section 5.2 of [3], which
is identified in 3.6 with techniques from Section II.C of [5].
Similar with Hyperbolic space based Vivaldi [3] and Vivaldi
[1], HyperSpring uses the mass-spring system to perform
the energy minimization. However, there are three distinc-
tions in HyperSpring: firstly, HyperSpring initializes coor-
dinates with a subset of landmark nodes to increase the con-
vergence of coordinates; secondly, HyperSpring symmetri-
cally updates a pair of nodes in multiple rounds to avoid bad
local minima; thirdly, HyperSpring remove the degrees of
coordinate drifts by compensating the RTT measurements
with current embedding errors, which simultaneously pre-
serves the estimating accuracy.

3 Latency estimation in the Hyperbolic space

3.1 Overview

HyperSpring computes the coordinates in a Hyperbolic
space, following the idea of virtual force similar with Vi-
valdi. Firstly, a small number of randomly selected land-
marks initialize their Hyperbolic coordinates based on vir-
tual forces towards other landmarks in the Hyperbolic
space, such that the positions of landmarks are accurate
enough to make end hosts’ coordinates converge quickly.
Secondly, each non-landmark node initializes its Hyper-
bolic coordinate by iteratively applying virtual forces with
respect to positions of landmarks to find an accurate starting
point. Thirdly, to keep coordinates accurate and stable af-
ter the initialization process, a nodei compensates the new
RTT measurements to neighbors to avoid coordinate oscil-
lation caused by RTT perturbations, if and only if the ac-
curacy of nodei’s coordinate is not improved; then, node
i applies new virtual forces to its current position with a
neighbor symmetrically in multiple rounds, such that the
resultant coordinates can converge to better local minima.

As a result, although simply implementing a Hyperbolic
space based Vivaldi incurs large distortions and high coor-
dinate drifts, with the above components, HyperSpring can

provide a scalable, and stable approach for accurately esti-
mating latency.

3.2 Coordinate space selection

The Internet Autonomous System (AS) topology struc-
ture is believed to be jellyfish-like, in that there is a core in
the middle and many tendrils connected to it [3]. A com-
mon model for coordinates is the Euclidean space, where
RTTs between pairs of nodes are approximated by their co-
ordinate distances in the Euclidean norm. However, em-
bedding nodes in Euclidean spaces can not reveal the geo-
metric shape of bending routing paths towards the core, due
to introducing shortcuts between them. Alternatively, the
Hyperbolic space can model the bending characteristics by
defining the hyperbolic line as a parametric curve connect-
ing between nodes bending toward the origin point. A hy-
perbolic space can be determined with two parameters: 1)
curvature, which denotes the amount by which a point in the
space deviates from being flat, e.g., Euclidean spaces have
curvature 0 since distances are represented as the length of
flat lines, and Hyperbolic spaces have negative curvature;
2) metric, which describes how to embed the space and to
represent the distance function between points in the Hy-
perbolic space.

To simplify the coordinate computation, we choose the
hyperboloid model where all points are on the upper sheet
of a hyperboloid (the ’Loid model):
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The distance function is defined as a line of the intersec-

tion of the hyperboloid with the plane determined by two
points and the origin of the space. Specifically, for two
pointsx andy, the approximated network distanced (x, y)
embedded in aN -dimensional Hyperbolic space of curva-
ture|k| is

d (x, y) = dH
xy × |k|
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3.3 Bootstrap of landmarks

For an end host which joins the system, it can quickly
and accurately determine its initial coordinate based on
distances towards a set of pre-configured landmarks that
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have initialized their coordinates. Since, the landmarks can
speedup the coordinate convergence process of end nodes
by providing good guesses of end hosts’ initial coordinates,
which reduce the coordinate movement towards accurate
coordinate positions. Moreover, the landmarks are config-
ured as trustable nodes, which can be used to verify mali-
cious nodes which report fake coordinates.

Original Vivaldi [1] does not include landmarks for sim-
plicity; instead, it updates individual coordinates from the
origin point. In HyperSpring, to provide accurate initial
coordinates for end hosts, the position of each landmark
is iteratively refined based on virtual forces towards other
landmarks. The landmarks are chosen at random, since in a
mass spring field, each node acts the same role by pushing
other nodes parts.

Specifically, each node sets its position as the origin
point, then, for a nodeA which has obtained a new RTT
measurement to a nodeB, A updates its coordinate based
on the following rules:

ws ← wA/ (wA + wB)
ε← |(d(A, B) − dAB)| /dAB

wA ← cewsε + (1− cews)wA

~xA ← ~xA + ccws∆u (~xA − ~xB)

where−→x i is the hyperbolic coordinate of nodei, wi is the
uncertainty of nodei’s coordinate,ce andws are algorith-
mic constant parameters,∆ is the magnitude of the move-
ment, andu(−→x y) is the unit vector in the direction of−→x y.
We introduce the formulation of magnitudes and directions
of the virtual forces in the Hyperbolic space in Section 3.6.

Furthermore, to maintain the uncertainty of the coordi-
nates, each node uses a weighted moving average of the ab-
solute errors observed during the coordinate update process.
The uncertainty is for the purpose of adjusting the magni-
tude of the coordinate movement, in that the greater of a
machine’s uncertainty, or the lower the other node’s uncer-
tainty, the wider the movement will be. Meanwhile, since
the RTT measurements are prone to errors or oscillations,
we use a percentile filter as in Pyxida [7]. Specifically, we
use the RTT values of 50 percentile, and the length of the
filter is 10.

3.4 Bootstrap of non-landmark end hosts

For each new end host, it contacts with the list of land-
marks when joining the system and initializes its own Hy-
perbolic coordinate by iteratively updating its coordinate
with respect to landmarks, which is also based on virtual
forces described in Section 3.3. However, to avoid distor-
tions caused by the inaccuracy of non-landmarks’ initial co-
ordinates, landmarks do not refine their coordinates accord-
ing to measurements from end hosts.

After the initialization process, end hosts update their
coordinates with other machines, without the need of land-
marks.

3.5 Coordinate Refinement

After successfully completing the initialization process,
to keep Hyperbolic coordinates accurate and stable, a node
will compensate the RTT measurements towards other
neighbors, if and only if its coordinate’s accuracy can not
be improved; then it updates its coordinate by applying vir-
tual forces symmetrically with the corresponding neighbor
in multiple rounds, based on the coordinate computation
process in Section 3.3.

3.5.1 Stablization based on RTT compensation

The coordinate computation process in Section 3.3 does not
consider the drift of coordinates, which causes caching ma-
chines’ coordinates inappropriate since the positions soon
become obsolete. An improved coordinate update policy is
to keep coordinates stable, where positions are refined in
small steps after the accuracy of positions can not be signif-
icantly promoted.

When a machineA updates its coordinate by communi-
cating with a neighborB, it determines the estimated error
with all neighbors firstly, by computing its weighted abso-
lute errorE:

Et+1 = w ×
∑

i |d(A, i)− dA,i|
N

+ (1− w)Et

wherew is a weighted constant,N is the size of neigh-
bors,d(A, i) is the estimated distance between nodeA and
i, dA,i is the real RTT value. IfE does not become lower,
then nodeA’s coordinate is marked as ”stable”, and we re-
fineA’s coordinate based on a stabilized process, similar to
stable process proposed in [8]. otherwise, the coordinate is
marked as ”normal”, and we updateA’s coordinate based
on the process in Section 3.3.

In the stabilized process, to reduce movement magnitude
of A’s coordinate which is computed based on new RTT
dAB, we compensate the RTT betweenA andB asdAB+ei

with the estimated absolute errorei, which is defined as

ei+1 = ei × w + (1− w)× (d(A, B) − dAB)

. ThenA’s position is updated as those in the ”normal”
update process (w is 0.9 by default).

3.5.2 Multi-round symmetric update

If a nodeA refines its coordinate in a small step after mea-
suring new RTT to a nodeB, but they do not cooperatively
update their coordinates according to new RTT values, the
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gained performance improvement is easily weakened or to-
tally neutralized byB’s large-step movement that contra-
dicts A’s refinement according to a third node. As a result,
their coordinates can converge to local minima with low ac-
curacy globally.

To resolve the problem, We present a symmetric up-
date process which update a node pair’s coordinates inter-
actively. Each participant of a node pair involving a co-
ordinate update process, updates their own coordinates in
a symmetric manner, in multiplek rounds (15 by default).
This has two benefits: 1) the RTT values are symmetric, so
it is cost effective to notify each node in the pairs to improve
their coordinates; 2) multiple rounds of coordinate updates
can avoid the local minima caused by a single coordinate
movement, thus increasing the robustness against measure-
ment outliers.

3.6 Formulating virtual forces in the Hy-
perbolic space

In the Hyperbolic space, the magnitude and the direction
of virtual force have to be reformulated, due to the changes
of distance function, which is described in Section 3.2.

First, the magnitude is the difference between RTT mea-
surements and estimated distances based on the Hyperbolic
model. It can be written as∆← dAB−d(A, B). HeredAB

is the RTT measurement, andd(A, B) represents the esti-
mated distance, which is the pairwise hyperbolic distance
betweenA andB in ’Loid model multiplied the curvature
k, as shown in Section 3.2.

Second, the direction of the virtual force is an unit vector
in the Hyperbolic space (for a vectorx, u(x) ← x/ ‖x‖H ,
where‖•‖H is the norm of Hyperboloid model). We find
that there exists mistakes in formulating directions of vir-
tual forces in [3], which can be easily verified based on the
upper sheet of hyperboloid as follows. Since for any node
A involved in a node pair(A, B), the direction of the virtual
force is the same with that of the gradient of the hyperbolic
distanced(A, B), as shown in [5](from section II.C).

The gradient∂d(A, B)/∂~xA of the approximited net-
work distanced(A, B) betweenA (~xA) andB (~xB), with
respect to~xA is:
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. Therefore, based on the direction of the gradient func-
tion∂d(A, B)/∂~xA, we are ready to formulate the direction

uH (~xA − ~xB) as follows:
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4 Performance Evaluation

4.1 Experiment setup

We have implemented HyperSpring based on Pyxida [7].
There are three additional techniques to increase the sta-
bility and accuracy of coordinates. First, the RTT latency
is smoothed based on combining new RTT measurements
with percentile filters to reduce the RTT oscillation. Sec-
ond, we only update coordinates with neighbors that cur-
rently send new RTT samples, to reduce the misguidance
of neighbors’ obsolete coordinates. The maximum size of
neighbors each node contacts with is 32. Third, large RTT
values which surpass a threshold (2s by default) are skipped,
since network coordinates can only model long-term net-
work latencies, and large RTTS are usually caused by short-
term network congestions instead. The dimension of coor-
dinates is 5.

To guarantee a realistic comparison, we use a four-hour
PlanetLab Ping trace between 226 machines on the Plan-
etLab [6] to evaluate the optimization techniques for Vi-
valdi in Hyperbolic and Euclidean spaces. The trace records
RTTs between node pairs as well as the time-stamps. So we
can replay the communication process at a simulation envi-
ronment.

The performance metrics involved in our experiments in-
clude: 1) relative error: for each pair of nodesA andB, it is
defined as|RTTAB − d (A, B)| /RTTAB, whered (A, B)
is the estimated distances betweenA andB; 2) coordinate
drift: it is the length of the virtual force added to the present
coordinate computed by the coordinate update process in
Section 3.6.

4.2 Parameter configuration of Hyper-
Spring

A. Hyperbolic space configuration
First, we examine the sensitivity of curvature and dimen-

sion of the Hyperbolic space without the influences of the
bootstrap process, the symmetric update process and the
stabilization process.

Fig 1 plot the performance of the experiment using vary-
ing curvature with dimension as 5. The error-bars in the
figures represents the 50th, 80th and 95th percentiles of the
corresponding performance metrics(the meanings of error-
bars in the following paragraphs are the same). Small val-
ues of curvature, such as 5 cause slow convergence and high
coordinate drifts; increasing curvature to 10 and 15 causes
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faster convergence and slow coordinate drifts, and the vari-
ance of performance is low; but increasing curvature to 30
leads to high-error coordinates. The reason for the high er-
ror is that too small or large curvature cause estimated dis-
tances bend apart from the best situation.

Furthermore, by setting the curvature as 15, we deter-
mine the sensitivity of dimensionality according to the cur-
vature. Fig 2 plots the progress of simulation as the incre-
ment of dimensionality. We found that performance approx-
imately keeps identical along the increment of the dimen-
sionality. Therefore, The accuracy is insensitive to changes
of dimensionality. So we set the dimension as 5 and the
curvature as 15 throughout the rest of the evaluation.

B. Parameter selection
We investigate the sensitivity of parameters for bootstrap

and the symmetric update process, by combining them in-
dependently with the basic coordinate computation process
in Section 3.3, so that we can remove the possible correla-
tions between the bootstrap process, the symmetric update
process and the stabilization process.

a) Bootstrap process: We vary the number of landmarks
which are chosen uniformly at random to determine the va-
riety of estimation accuracy. Fig 3 plots the progress of av-
eraged relative errors as the increment of landmarks. At
first, the performance increase rapidly when the number
of landmarks are small (less than 20); thereafter, it does
not improve much. We also test the neighbor selection
which maximizes the inter-distances, and find that the per-
formance is not sensitive to varying neighbor placement. So
any node in the system can become the landmarks for the
bootstrap process.

b) Symmetric update process: We change the update
rounds between each pair of communicating nodes during
the symmetric update process. Fig 4 depicts the changes
of performance with different updating rounds. The results
show that as the number of updating rounds increase from 5
to 15, symmetric updates can increase the accuracy of esti-
mated distances, by escaping from bad local minima during
the coordinate update process. However, as the increment
of updating rounds (e.g., 20), the performance of a subset
of nodes becomes worse, since the updates can cause coor-
dinates more apart from the best positions.

4.3 Comparision results

We compare HyperSpring with two kinds of latency es-
timation methods: 1) basic Hyperbolic-space based Vivaldi
[3]; 2) Euclidean-space based Vivaldi [1] that is imple-
mented in [7]. Fig 5 and 6 depict the performance dynamics
as the time-stamp progresses.

Firstly, Fig 5 shows that, HyperSpring is significantly ac-
curate than 1) and 2),where the median and the 80th per-
centile relative errors of HyperSpring are less than 0.05
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Figure 1. The relative errors as the increment
of the curvature.
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Figure 2. The relative errors along with differ-
ent dimension.

and around 0.15, compared to the median value 0.5 of ba-
sic Hyperbolic-space based Vivaldi, and the median value
0.16 of Euclidean space based Vivaldi. Meanwhile, most of
the 95th percentile of relative errors of HyperSpring are be-
tween 0.2 and 0.4, which are more than two times smaller
than those of basic Hyperbolic-space based Vivaldi, and
are about half times smaller than those of Euclidean space
based Vivaldi. However, there are also quite a few of sam-
ples of HyperSpring having large relative errors which reach
0.8 or event to 1, which indicates that HyperSpring pro-
vide estimation guarantees with small slack: it produces
embeddings with small dimension and distortion for most
of nodes, while it allows a small fraction of RTTs to be ar-
bitrarily distorted.

Secondly, as shown in Fig 6, the coordinate drifts of Hy-
perSpring are significantly decreased with respect to those
of basic Hyperbolic-space based Vivaldi and Euclidean-
space based Vivaldi. This is due to the dynamic adjustment
of movements of HyperSpring.

5 Conclusion and future work

We consider the problem of estimating latencies in the
Hyperbolic space which is believed to model the Internet
structure more naturally than the Euclidean space. We
present a scalable latency estimation method HyperSpring
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Figure 3. Relative errors as the increment of
the number of landmarks.
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Figure 4. Relative errors with varying rounds
of symmetric updates.

which derives from Vivaldi, but consists of three distinct op-
timization components that increase the accuracy and stabil-
ity of latency estimation. We evaluated the performance of
HyerVivaldi with real-world network traces that can model
the network dynamics. The relative errors of HyperSpring
are smaller than those of Euclidean space based Vivaldi
in most cases. And the coordinate drifts of HyperSpring
is smaller than 2, which is about two times smaller than
those of Vivaldi. An interesting phenomenon we found
from evaluation is that by applying the optimization tech-
niques of HyperSpring into the Euclidean space based Vi-
valdi, there are significant performance improvements com-
pared to those of HyperSpring. We are exploring the rea-
sons behind this currently.
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