
Future Generation Computer Systems 29 (2013) 1485–1504
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

HybridNN: An accurate and scalable network location service based
on the inframetric model
Yongquan Fu a,∗, Yijie Wang a, Ernst Biersack b

a National Key Laboratory for Parallel and Distributed Processing, College of Computer Science, National University of Defense Technology, Hunan province, 410073, China
b EURECOM, France

a r t i c l e i n f o

Article history:
Received 15 January 2012
Received in revised form
4 October 2012
Accepted 7 December 2012
Available online 20 December 2012

Keywords:
Distributed nearest server location
Peer-to-Peer
Inframetric
Growth dimension

a b s t r a c t

Locating servers that have shortest interactive delay towards an Internet host provides an important
service for large-scale latency sensitive networked applications, such as VoIP, online network games, or
interactive network services on the cloud. Existing algorithms assume that the delay space is a metric
space, which implies that the delay between two nodes is symmetric and the triangle inequality holds.
In practice, the delay space is not metric, which lowers the accuracy of metric-based algorithms. We
develop a new schemewhose theoretical foundation is based on the inframetricmodel, which hasweaker
assumptions than the metric model. We prove that the location requests can be completed efficiently if
the delay space exhibits modest inframetric dimensions, which we can confirm empirically. Finally, we
propose HybridNN (Hybrid Nearest Service Node Location) that finds the closest service node accurately
thanks to the inframetric model and scalably by combining delay predictions with direct probes to a
pruned set of neighbors. Simulation results show that HybridNN locates in nearly all cases the true nearest
service nodes. Experiments on PlanetLab show that with modest query overhead andmaintenance traffic
HybridNN can provide accurate nearest service nodes that are close to optimal.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Latency-sensitive applications, such as overlay based VoIP
[1–3], peer-to-peer distributed virtual environments [4], IPTV
[5], interactive network services in the cloud (e.g. Office Live
Workspace [6], Google Maps [7]), data sharing on e-science
grids [8], High Performance Computing (HPC) over grid or cloud
platforms [9], or online network games need to transmit data from
geo-distributed servers (called service nodes) in real-time tomany
hosts. High transmission delays reduce the Quality of Experience
(QoE) of users [10] and may lead to significant business losses.

Since there can be hundreds or thousands of service nodes that
provide identical services to hosts, there is an increasing need to
redirect hosts’ requests to the closest service nodes. For example,
Google routes search queries to nearby servers [11]; Akamai redi-
rects content requests to replica servers based on the proximity
criteria [12].

Locating nearest service nodes for large-scale Internet hosts is
nontrivial. Selecting the service nodewith theminimumRTT value

∗ Corresponding author. Tel.: +86 13875828390.
E-mail addresses: yongquanf@nudt.edu.cn, quanyongf@126.com (Y. Fu),

wangyijie@nudt.edu.cn (Y. Wang), erbi@eurecom.fr (E. Biersack).

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.12.002
based on all-pair RTT values does not scalewith increasing number
of service nodes or Internet hosts. On the other hand, organizing
service nodes as an overlay and searching the node nearest to the
target in a distributed manner [13,14] is easily trapped into local
minima, because of the clustering [15] and the Triangle Inequality
Violations (TIV) [16] of the Internet delay space. As a consequence,
selecting nearest service nodes for Internet hosts is still far from
being fully solved.

1.2. Contribution

The goal of this paper is to design new algorithms that accu-
rately and efficiently find the nearest servers for Internet hosts.We
develop a general distributed nearest service node location scheme
based on the inframetricmodel [17] that allows the existence of the
TIV and asymmetry.

Based on the inframetric model, we analytically demonstrate
that we can quickly find the approximately nearest server for ar-
bitrary hosts by recursively searching for closer nodes in a dis-
tributed manner. We formally prove the relation between the
search accuracy, search costs, and search hops. Our theoretical re-
sult requires to randomly sample enough neighbors to each node,
which can be easily performed in a distributedmanner. As a conse-
quence, our theoretical results provide guidelines for devising new
and practical nearest-server-location algorithms.

http://dx.doi.org/10.1016/j.future.2012.12.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.future.2012.12.002&domain=pdf
mailto:yongquanf@nudt.edu.cn
mailto:quanyongf@126.com
mailto:wangyijie@nudt.edu.cn
mailto:erbi@eurecom.fr
http://dx.doi.org/10.1016/j.future.2012.12.002

1486 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
We then design a novel distributed nearest-service-node-
location algorithm, called HybridNN, which finds nearest service
nodes for any Internet node (called a target). HybridNN is informed
by our theoretical results for the inframetric model and preserves
the accuracy and the speed proven theoretically. HybridNN

• Reduces themeasurement cost byusing thenetwork coordinate
based delay estimation.
• Performs a small number of active probes during the query

process to increase the accuracy of the delay estimations, and
to avoid that the queries are misled by inaccurate network
distance estimations.
• Organizes neighbors in concentric rings and samples enough

neighbors in each ring with biased neighbor sampling in order
to selectively sample nodes among one node’s closest neighbors
and farthest neighbors.

We validate HybridNN using real-world delay data sets, which
contain asymmetric delays, and a PlanetLab deployment. Through
simulations we show that HybridNN finds servers close to the
optimal one. In fact, inmore than 80% of all cases, HybridNN locates
the ground-truth nearest server. Most queries terminate within
four search hops, which implies that HybridNN can return the
search result fast. Using a PlanetLab deployment, we confirm that
HybridNN accurately locates nearest servers with low query and
control traffic overhead.

The rest of the paper is organized as follows. Section 2 sum-
marizes related work. Section 3 states the nearest service node
location problem. Section 4 theoretically analyzes the problem.
Section 5 presents the details of HybridNN. Sections 6 and 7 eval-
uate HybridNN via simulation and PlanetLab experiments. Finally,
Section 8 summarizes the contributions of the paper.

2. Related work

Existing work on the problem of the nearest service node
location can be grouped into either centralized or distributed
approaches by whether there exists a centralized node selects the
nearest node to the target based on the global pairwise proximity
distances.

A related problem is the nearest neighbor search in the metric
space [18–20]. Unfortunately, since the pairwise RTTs often violate
the triangle inequality that is assumed to hold in a metric
space [21], it is infeasible to apply these theoretical results to the
nearest service node location in our context.

2.1. Centralized approaches

For centralized approaches, a node (called repository node)
stores pairwise proximity distances between all nodes and finds
the nearest service node to an arbitrary target by sorting the
proximity distances from all service nodes to the target. Depending
on the ways of obtaining pairwise proximity, existing centralized
approaches can be categorized into: (1) direct measurement based
approach, (2) coordinate based approach, (3) topology based
approach.

(1) The direct measurement based approach collects RTTs from
all service nodes to the target based on direct delaymeasurements.
Carter and Crovella [22,23] collect RTT measurements and band-
widthmeasurements from Internet hosts to servers and decide the
nearest server to the host and select the optimal server that mini-
mizes the file transmission time in a centralized manner.

(2) The coordinate based approach embeds all nodes into a
geometric space and estimates pairwise proximity based on the
pairwise coordinate distances. The repository node collects the
coordinates of all nodes and selects the one with the minimum
coordinate distance as the service node nearest to the target. Since
the service nodes need not probe the target, the coordinate based
approach reduces the measurement costs compared to the direct
measurement based approach. Unfortunately, the estimation
errors of coordinate distances also decreases the accuracy of
locating the nearest service nodes.

Guyton et al. [24] pioneered the research on finding the closest
server in terms of the routing hops estimated by the Hotz’s
metric [25]. Smaller-hop nodes are not necessarily the nearby
nodes, since one hopmay traverse a continent or stay inside a data
center.

Ratnasamy et al. [26] cluster Internet hosts into proximity
groups that have the same relative coordinates computed as
vectors of proximity from Internet hosts to landmarks. Nodes in
the same cluster are assumed to be equally close to each other.
The clustering process can not directly compute the nearest service
node. Furthermore, the cluster’s accuracy is also not bounded
because of the heuristic nature of the clustering process.

Netvigator [27] sorts the proximity from service nodes to
targets based on the relative coordinates computed as vectors of
RTTs from each node to landmarks and some routers found on the
routing paths. Netvigator may return out-of-date results since the
relative coordinates may be obsolete.

CRP [28] sorts the proximity from service nodes to targets with
the coordinates computed as the vectors of redirection frequencies
to CDN edge servers. CRP can degrade its accuracy when the
redirection process is also affected by non-proximity policies such
as loads or transit traffic costs. Besides, CRP fails to select the
nearest service node when the candidate nodes and the target
shares no common CDN edge servers.

(3) The topology based approach constructs a virtual Internet
topology structure for a set of nodes and predicts pairwise prox-
imity between these nodes based on the topology distances. For
proximity queries, the targets and all services must be included
into the topology; then the repository node computes the nearest
service node to the target by sorting the topology distances from
all service nodes to the target.

iPlane [29,30] predicts a compact Internet routing model for
arbitrary Internet hosts and estimates the nearest node to any
target based on the ordinal information from candidate nodes to
the target. iPlane has to perform extensive measurements from
distributed landmarks to wide-area Internet addresses in order
to maintain an up-to-date routing model, with overall 2 million
probes per day. Besides, iPlane has to select a large number of geo-
distributed landmarks to cover the PoP-level links.

In summary, for large-scale service nodes or targets, the central-
ized approaches fail to trade off the accuracy and the scalability of
locating nearest service nodes. Besides, the repository node may
introduce performance bottlenecks as the system size increases.

2.2. Distributed approaches

For distributed approaches, service nodes are organized as an
overlay and a greedy search process is adopted to recursively locate
a next-hop neighbor that is nearer to the target. As a result, dis-
tributed approaches scale better than the centralized approaches,
since no repository nodes are required. Besides, the measurement
costs are also lowered, since each node determines a next-hop
neighbor based on the local proximity information between neigh-
bors and the target.

According to theways of selecting the next-hop neighbor, exist-
ing approaches can be categorized into: (1) distributed clustering
based approach, (2) on-demand probing approach, (3) coordinate
based approach.

(1) The distributed clustering based approach partitions nodes
into proximity clusters of nearby nodeswith distributed heuristics.
The target needs to probe RTT values to the cluster-head nodes

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1487
of all clusters and select the cluster of the target to be the same
with the cluster-head node with the minimum RTT. Then, from
the nodes in the same cluster with the target, the one with the
minimum RTT to the target is selected as the target’s nearest
service node.

Tiers [31] maintains a distributed hierarchical clustering tree
of nodes based on distributed heuristics. Each vertex in the
tree denotes a real-world service node. Each proximity query is
forwarded in a top-down approach: each upper-layer node selects
the child node with the minimum RTT to the target as the next-
hop node answering the proximity query. Unfortunately, Tiers
may return a node far away from the ground-truth nearest node
because of the heuristic based clustering process. Besides, the tree
introduces load imbalances for nodes near the root of the tree.

Sequoia [32] organizes nodes as a virtual tree based on pairwise
RTT or bandwidth values. The leaf nodes in the tree are real-
world nodes; the internal vertices are virtual nodes for connecting
different branches. Sequoia assumes the target and the service
nodes are all embedded into the tree structure. When locating the
nearest service node for a target, the target directly compares the
tree distances from itself to nodes in nearby branches. However,
since Sequoia assumes the delay space to be a tree metric that
requires the triangle inequality to hold, the accuracy of proximity
queries degrades when TIV occurs.

(2) The on-demand probing approach organizes nodes into an
overlay and recursively finds a next-hop neighbor that is nearer
to the target than the current node by comparing the direct RTT
measurements from the neighbors to the target.

Mithos [33] constructs an overlay based on the gossip based
peer sampling process similar as [34]. A proximity query is recur-
sively forwarded to a neighbor nearer to the target. Unfortunately,
Mithos is easily trapped into local minimum since the neighbor set
of Mithos has limited diversity.

Meridian [13] improves the neighbors’ diversity bymaintaining
neighbors in concentric rings with exponentially increasing radii.
Meridian finds new neighbors through an anti-entropy gossip pro-
tocol [34] and retains neighbors that maximize the diversity of
neighbors’ locations. To search a server nearest to a target, Merid-
ian recursively locates a neighbor that is β (β ≤ 1) times closer to
the target than the current node. Meridian has an interesting the-
oretical foundation that assumes the Internet delay space to be a
growth or doubling metric [35,19].

Unfortunately, several subsequent study has shown that
Meridian may be trapped at a local minimum due to the clustering
phenomenon of the delay space [15] or the TIVs of the network
delay space [21]. To address these problems, two adjustments have
been proposed:

• explicitly being aware of the set of subnet nodes in the local
clusters [15]. However, finding the local clusters becomes
insufficient when clusters covering service nodes spreading
multiple subnets. Besides, adding extra neighbors also increases
Meridian’s query overhead.
• adding all neighbors that may not be chosen due to the TIVs

based on Vivaldi’s prediction errors [21]. However, selecting all
neighbors affected by TIVs is difficult because of the heuristic
based TIV detection [21].

We have systematically analyzed the difficulties of finding the
nearest nodes by Meridian [36].

(3) The coordinate based approach assigns a coordinate to each
node, and recursively determines the neighbor nearer to the target
in terms of coordinate distances. As a result, the measurement
costs are reduced compared to the on-demand probing approach.
Unfortunately, the estimation errors of coordinates also degrade
the accuracy of the proximity queries.

PIC [37] is similar with Mithos, but recursively finds a neighbor
that has lower coordinate distance to the target, assuming that
Table 1
Notation used.

Notation Meaning

T Host that issues the DNNL queries, i.e., the target
P Set of service nodes
N Number of service nodes
V All nodes V = P ∪ T
d Pairwise delays between node pairs in V
β The DNNL distance reduction threshold
ρ Inframetric parameter
∆ Maximal size of the ring
K Size of sampled neighbors by the random walks
m Number of neighbors for direct probes
τ Number of non-empty rings
Nr Number of rings in the concentric ring

the target maintains their own coordinates. OASIS [14] borrows
Meridian’s idea and recursively finds a neighbor closer to the target
in termsof the geographical distances. As a result, OASIS has similar
weaknesses with Meridian. Besides, OASIS may be trapped at local
minimum since the wide-area RTTs are not always consistent with
the geographical distances [11]. Finally, DONAR [38] combines the
constraints of the geographical distances, the routing optimization
and server loads to select the optimal nodes to the target, which
generalizes our work.

Besides, although Netvigator and CRP select the nearest node
to the target in a centralized manner, their coordinates can be
leveraged in a decentralized manner like in PIC or OASIS.

In summary, existing distributed approaches are still far from
practical in terms of trading off the accuracy and the scalability.

3. Background

In this section we first explain how the Distributed Nearest
Service Node Location (denoted as DNNL) works, we then present
Meridian, a well-known DNNL system that assumes that the delay
space is metric before we briefly describe the delay data sets
used in this paper and introduce the inframetric model. Table 1
summarizes key notations using in the paper.

3.1. Problem definition

Throughout the paper we refer to the node for which we need
to find the closest service node as the target. We assume service
nodes may be added or removed at any time, which causes system
churn.

We define the Distributed Nearest Service Node Location (DNNL)
to operate as follows: For a set of dynamic service nodes, given
any target T on the Internet, DNNL finds one service node that has
the smallest delay to T , based on the collaboration among service
nodes.

DNNL proceeds in iterations. At each step, the current service
node Pi tries to locate a new service node Pi+1 that is closer to the
target T than Pi. For an illustration see Fig. 1: When a host T wants
to access a networked service, it issues a DNNL query to locate the
nearest service machine to T . The querymessage is first forwarded
to any service node P1 of the DNNL service (Step 1). Then the DNNL
query system will forward the query message recursively until
locating a nearest service node P3 (Step 2 → 3). Finally, DNNL
returns the address of node P3 to host T (Step 4). The service node
P3 will then provide the required network service to host T .

To be useful for latency-sensitive applications, we identify the
following key requirements for a DNNL:
• Accuracy, to find a service node with the lowest delay in order

to increase the Quality of Experience of users.
• Speed, to obtain the nearest service node quickly. Since too

long a query time makes the DNNL less attractive for server
redirections of latency-sensitive applications.
• Scalability, the DNNL process should incur low bandwidth cost

with increasing system size.

1488 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
Fig. 1. DNNL query service substrate for network services.

• Resiliency to churn, to return accurate results even when some
service nodes crash or new service nodes are added.

3.2. Meridian

We take Meridian as a state-of-art DNNL scheme that assumes
that the Internet delay space is a metric space.

EachMeridian node P maintains a O (log (N))-sized set of other
Meridian nodes as logical neighbors, where N is the number of
service nodes. The neighbors are organized in concentric rings
with exponentially increasing radii: the i-th ring contains neigh-
bors whose delays to node P lie in the interval

αsi−1, αsi

, with

i > 0, α a constant, s a multiplicative increase factor. We will use
α = 1, s = 2 ms for Meridian.

To limit the storage overhead, the number of rings is limited
to be a constant i∗, and the number of neighbors in each ring
is bounded to be a constant kr . Consequently, all rings i > i∗
are collapsed into a single outermost ring spanning the interval
αsi
∗

,+∞

. Besides kr neighbors in each ring, each Meridian

node also maintains l additional neighbors (called secondary ring
members) within each ring that are used to replace primary ring
members when updating the rings.

Neighbors in eachMeridian node are uniformly sampled with a
gossip process. The gossip process is an anti-entropy ‘‘push’’ based
gossip protocol, where each node periodically selects a node in its
ring as the gossip counterpart, and pushes one neighbor per non-
empty ring to the gossip counterpart.

A ring maintenance process is triggered periodically to update
the set of primary neighbors of each ring by optimizing the
geographic diversity, based on a maximum hypervolume polytope
algorithm [13]. Each time, the ring maintenance process updates
one ring, all-pair delay probes among the primary and secondary
neighbors of that ring are necessary.

For a DNNL request, Meridian iteratively locates one next-hop
node that is β (β < 1) times closer to the target T than the current
Meridian node. Assuming the triangle inequality and symmetry to
hold in the delay space, Meridian can find all candidate neighbors
that are β times closer to the target in the following way: a
Meridian node P measures its delay dPT to the target T , then node P
selects candidate neighbors from its concentric ring whose delays
to P are within [(1 − β)dPT , (1 + β)dPT], where β is the delay
reduction threshold.

In Fig. 2 we have aMeridian node P and a target T , the neighbor
selection objective of node P is to locate all next-hop neighbors
Fig. 2. Choosing a β times closer neighbor A to node T from P .

whose distances to the target T are smaller than βdPT . For each
candidate neighbor A in the concentric ring of node P , thanks to the
triangle inequality of the triple (P, T , A) as well as the symmetry
of delays, the delay value dAP will satisfy the following constraints:
dAP ≤ dAT + dPT
dPT ≤ dAP + dAT
dAT ≤ dAP + dPT
dAT ≤ βdPT

⇒

dAP ≥ |dPT − dAT | ≥ (1− β) dPT
dAP ≤ dPT + dAT ≤ (1+ β) dPT .

The pseudo-code of Meridian is depicted in Algorithm 1. Line 2
determines the delay between theMeridian node P to the target T .
Line 3 selects the candidate neighbors in the concentric ring of P
that are within certain delay ranges to P by the triangle inequality.
Then Lines 4–7 find the neighbor that is closest to the target T .
Lines 8 −→ 16 determine whether the DNNL process should be
continued or stopped by testing the existence of the β times closer
neighbor.

The measurement overhead of each step is 1 + |U|, since each
neighbor in U needs to probe target T . Furthermore, node P has
to wait for the measurement results from neighbors in U , thus
the completion period of the algorithm depends on the slowest
response of neighbors in U .

Algorithm 1:Meridian procedure.
1 Meridian(P, T)
input : current node P , the target T
output: nearest node to T
// RTT measurements

2 dPT ← RTTProbe(P, T);
3 U ← {i |i ∈ RP ∧ (1− β) dPT ≤ diP ≤ (1+ β) dPT };
4 for i ∈ U do
5 diT ← RTTProbe(i, T);
6 end
7 A← argmin

i∈U
diT ;

8 if dAT ≤ βdPT then
9 Meridian(A, T);

10 else
11 if dAT < dPT then
12 return A;
13 else
14 return P;
15 end
16 end

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1489
3.3. Data sets

During the design of our DNNL algorithmwe used four different
delay data sets to evaluate its performance. These data sets cover
the delays between wide-area DNS servers and those between end
hosts [36].

Using publicly available delay data sets is a popular approach
to assess the performance of nearest service node location
methods [13,39,12,27]. Moreover, since the delay data sets are
directly collected from the real Internet environments, the data
sets are more faithful than those generated by synthetic tools.
The data sets may contain some measurement noise due to the
probing environment, which is valuable for testing the robustness
of proposed methods.

In this paper, due to space limitations, we will report results for
two of these data sets:

• DNS3997. A RTT matrix of delay measurements collected
between 3997 DNS servers by Zhang et al. [40] using the King
method [41]. The matrix is symmetric in that dij = dji, for any
pair of items i and j, where d denotes the delay matrix.
• Host479. A RTT delay matrix based on RTT measurements

among Vuze BitTorrent clients [42]. Each item dij denotes the
aggregated RTT measurements from host i to host j. Due to the
dynamics of Vuze clients, the measurements are not synchro-
nized and different hosts may make measurements at different
time slots. Since the delay variations (or jitter) occur frequently
because of queueing and transient network congestion [43], it
is not surprising that the Host479matrix is asymmetric. The de-
lay pairs dAB and dBA differ bymore than a factor of four in about
40% of the cases [42].

3.4. The inframetric model for the delay space

Existing DNNL schemes such as Meridian have made the as-
sumption that the delay space is metric. However, in general this
is not true and the TIV phenomenon occurs frequently as shown
in Fig. 3. We calculate the TIV Severity TABC for each triple (A, B, C)

that does not contain missing edges, TABC =
dAC

dAB+dBC
. Therefore,

TABC > 1 means there exists a TIV for the triple (A, B, C). We see
that DNS3997 and Host479 both contain a fraction of TIVs. Besides,
Host479 causes more severe TIVs than DNS3997 since asymmetric
latencies cause more triples to have TIVs.

TIVs occur due to systematic effects such as the suboptimal In-
ternet routing policies and have been recognized as a fundamen-
tal property of the Internet delay space [44,45,21,16]. Moreover,
the end-to-end RTT measurements are also asymmetric (e.g., the
Host479 data set), because of the fact that end hosts do not coor-
dinate their measurements can lead to persistent asymmetric RTT
samples.

To put the design of DNNL schemes on a theoretical foundation
whose assumptions faithfully model the characteristics of the
Internet delay space,we consider a general delaymodel that allows
for TIV and asymmetry to hold. For this purpose, we extend the
inframetric model [17], which generalizes the notion of the metric
space.

We directly introduce the extended inframetric model.1 In
order to account for asymmetric RTTs, we define the inframetric
for a triple (A, B, C) as the ratio between the RTT value dAB and the
maximum of that between node A and C and that between node B
and C in condition (2) as follows:

1 The original definition in [17] also required symmetry, i.e. d(P1, P2) = d(P2, P1);
since delay in the real Internet can be asymmetric, we have dropped the symmetry
requirement.
Fig. 3. The complementary cumulative distribution function (CCDF) of the TIV for
the data sets.

Definition 1. Let a distance function d : V × V → ℜ+ denote the
pairwise RTT values between nodes in V . For two distinct nodes
P,Q ∈ V , d(P,Q) or dPQ means the delay from node P to node Q
and back to node P . d is called a ρ-inframetric (ρ > 1), if d satisfies
the following conditions:
(1) For any pair of nodes P1 and P2, where P1, P2 ∈ V , d(P1, P2) =

0, then P1 = P2;
(2) For any triple (P1, P2, P3), where P1, P2, P3 ∈ V ,

d(P1, P2) ≤ ρ max {max {d(P1, P3), d(P3, P2)} ,
max {d(P1, P3), d(P2, P3)} ,
max {d(P3, P1), d(P3, P2)} ,
max {d(P3, P1), d(P2, P3)}} (1)

hold.

The second condition of Definition 1 is defined for each triple
(P1, P2, P3).When someRTT values are asymmetric between nodes
P1, P2 and P3, the minimum ρ values for triples (P1, P2, P3),
(P3, P2, P1) or (P1, P3, P2) may differ significantly.

Besides, by appropriately choosing the constant ρ, the above
relaxed inframetric model admits for TIVs to occur.

For each triple (i, j, k), we compute the minimal ρ that satisfies
the second constraint of the inframetric:

ρ⟨i,j,k⟩ ← max

dij

max

dik, dkj

 ,
dij

max

dik, djk

 ,

dij
max

dki, dkj

 ,
dij

max

dki, djk

 . (2)

Table 2 summarizes the statistics of ρ values for all data sets.
While ρ is low for most triples, there also exists a small fraction of
triples with high ρ values. Among the triples whose ρ values are
larger than 2, their ρ values are around 3 on average but may take
values around 5 and higher for a small fraction of the triples. The
Host479 data set shows higherρ values than other data sets, which
may be caused by the delay aggregations.

Therefore, selecting ρ = 3 is reasonable to model most of the
triples. Consequently, it is possible to choose a low inframetric
parameter ρ.

We next study the relation between the inframetric parameter
ρ values and the TIV severity of triples in the data sets. Fig. 4 shows
the scatter plots of ρ values versus TIV severity. The TIV values
generally increase with increasing ρ values, but the correlation
between the TIV values and the ρ values becomes weaker with
increasing TIV values. This is because a larger TIV value means that
one RTT value x is bigger than the sum of the other two RTT values
y and z, but the ρ value that equals the ratio between x and the
maximum of y and z may not increase significantly.

1490 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
Table 2
The inframetric parameter ρ statistics. To differentiate ρ from the average case against the extreme case, we calculate the inframetric ρ⟨i,j,k⟩ for all available triples, as well
as those triples whose ρ⟨i,j,k⟩ are over 2.

P (ρ > 2) P (ρ > 3) ρ⟨i,j,k⟩ ρ⟨i,j,k⟩ > 2
Mean pct50 pct5 pct95 Mean pct50 pct5 pct95

DNS3997 0.03 0.01 0.83 0.83 0.17 1.57 2.64 2.23 2.01 4.42
Host479 0.32 0.23 3.32 1.08 0.09 13.00 8.65 4.69 2.13 28.37
(a) DNS3997. (b) Host479.

Fig. 4. ρ-by-TIV-severity scatter plots.
3.5. Stable RTTs lead to static inframetric model

We assume that the pairwise RTTs are reasonably stable in time
and analyze theρ-inframetric properties of the stable RTTs. Several
empirical study have confirmed that RTT values remain constant
over time periods in the order of minutes [46,30,29]. For example,
the iPlane project [30] has shown that the all-pair RTTs can be well
approximated with measurements updated every few hours.

3.6. Growth metric in the inframetric model

In the following we introduce some more definitions that we
need. Let V be the whole set of nodes. Let SV be the set of service
nodes. Let BP(r) be a closed ball in SV covering the set of service
nodes defined by:

BP(r) = {Q |d(P,Q) ≤ r, P,Q ∈ SV } (3)

where P denotes the center and r denotes the radius. As a result, a
node Q is covered by the ball BP(r) if and only if the RTT from node
P to node Q is equal to or smaller than r . The cardinality |BP (r)| of
a closed ball BP (r) is the number of nodes covered by that ball.

The growth dimension represents the ratio between the
number of nodes covered by two closed balls with the same center
and different radii [17,35]:

Definition 2 (Growth [17]). Given a ρ-inframetric model, for any
r ∈ ℜ+, γρ ∈ ℜ

+ and P ∈ SV , if |BP (ρr)| ≤ γρ |BP (r)|, the ρ-
inframetric model is said to have a growth γρ ≥ 1.

Moreover, the doublingmetric [17] can also be defined in away
similar to the growthmetric. However, wewill only use the growth
metric for brevity. More information can be found in the online
technical report [36].

A low growth value γρ means that the number of nodes covered
by the closed ball BP(ρr) is comparable to the number of nodes
covered by BP(r) of smaller radius. As we expand the radius of a
closed ball centered at a node P ∈ SV , new nodes in SV ‘‘come into
view’’ at a constant rate [35]. This implies that each node P can find
a node that is closer to any other node than node P by uniformly
sampling a modest number of nodes [35].

As a result, based on the above uniform sampling process, we
can recursively find nodes closer to a target node. However, the
design of Meridian [13] assumed the triangle inequality to hold.
Since we consider that the delay space of the Internet is more
correctly described as an inframetric, we need to redesign our
DNNL scheme for the inframetric model.

For any node P , we compute the growth by determining the ra-
tio of the cardinality between the ball BP(ρr) and the ball BP(r) for
a variable r . As a large ρ can lead to significant imbalance between
|BP(ρr)| and |BP(r)|, which will not reflect the fine-granularity re-
lations of balls of different radii, so we choose ρ as 3 to compute
the growth.

Fig. 5 shows the median and 90th percentile growth values for
varying radii. The median growth of most data sets is relatively
small, and declines quickly with increasing radii for most data sets
except for Host479. For Host479, the median growth may increase
as the radii increase. On the other hand, the 90th percentile growth
shows divergent dynamics for different data sets, revealing ‘‘M ’’-
shape dynamics, indicating that a small fraction of growth values
may increase or decrease with increasing radii.

The changes in γρ as a function of the radius are correlated
with the clustering structure of the delay space. When the radius
is small, all nodes included in the closed balls BP(ρr) and BP(r)
are in the same cluster. Since the density of the cluster is large,
|BP(ρr)| is much larger than |BP(r)|. On the other hand, with
increasing radius, the cardinality differences between BP(ρr) and
BP(r) become smaller, since the number of nodes covered in BP(r)
becomes large enough to cover nearly one or more clusters and
since the number of clusters is small. Therefore, the shape of the
growth may form multiple ‘‘M ’’ as the radius increases.

4. DNNL based on the inframetric model

In this section, we prove that it is feasible to design an accurate
and fast DNNL algorithm for the inframetric model.

Without loss of generality, assume that each DNNL step needs
to locate another node that is β (β ∈ (0, 1]) times closer to the
target, in order to optimize the delays between the service nodes
found and the target.

Definition 3. A DNNL is a system where at each step, a node Pi
locates a node Pi+1 that isβ times closer to a target T , which implies
that dPi+1T ≤ β × dPiT .

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1491
(a) DNS3997. (b) Host479.

Fig. 5. The statistics of the median and 90-th percentile growth γρ for ρ = 3; – � – denotes median values computed from sampled 20% nodes; – × – denotes median
values computed from sampled 50% nodes; –o– denotes median values computed from sampled 75% nodes; - represents median values computed from all nodes; · · · � · · ·
denotes 90-percentile values computed from sampled 20% nodes; · · · x · · · denotes 90-percentile values computed from sampled 50% nodes; –.o–. denotes 90-percentile
values computed from sampled 75% nodes; –. represents 90-percentile values computed from all nodes.
Fig. 6. Sampling nodes closer to a target T from BP (ρr) in the ρ-inframetric model
with growth γρ .

4.1. How to locate nodes closer to the target

Without loss of generality, assume that a node P needs to lo-
cate a node Q that is at least β (β ≤ 1) times closer to a tar-
get T , which implies that dQT ≤ β × dPT . Let dPT = r . We can
see that node Q must be covered by the ball BP (ρr), since dPQ ≤
ρ max

dPT , dTQ

= ρr by the definition of the inframetric model.

Fig. 6 shows an example of sampling a node closer to the target T
in the closed ball BP (ρr).

4.2. Random sampling condition

We analyze the number of samples required to locate a node
closer to the target than the current node with high probability
(w.h.p).2 The sampling condition gives the bandwidth cost at each
search step.

We first quantify the cardinality differences of balls with
identical centers but different radii in the following lemma.

Lemma 4.1. Given a ρ-inframetric with growth γρ ≥ 1, for any
x ≥ ρ, r > 0 and any node P, the cardinality of a ball BP(r) is at
most xα times smaller than that of the ball BP(xr), where logρ γρ ≤

α ≤ 2 logρ γρ .

2 An event occurs with high probability if the event occurs with probability at
least 1− N−c , where N is quite large and c > 1 is a positive constant.
Proof. First, by recursively calling

logρ x

times the growth

definition, until x

ρ⌈logρ x⌉
< 1, we have

|BP (xr)| ≤ γρ
⌈logρ x⌉ |BP (r)|

= xα
|BP (r)| , α = logx γρ ×

logρ x

.

Since x ≥ ρ, γρ > 1, we can calculate the lower bound of α as:

α ≥ logx γρ × logρ x = logρ γρ

and the upper bound of α as:

α ≤ logx γρ ×

logρ x+ 1

= logρ γρ + logx γρ

≤ 2 logρ γρ

this concludes the proof. �

Lemma 4.1 states that the cardinality differences of the balls
with identical centers and different radii are bounded by xα ,
where x is the multiplicative ratio between different radii, and the
parameter α lies in a bounded interval.

Fig. 7 shows the values of α as function of the radius r for
different multiplicative ratios x. We see that α is mostly below 3
and decreases quickly with increasing values of r or x.

We next show the inclusion relation of balls with different
centers, which generalizes the inclusion of balls around a node pair
in themetric space [35].

Lemma 4.2. For any pair of nodes p and q, and dpq ≤ r, then

Bq (r) ⊆ Bp (ρr) .

Proof. For any node i in the ball Bq (r), node i satisfies

dqi ≤ r. (4)

By Definition 1, it follows that

dpi
(Eq. (1))
≤ ρ max

dpq, dqi

≤ ρ max

r, dqi

 (Eq. (4))
≤ ρr (5)

which implies that i ∈ Bp (ρr), i.e.,

Bq (r) ⊆ Bp (ρr) . �

The following theorem tells us how many neighbor nodes a
node P needs to sample to find with high probability at least one
node lies in the closed ball BT (βr).

1492 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
(a) DNS3997. (b) Host479.

Fig. 7. α as function of the radius r with varying multiplicative ratio x. We plot the median and 90-th percentile values of α.
Theorem 4.3 (Sampling Efficiency in the Growth Dimension). Given
a ρ-inframetric d with growth γρ ≥ 1, a node P and a DNNL target
T satisfying dPT ≤ r. For any β ∈ (0, 1], let N denote the number of
servers, and c > 1.

If P selects O (lnN) nodes uniformly at random with replacement
from BP (ρr), then with a probability larger or equal than 1−N−c one
of sampled nodes will lie in BT (βr).

Proof. From Lemma 4.2, we know that BT (βr) ⊂ BT (r) ⊆ BP
(ρr), and all nodes covered by BT (βr) are also covered by BP (ρr).
Therefore,weonly need to sample enoughnodes inBP (ρr) in order
to sample a node located in BT (βr).

Furthermore, for the pair of nodes P and T satisfying dPT ≤ r , it
follows

|BP (ρr)| ≤
BT

ρ2r

 = BT

ρ2

β
βr
 .

Since ρ > 1 and β ≤ 1, then ρ2

β
≥ ρ2

≥ ρ, the preconditions
of Lemma 4.1 hold and we can compute the relation between the
ball BP (ρr) and the ball BT (βr):

|BP (ρr)| ≤
BT

ρ2

β
βr
 ≤ ρ2

β

α

|BT (βr)|

where logρ γρ ≤ α ≤ 2 logρ γρ . Therefore, the probability of uni-
formly sampling a node from BP (ρr) that lies in the ball BT (βr) is:

|BT (βr)|
|BP (ρr)|

≥
|BT (βr)|

ρ2

β

α

|BT (βr)|
=

1
ρ2

β

α .

Let γ = (ρ2/β). Let the number of samples be l. The probability
of failing to sample a node in the ball BT (βr) is at most

(1− 1/γ α)l.

In order to obtain the failure probability to be within N−c , where
c > 1, i.e., (1− 1/γ α)l ≤ N−c , the number l of samples must be at
least

l = −
c

ln (1− 1/γ α)
lnN

= −
c

ln

1−

β/ρ2

α lnN

= O (lnN) .

As a result, with a probability of at least (1−N−c), the current node
is able to locate a neighbor that lands in the ball BT (βr). �
4.3. DNNL on the inframetric model

Based on the sampling condition of Theorem 4.3, DNNL should
operate as follows (see Algorithm 2):

Let r = dPT ; sample O (lnN) neighbors from the closed ball
BP (ρr) at each intermediate node P; forward the DNNL request
to a next-hop node that is at least β times closer to the target than
the node P; stop when we cannot find such a next-hop node.

Algorithm 2: The theoretical DNNL algorithm.
1 DNNL(P, T)
input : current node P , target T
output: Nearest node to T

2 r ← dPT ;
3 P selects O (lnN) neighbors SP from the closed ball BP (ρr);
4 A← closest neighbor to T from SP ∪ {P};
5 if dAT ≤ βr then
6 DNNL(A, T);
7 else
8 return A;
9 end

We quantify the closeness between the nearest service node
found by Algorithm 2 and the ground-truth nearest service node
to the target and the number of search steps needed. For a DNNL
request with target T , if the delay between A to T is smaller than
ωd∗, the found nearest service node A is a ω-approximation, where
d∗ is the delay between the real nearest service node to T . As a
result, the smaller ω, the closer the found node is to the target.

We first analyze the upper bound of the number of hops in
Theorem 4.4.

Theorem 4.4. Algorithm 2 terminates in at most log 1
βreal

(∆d) steps,

where βreal < 1 denotes the average delay reduction per step and ∆d
is the ratio of the maximum delay to the minimum delay in the delay
space.

Proof. Let l be the number of search steps. Let dmin (dmin > 0)
be the minimal pairwise delay of all-pair delays over the network
delay space. Let the current node be P . Let βi denote the delay
reduction at the i-th step. We can see that βi ≤ β , since we
always choose the neighbor that is closest to the target than the
current node, the delay reduction by the chosen next-step node
may be much better than β . A sufficient condition for terminating
the search process after l steps is that:

l
i=1

βidPT = dmin. (6)

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1493
(a) DNS3997. (b) Host479.

Fig. 8. The average ratio B and the confidence interval as a function of the radius of the closed ball BT (βr), where T denotes the target, β denotes the threshold value, r
denotes a positive real number.
Moreover, since any delay value does not exceed the maximum
delay, we see that dPT ≤ ∆d × dmin also holds. As a result, we have

1
l

i=1
βi

dmin = dPT ≤ ∆d × dmin. (7)

Therefore, the number of search steps l is at most

1
l

i=1
βi

≤ ∆d. (8)

Furthermore, let βreal =

l
i=1 βi
l be the average delay reduction

for each search step. By the inequality of arithmetic and geometric
means for nonnegative numbers, we have

β l
real =

l

i=1
βi

l

l

≥

l
i=1

βi. (9)

Combining Eqs. (8) and (9), we can see that

1
β l
real
≤

1
l

i=1
βi

≤ ∆d. (10)

As a result, the number of search steps l is at most

l ≤ logβreal

1

∆d

= log 1

βreal
(∆d) . � (11)

During the proof, we assumed the average delay reduction βreal
is known. We next experimentally show the differences between
βreal and the threshold β .

For an arbitrary target T , a threshold value β and a positive
real number r . We sample the differences between the real-world
latencies from the next-hop nodes to the target and the upper
bound βr of the latencies required by Algorithm 2. We can see
that the smaller the ratios, the larger the differences between βreal
and β .

Assume that we need to obtain Υ (Υ = 1000 by default) sam-
ples from the ball BT (βr). The ratio-sample process takes three
steps:

1. List the set of nodes in the closed ball BT (βr). Let the number ns
of samples be ns = 0.

2. Sample a node Z uniformly at random from the ball BT (βr).
3. Compute the ratio dZT
βr , where dZT denotes the RTT value from

node Z to node T . ns = ns+1. If ns < Υ , go to step 2; otherwise,
the sampling process stops.

For a given radius r and a delay reduction threshold β , letB de-
note the average value for the ratios dZT

βr by using different targets
T . We plot B and the confidence intervals in Fig. 8. The average ra-
tioB decreasewith increasing RTT value r or the latency reduction
threshold β , and are below 0.6 in most cases. Therefore, the aver-
age latency reduction thresholdβreal ismuch smaller thanβ , which
implies that the upper bound of the routing hops log 1

βreal
(∆d) is

much smaller than log 1
β

(∆d).

We next analyzed the expectation of the average delay reduc-
tion per step βreal.

Theorem 4.5 (Expectation of the Average Delay Reduction Per
Step). The expectation of the average delay reduction βreal is smaller
than half of the delay reduction threshold β:

E [βreal] <
1
2
β. (12)

Proof. Let dT be the minimum RTT from nodes in V to the target
T . Assume that the search path has L hops. Let node P be the first
node that receives the DNNL request. Let r be the RTT from node P
to the target T . Let ri be the RTT value from the node at the i-th hop
to the target, where i ∈ [1, L]. Let r0 = r .

The delay reduction βi at the i-th hop is lower bounded by dT
ri−1

,
where i ∈ [1, L], and is upper bounded by β . As a result, we now
write the expectation of the delay reduction at the i-th hop as the
integral:

E [βi] =
 1

τ=
dT

βri−1

(τβ) Pr [βi = τβ] dτ

<

 1

τ=
dT

βri−1

(τβ) dτ

= β

 1

τ=
dT

βri−1

τdτ

= β ×
1−

dT

βri−1

2
2

=
1
2
β

1−

dT

βri−1

2

.

1494 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
Therefore, the expectation of the average delay reduction value
can be calculated as follows:

E [βreal] =
1
L

L
i=1

E [βi]

<
1
L

L
i=1

1
2
β

1−

dT

βri−1

2

=
1
2
β
1
L

L
i=1

1−

dT

βri−1

2

<
1
2
β. �

By Theorem 4.4, the search steps of Algorithm 2 is bounded by
log 1

βreal
∆d for any βreal, we further theoretically confirm that the

search steps is therefore logarithmically related to the ratio ∆d.
We finally establish the accuracy of the search results in

Theorem 4.6.

Theorem 4.6. Given a target node T , Algorithm 2 has an 1
β
-

approximation with high probability 1 − N−c2 , where N denotes the
number of servers and c2 > 1.

Proof. Suppose that P∗ is the ground-truth nearest server to the
target T . Suppose that a node P forwards the DNNL request to
another node Q by Algorithm 2, the progress of the DNNL process
is calculated as the ratio of dPT

dQT
, which is at least 1

β
by Theorem 4.3.

First, let p be the probability of finding a neighbor Q that is
β times closer to the target at a step. Based on the sampling
conditions of Theorem 4.3, p ≥ 1 − N−c . As a result, the failure
probability of l steps is at most

1− pl =

1−

1− N−c

l
≈ 1− e−l/N

c

≈ 1−

1− l/Nc

≈

N−c2

(13)

due to the Taylor’s expansion, where c2 = c − logN l > 1 since
l ≪ N by Theorem 4.4. As a result, the probability of finding a
neighbor satisfying the sampling condition in Theorem 4.3 after l
steps is at least 1− N−c2 , i.e., with high probability.

Second, assume that Algorithm2 locates a node Px as the nearest
server and has an approximation ratio larger than 1

β
i.e., dPxT >

1
β
dP∗T . We disprove the approximation ratio by contradiction.
Since β ≤ 1, we see that dPxT > dP∗T . As a result, we can locate a

newnodeβ times closer to the target than Px with high probability.
As a result, the search process can be continued, which contradicts
the fact that the search process stops at node Px. Therefore, the
approximation ratio of the found node must be at most 1

β
, which

completes the proof. �

4.4. Making the theoretical DNNL algorithm more efficient

Based on our theoretical results we propose several adjust-
ments to make the DNNL algorithm more efficient. We can reduce
the cost in two complementary ways.
Make β large: The delay reduction threshold β determineswhen to
terminate a DNNL query. Theorem 4.6 shows that setting a higher
β value improves the search accuracy.Moreover, settingβ < 1 can
lead to local minima caused by the clustering in the delay space. In
order to avoid such local minima, we set β to be 1 to continue the
DNNL process.
Error-aware hybrid delay measurements: We can use network
coordinates to avoid active delay measurements from the sample
nodes to the target. We predict delay based on the revised Vivaldi
algorithm [21] TIVVivaldi(xi, ei, dij, xj, ej), where the inputs xi and
xj denote the coordinates of node i and j, respectively; the inputs
ei and ej denote the averaged error of node i’s and j’s coordinates,
respectively. The output of TIVVivaldi is the updated coordinate xi
and coordinate error ei of node i.

Using delay estimations alone to find the nearest service nodes
may not be reliable, since the delay estimation incurs some inac-
curacy due to the embedding distortions of network coordinates.
However, the Vivaldi algorithmmeasures the inaccuracy of a coor-
dinate with the error variable ei. When ei or ej exceeds a threshold,
the DNNL algorithm will use active delay probes instead.

4.5. Sample enough neighbors

For the DNNL service to perform well and find the nearest
service node to any target, the algorithm must maintain enough
neighbors covering different delay ranges in the delay space and
each node has to maximize its diversity in the neighbor set.

Our theoretical results need to sample sufficient neighbors from
a closed ball centered at the current node P . Unfortunately, since
we sample from thewhole set of nodes, the samples can be outside
the closed ball. As a result, finding a sample in the closed ball may
takemultiple samples.Moreover,maintaining a closed ball for each
DNNL request is both time- and bandwidth-consuming. As a result,
we need a light-weight scheme to realize the ball-based neighbor
selection process.

4.5.1. Intuitions
Researchers have observed that the delay space contains

macroscopic clusters, e.g., Europe, Asia and America [40]. As a re-
sult, wide-area nodes are grouped into a small number of clusters
in the network delay space and nearby nodes are in the same clus-
ter. If we would like to uniformly sample nodes from a closed ball
centered at a node P , we have to sample more nodes in the same
cluster as node P .

On the other hand, the concentric rings used by Meridian [13]
and OASIS [14] represent the state-of-art data structure to
store neighbors. The concentric ring is organized with rings of
exponentially increasing radii and each ring contains a number of
uniformly sampled nodes that fall into the delay ranges covered by
that ring. We can see that the concentric ring for a node P biases
in favor of nodes that are close to node P . As a result, selecting
nodes from the concentric ring selects more nodes from the same
cluster with the current node, which is consistent with the ball-
based uniform sampling process.

Moreover, since the exponentially increasing radii focus on
inner rings, the concentric ring can cover intra-cluster nodes in
multiple inner rings, which helps locate closer nodes with fine
granularity.

4.5.2. Search accuracy for the ring based neighbor sampling
Let Bui be the ball Bu

2i

. Let Sui = Bui\B(u,i−1) be the i-th ring in

the concentric ring. Assume that each ring contains O (lnN) nodes
and the nodes at each ring is uniformly sampled from the whole
set of nodes that fall into that ring.

For a target T , we prove howmany neighbors P needs to sample
for a ring to find at least one node that lies in the closed ball BT (βr)
w.h.p.

Theorem 4.7 (Sampling Efficiency in Concentric Rings). Given a
ρ-inframetric d with growth γρ ≥ 1, a node P, and a DNNL target
T . Let r = dPT . The size of each ring is O (log (N)). There exists a ring
whose number is in [1, ⌈log2 (ρr)⌉] satisfying that selecting all neigh-
bors on that ring will find one node covered by BT (βr) with at least a
probability (1−N−c), where N denotes the number of servers, c > 1.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1495
Proof. Let

r∗ = βr. (14)

We select the minimum positive integer i such that

ρ max {r, r∗} = ρr ≤ 2i (15)

holds. As a result, the inequality

ρr > 2i−1 (16)

also holds, because otherwise, (i − 1) will become the minimum
integer satisfying Eq. (15). Besides, we can see that i = ⌈log2 (ρr)⌉.

For a node j from the ball BT (r∗), i.e.,

dTj ≤ r∗. (17)

By Definition 1, we know that

dPj ≤ ρ max

dPT , dTj

≤ ρ max {r, r∗} = ρr

Eq. (15)
≤ 2i. (18)

Therefore, node j is covered by the ball BPi. As a result, the ball
BT (r∗) is covered by BPi, i.e.,

BT (r∗) ⊆ BPi. (19)

In other words, in order to obtain a sample from the ball BT (r∗),
we only need to select sufficient nodes from the ball BPi.

(1) By multiplying two at both sides of Eq. (16), we have

2i < 2ρr. (20)

Therefore, by multiplying ρ at both sides of Eq. (20), it follows that

BT

ρ2i
⊂ BT (ρ (2ρr)) . (21)

Moreover, for any node j ∈ BPi, we know that

dTj ≤ ρ max

dPT , dPj

≤ ρ max

r, 2i Eq. (15)

= ρ2i (22)

by Eq. (1) from Definition 1. As a result, the ball BPi is covered by
the ball BT

ρ2i

:

BPi ⊆ BT

ρ2i . (23)

Combining Eqs. (21) and (23), we know that BPi is covered by
BT (ρ (2ρr)):

BPi ⊂ BT (ρ (2ρr)) . (24)

Since r = r∗
β

based on Eq. (14), Eq. (24) can be transformed to
be:

BPi ⊂ BT ((2ρ2/β)r∗). (25)

By the definition of the growth metric, we calculate the car-
dinality difference between the ball BPi and BT ((2ρ2/β)r∗) as
follows:

|BPi| <

2ρ2/β

α
|BT (r∗)| . (26)

As a result, the probability of uniformly sampling a node from
BPi that lies in the ball BT (r∗) is:

|BT (r∗)|
|BPi|

>
|BT (r∗)|

2ρ2/β
α
|BT (r∗)|

=
1

2ρ2/β
α . (27)

(2) Suppose that the size of the ring is
2ρ2/β

α
log

N/N−c

= (c + 1) (ρ/β)α log (N)

= O (log (N)) .

By Theorem 4.1 in [13], we can see that some node from a ring
SPl, l ≤ i lands in the ball BT (r∗) with a failure probability p <
N−c

/N2 < N−c . The proof is complete. �
As a result, by selecting neighbors on the rings numbered from
1 to ⌈log2 (ρdPT)⌉, we can recursively determine an approximately
optimal nearest server to the target T similar to Theorems 4.4 and
4.6.

Corollary 1. Given a target node T , by recursively selecting neighbors
on the rings numbered from 1 to ⌈log2 (ρdPT)⌉, the search process has
an 1

β
-approximation with a probability 1 − N−c2 , where N denotes

the number of servers and c2 > 1. Moreover, the search process
terminates in at most log 1

βreal
∆d steps, where βreal < 1 denotes the

average delay reduction per step and ∆d is the ratio of the maximum
delay to the minimum delay in the delay space.

Moreover, we empirically found that setting a modest number
of neighbors ∆ is sufficient to guarantee the search accuracy (8 by
default).

4.5.3. Concentric ring based neighbor selection
The ring structure partitions the delay space into annuli with

exponentially increasing space. As a result, different annuli contain
non-uniformnumber of nodes. Assume thatwe know the complete
delaymatrix, we configure the concentric ring for each node based
on the delay matrix: we fill a ring with all nodes that fall into the
delay interval of that ring. We then compute the percentage of
nodes falling into each ring for each node. From Fig. 9, we see that a
fewof rings,whose delay range is in themiddle portion of the delay
distribution, contain most of the nodes. However, only very few
nodes are mapped into the innermost and outermost rings, since
most RTTs are concentrated in tens or hundreds of milliseconds.

As a result, uniformly Sampling based neighbor discovery for
the concentric ring is insufficient, since the number of samples in a
ringwill be approximately proportional to the percentage of nodes
that fall into that ring, but nodes in the rings are non-uniformly
distributed as in Fig. 9. As a result, the gossip processwill inevitably
sample an insufficient number of neighbors for the innermost and
outermost rings.

In order to maintain a small number of samples on each ring
for scalability, we propose to combine the gossip based uniform
sampling and biased sampling to select enough neighbors for
each rings. For the middle portions of rings, uniform sampling is
sufficient; while for the inner and outer portions of rings, we have
to explicitly sample enough nodes that fall into these rings.

We also note that, setting the number i∗ of rings to a small inte-
ger, e.g., 9 rings in the Meridian protocol, does not avoid the weak-
ness of the gossip based uniform sampling, since the inner most
rings still have too few samples due to the skewed distributions of
the percentage of nodes on each ring. Only the outer ringsmayhave
more sampled neighbors since the percentage of nodes on these
outer rings increases as shown from Fig. 9. However, when the RTT
value is quite large, selecting a small i∗ will not select enough rings
to sample candidate neighbors.

5. Details of HybridNN

We are now ready to present a novel DNNL scheme called
HybridNN (Hybrid Nearest Service Node Search) that applies all the
design and optimization principles discussed so far. HybridNN is a
distributed recursive search algorithm that terminates the search
process when the nearest server to the target is found.

Fig. 10 shows the main steps of HybridNN. Suppose that a node
P receives a DNNL request to a target T . Node P first samples
candidate neighbors from its concentric ring that are possibly close
to the target. Then node P selects the nearest candidate to T based
on delay predictions and a small number of direct delay probes.
Furthermore, HybridNN also computes a coordinate for the target
in order to predict delay to the target. Finally, after finding the node
P∗ that is closest to the target, node P next determines whether to
terminate the DNNL process or forward the request to P∗.

1496 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
(a) DNS3997. (b) Host479.

Fig. 9. Box plots of the percent of nodes mapped into each ring for each node. We bin all the delay values on the data sets into the concentric ring. The i-th ring contains
neighbors whose delay to a node P lie in the interval

2i−1, 2i

.

Fig. 10. Finding a closer neighbor to the target using HybridNN at a service node.
5.1. Neighbor maintenance

We first introduce the neighbor management process that
includes the neighbor discovery and update procedures.

We use delay estimations to approximate the pairwise delay,
in order to reduce the delay measurement cost. Each service node
passively maintains its coordinate, by reusing the delay measure-
ments to other service nodes during the neighbor discovery pro-
cess. Furthermore, each service node also stores its neighbors’
coordinates in order to estimate pairwise delay between neighbors
in the concentric ring.

5.1.1. Neighbor discovery
As discussed in Section 4.5, we need to sample enough neigh-

bors for each ring. Gossip is a high scalable method for sampling
peers for P2P applications [13,47,34,48,49]. We propose to com-
bine the gossip based uniform sampling and a random-walk based
bias sampling process to discover newneighbors for the concentric
ring. Both sampling processes are quite simple to implement and
incur modest communication overhead.

Gossip based neighbor sampling. Our gossip protocol is similar
to that used in Meridian. Each node P periodically triggers a gos-
sip event. When the event is triggered, node P selects a node Q
from each of its rings as the gossip peers. Second, node P sends a
gossip request message to each gossip peer Q . Third, when node
Q receives the gossip request message, node Q answers node P a
gossip ACK message whose payload consists of one node per non-
empty ring from Q ’s concentric ring. Finally, after node P receives
the ACK message, node P selects the cached nodes in the message
as the candidate neighbors. Then nodeQ iteratively probes delay to
these candidate neighbors and inserts those with successful delay
probes into node Q ’s concentric ring.

Random-walk based neighbor sampling. Each node samples
nearby and far-away nodes into its concentric ring by random
walks. The random-walk message has a Time to Live (TTL) field
indicating its liveness period. The TTL is initialized to a positive
integer (20 by default) and decreased by one at each intermediate
step. Each node P runs the random-walk sampling procedure. Key
steps are as follows:
1. Node P first samples a neighborQ as the gossip peer. Then node
P stores its network coordinate and the TTL value into amessage
msg and sends it to node Q .

2. After node Q receives msg , node Q selects K nearest service
nodes and K farthest neighbors from Q ’s concentric ring to
node P based on the delay predictions. Then node Q stores
the optimal K nearer and K farther neighbors into msg , and
decrease the TTL value of msg by 1. Then node Q sends msg to
a node selected from a random ring of Q ’s concentric ring.

3. NodeQ2 tests whether the TTL value ofmsg is 0: if TTL is 0, node
Q2 sendsmsg back to node P; otherwise, node Q2 runs a similar
process as step 2. To improve the diversity of neighbors, node
Q2 further stores P into its concentric ring.

Finally, node P receives the random-walk message and selects the
cached 2 K neighbors as the candidate neighbors.

We can see that the gossip- and random-walk-based sampling
processes are complementary to each other. Intuitively, since
most overlay links are created between nearby nodes in terms
of the network delay and only a small number of overlay links
are between remote nodes, the overlay is approximately a ‘‘small
world’’, which implies that there always exists a small-hop
routing path between any node pair with length in terms of the
logarithmical function of the system size [50,51].

For example, Theorem 4.6 has bounded the number of search
steps in terms of the logarithmical function of the ratio between
the maximum and minimum delay values. We also empirically
confirm that the search hops for finding an approximately nearest
server to any target terminates in around four hops, which is
consistent with the efficient routing on the overlay structure.

5.1.2. Neighbor replacement
When the number of neighbors on a ring exceeds∆, we remove

these additional nodes. The replacement process should maximize
the diversity in the neighbor set, which translates to better chances
of locating nearby nodes for any target. To do that, we use the
maximal hypervolume polytope algorithm [13] that preserves
those that maximize the diversity of neighbors in a ring.

However, the maximal hypervolume polytope algorithm re-
quires all-pair delaymeasurements of nodes in a ring, which needs
quadric number of delay probes of the nodes of a ring. In order to
avoid these delay measurements for better scalability, we use de-
lay predictions to approximate pairwise delay.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1497
Algorithm 3: Pruning the size of candidate neighbors.
1 chooseCandidates(P, T ,M)
input : current node P , target T , DNNL query messageM
output: the set of candidate neighbors S

2 S ← ∅;
3 for each neighbor i satisfying diP ≤ ρdPT do
4 if i’s non-empty ring > τ then
5 S ← S ∪ {i};
6 end
7 end
8 Sf ← M .Path;

// avoid loops
9 S ← S − Sf ;

10 return S;

5.2. Select candidate neighbors

As discussed from Section 4.5.3, each node P selects candidate
neighbors from the concentric ring for each DNNL request. Let the
delay between node P and the target T be dPT . Node P selects
neighbors from the rings numbered from [1, ⌈log2 (ρdPT)⌉].

We also prune neighbors that may mislead the DNNL process.
First, candidate neighbors that contain too few non-empty rings
are more likely to provide no help on continuing the DNNL query.
As a result, the search process is more easily to be trapped into a
local minima. Accordingly, we remove neighbors that have fewer
than τ non-empty rings (τ = 4 by default). We keep up-to-date
ring information by reusing the gossip based neighbor discovery
process for efficiency. When a node P starts a new round of gossip
communication with a node from each ring, node P asks the gossip
peer to piggyback the peer’s non-empty ring information to node
P . The gossip period serves as a trade off between the updating
bandwidth cost and the freshness of the non-empty rings.

Second, we remove all neighbors that have received the iden-
tical DNNL query from the set of candidate neighbors, in order to
avoid the search loops. The pseudo-code is shown in Algorithm 3.

5.3. Coordinate maintenance for target

Wecompute a network coordinate for the target in order to pre-
dict delay from candidate neighbors to the target for better scala-
bility. Suppose that a node P receives a DNNL request. Node P tests
whether the coordinate of the target is initialized: if the request
message does not contain the target T ’s coordinate, node P then
initializes T ’s coordinate; otherwise, node P updates T ’s coordi-
nate. The coordinate computation is based on the TIVVivaldi algo-
rithm from Section 4.4.

To initialize T ’s coordinate, node P randomly selects L (15 by
default) neighbors from its concentric ring. Then node P asks
these neighbors to probe delay to the target T and to return the
measurements to P . Node P next computes a network coordinate
based on these neighbors’ coordinates and probed delay to T .
Then, node P stores target T ’s coordinate and coordinate error into
the DNNL query and forwards to the next-hop node. Algorithm 4
describes the coordinate maintenance.

5.4. Determine closest neighbor

We determine the closest node to the target from candidates
found in Section 5.2 based on delay prediction and several direct
probes, since the coordinate distances are only approximations of
the actual delay:

• We select the top-m nearest service nodes Sc to the target
T from the candidate neighbors based on the coordinate dis-
tances.
Algorithm 4:Maintaining target’s network coordinate.
1 InitTargetCoord(P, T ,M)
input : current node P , target T , DNNL queryM

2 if M.init == False then
3 ΩP ← L neighbors selected uniformly at random from P ’s

concentric ring;
4 for i ∈ ΩP do
5 diT ← RTTProbe(i, T);
6 [xT , eT]← TIVVivaldi(xT , eT , diT , xi, ei);
7 end
8 M .init← True;
9 else

10 xT ← M .xT ;
11 eT ← M .eT ;
12 dPT ← directProbe(P, T);
13 [xT , eT]← TIVVivaldi(xT , eT , dPT , xP , eP);
14 end
15 M .xT ← xT ;
16 M .eT ← eT ;

Fig. 11. Selecting candidate neighbors that are close to the target.

• We choose those candidate neighbors Se whose coordinate er-
rors ei exceeds the threshold (setting the threshold to be 0.7
performs quite well in practice). If a coordinate has a large co-
ordinate error, this coordinate must have not converged to sta-
ble positions. As a result, predicting delay using this coordinate
will not be reliable. Therefore, we directlymeasure delay values
from nodes with large coordinate errors to the target.

• We also include all candidate neighbors St whose coordinate
distance and real delay towards the current node P differs by
more than 50 ms, in order to adapt the TIV effects on the coor-
dinates [21].

Fig. 11 summarizes the candidate selection.

Node P next asks the neighbors in the set S∗ = Sc ∪ Se ∪ St
to probe the delay to target T , from which node P determines
the closest neighbor. Ties are broken by choosing the neighbor

1498 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
Algorithm 5: Detecting the nearest candidate neighbor with
delay estimations and direct probes.
1 NearestDetector(P, S, xT , M)
input : current node P , candidate neighbors S, target’s coordinate

xT , DNNL query messageM
output: Nearest candidate neighbor u1,
// store the candidate neighbors

2 Sc ← ∅;
3 S∗ ← S;
4 while |Sc | == m do // top-m nearest nodes to target T
5 im ← argmin

i∈S∗
∥xi − xT∥;

6 Sc ← Sc ∪ {im};
7 S∗ ← S∗ − {im};
8 end

// large coordinate error
9 Sc ← Sc ∪ {i |ei > 0.7, i ∈ S };

// TIV induced inaccuracy
10 Sc ← Sc ∪ {i ||∥xi − xP∥ − diP | > 50ms, i ∈ S };
11 for i ∈ Sc do
12 diT ← RTTProbe(i,T);
13 DS ← DS ∪ {diT };
14 end
15 DT ← DS ∪ {dPT };
16 u1 ← argmin

i∈Sc
{diT |diT ∈ DT };

17 return u1;

withmost accurate coordinate. Algorithm 5 summarizes the above
selection criteria.

5.5. Termination test

HybridNN sets the delay reduction threshold β = 1. Therefore,
when the closest neighbor u1 selected has a larger delay to the
target than that of the current node P , node P terminates the DNNL
query. Then node P is returned to the target T as the closest service
node. Algorithm 6 summarizes the termination test.

Algorithm 6: Determining whether to terminate the DNNL
query.
1 TerminateTest(P, u1, T ,M)
input : current node P , selected nearest candidate u1, target T ,

DNNL query messageM
output: Nearest node to the target

2 if du1T ≤ dPT & u1 ≠ P then
3 M .Path← M .Path ∪{P};

// recursive call
4 HybridNN(u1, T ,M);
5 else
6 return u1;
7 end

5.6. Putting it all together

The pseudo-code for HybridNN is given in Algorithm 7.

6. Simulation

In this section, we report the results of simulation experiments
for two real-world delay data sets described in Section 3.3.

6.1. Experimental setup

We compare HybridNN with several DNNL algorithms.
• Vivaldi. We compute the coordinate of each node based on the

Vivaldi algorithm [52], and find the nearest service nodes for
Algorithm 7: The pseudo-code of HybridNN.
1 HybridNN(P, T ,M)
input : current node P , the target T , DNNL query message M
Output: Nearest node u1 to target T

2 S ← chooseCandidates(P, T ,M);
3 InitTargetCoord(P, T ,M);
4 xT ← M .xT ;
5 u1 ← NearestDetector(P, S, xT ,M);
6 u1 ← TerminateTest(P, u1, T ,M);
7 return u1;

Table 3
Parameter values of HybridNN for simulation.

Parameter Value

Maximal number of neighbors per ring ∆ 8
Delay reduction threshold β 1
Inframetric parameter ρ 3
Coordinate dimension |x| 5
Sampled neighbors K 10
Number of nearest nodesm 4
Non-empty ring threshold τ 4

each requesting node using shortest coordinate distances. The
coordinate dimension for Vivaldi is 5.We run a prototype of the
Vivaldi system implemented by [52].
• Meridian. Meridian [13] finds a nearest server by a distributed

search process. We run the prototype of Meridian system
implemented by Wong et al. [13]. For the simulation, we set
Meridian’s β parameter to 0.5 by the default configuration in
paper [13].
• CoordNN. To quantify the usefulness of delay predictions of

HybridNN, we present a DNNL algorithm CoordNN, which is
identical with HybridNN except that CoordNN does not issue
direct probes when determining the best next-hop neighbors.
• DirectDN2S. To evaluate the usefulness of the direct delay

probes, we evaluate a DNNL algorithm called DirectDN2S that
is identical with HybridNN except that DirectDN2S only issues
direct probes to find the best next-hop neighbor without any
delay predictions.

For HybridNN, the default configuration is summarized in
Table 3. CoordNN and DirectDN2S share identical parameters
with HybridNN. We also evaluated the sensitivity of parameters
for HybridNN, which is reasonably robust against the parameter
choices. The detailed sensitivity results of system parameters for
HybridNN can be found in the technical report [36].

We have developed a discrete-time simulator for DNNL. The
simulator randomly chooses a set of nodes as service nodes (by de-
fault 500) that can receiveDNNLqueries. Other nodes in the system
are clients that can issue DNNL queries to these service nodes. For
the Host479 data set, 200 nodes are the service nodes. The DNNL
queries are repeated 10,000 times. For each DNNL query, we uni-
formly select one client as the target machine, and a random ser-
vice node receiving the query. Besides, the simulation is repeated
5 times by shuffling the set of service nodes to avoid biases in
choosing service nodes. For HybridNN, CoordNN, DirectDN2S and
Meridian, the inter-gossip events for neighborhood discovery are
generated by an exponential distribution with expected value of
1 s. The inter-ring management events are generated by an ex-
ponential distribution with expected value of 2 s. For HybridNN,
DirectDN2S and CoordNN, the time interval between two random-
walk sampling events are generated by an exponential distribution
with expected value of 10 s. The inter-DNNL event generation fol-
lows an exponential distribution with expected value of 30 s.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1499
(a) DNS3997. (b) Host479.

Fig. 12. The non-empty ring ratio as a function of the simulation time.
The performance metrics for each DNNL query include:
Absolute error: defined as the difference between the estimated
nearest service node j and the real nearest service node i to the
target T , i.e., djT − diT .
Search hops: defined as the hop number of the forwarding path of
a DNNL query.

6.2. Comparing the performance of neighbor discovery

We first test the quality of rings using the biased neighbor
discovery method. Let the optimal concentric ring of each node be
the one constructed based on the complete delaymatrix.Wedefine
two performance metrics to analyze the ring quality of concentric
rings:

• Non-empty ring ratio, defined as the ratio of the number rM of
non-empty rings to the number of non-empty rings ro by the
optimal ring construction, i.e.,

rM
ro

. (28)

• Fullness ratio, defined as the ratio of the number of found neigh-
bors to the number of neighbors by optimal ring construction
for each ring, i.e.,
i∈I

#Mi
#oi

|I|
(29)

where I denotes the set of non-empty ring, #Mi denotes the
number of neighbors on the i-th non-empty ring by each sam-
pling method, and #oi represents the number of neighbors on
the i-th non-empty ring of optimal ring construction.

To see the gains of combining the gossip method with the
randomwalks, we compare our biased neighbor sampling method
with existing popular peer sampling methods:

• Gossip, the neighbor discovery method used by Meridian.
• Cyclon [47], a popular peer sampling approach for P2P overlays.

In Cyclon, each node periodically exchanges neighbor sets with
a random neighbor in a push and pull manner.
• Vicinity [48], a popular biased peer sampling approach for

finding semantic clusters on P2P overlays. Vicinity uses the
Cyclon to locate random peers on the overlay, but keeps peers
that are similar to each other as neighbors in order to form
semantic clusters.Wedefine the distance function between two
nodes with the pairwise delay value. Since we need to sample
nodes for inner and outer rings, we combine two independent
Vicinity instances: one for locating K nearest nodes and the
other for K farthest nodes.
We configure Cyclon’s parameters as in [47] and Vicinity’s param-
eters as in [48]. For a fair comparison, we set the period of trig-
gering the sampling event of Gossip, Cyclon and Vicinity to be
identical with that of the bias approach. The number of nodes per
ring and the number of rings per concentric ring of all methods are
also identical with each other. Also, Vicinity uses the same K value
as the bias approach.

Figs. 12 and 13 plot the dynamics of the non-empty ring ratios
and the fullness ratios with increasing simulator time. The confi-
dence intervals of the average ratios for allmethods are close to the
average values and are omitted for brevity.We can see that the gos-
sip based method fails to quickly sample inner and outer rings. On
the other hand, the bias approach outperforms other sampling ap-
proaches, since the former explicitly samples neighbors from both
intra- and inter-clusters by combining gossip and random walks.
As a result, the random walks can efficiently fill empty rings and
complement the gossip method quite well.

Cyclon is less accurate than the gossip method. This is because
the gossip method selects one neighbor from each ring covering
different delay ranges, but Cyclon’s sampled nodes are agnostic of
the rings. Since nodes on the concentric ring are clustered towards
a small number of rings, Cyclon typically selects samples covering
lower delay ranges than the gossip method.

The Vicinity method is more accurate than the Cyclon method,
since Vicinity combines the semantic clustering with Cyclon to
simultaneously sample neighbors uniformly and K nearest and
farthest nodes. However, we can see that Vicinity is less efficient
than the bias method. This is because Vicinity assumes that if P is
close toQ andQ is close to R then P is also close to R. Unfortunately,
the network delay space is not a metric space and a fraction of
triples violates the triangle inequality, which may cause P to be
far from R. As a result, Vicinity’s peer sampling is impaired when
TIV cases happen.

6.3. Comparison

6.3.1. Absolute error
Fig. 14 shows the absolute errors of the different algorithms.

DirectDN2S achieves lowest absolute errors except for theHost479
data sets. HybridNN is close to DirectDN2S in terms of reducing
absolute errors. However, HybridNN is the most accurate on
Host479 data set. Next, CoordNN is worse than both DirectDN2S
and HybridNN. The high accuracy of DirectDN2S and HybridNN
compared to CoordNN indicates that using direct probes greatly
reduces the error of the estimation, while using coordinate
distances alone can lead to getting trapped in a local minima.

The inaccuracy of DirectDN2S compared to HybridNN on the
Host479 data set is rather counter-intuitive. This inaccuracy may
be caused by the asymmetry in the delay data sets that misleads

1500 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
(a) DNS3997. (b) Host479.

Fig. 13. The fullness ratio as a function of the simulation time.
(a) DNS3997. (b) Host479.

Fig. 14. The CCDFs of absolute errors.
the greedy search into a local minima, since DirectDN2S is more
accurate than HybridNN on the other three data sets that are all
symmetric for pairwise delays [36].

Meridian has the largest absolute error compared to other
algorithms including Vivaldi, which implies that the coordinate
distances provided by Vivaldi are at least effective if we use it in
the centralized approach. The superiority of Vivaldi over Meridian
is consistent with the experiments independently performed by
Choffnes and Bustamante [53]. The main reason for the inaccuracy
of Meridian is the local minima caused by the TIV and clustering in
the delay space; while Vivaldi can adapt to TIV based on adaptive
coordinate movements.

On the other hand, from Fig. 15 we see that HybridNN is able
to bypass the bad local minimum caused by the asymmetry in the
delay values. This is because HybridNN does not always choose
the neighbor closest to the target as the forwarding node, since
HybridNN also incorporates the approximated delay predictions
when choosing neighbors. However, when the delay values are
symmetric, e.g., on DNS3997 data set, HybridNN can be trapped
at worse local minimum than DirectDN2S.

6.3.2. Search hops
Wenext quantify the distributions of the number of search hops

for DNNL algorithms, as shown in Fig. 16. The search hops of most
DNNL queries are rather modest for all DNNL algorithms. Meridian
has two search hops in about 80% of the cases. While HybridNN
and DirectDN2S have no more than three hops in over 80% of
the cases. Almost all search processes for Meridian, HybridNN
and DirectDN2S have less than six hops. On the other hand,
CoordNN needs more search hops than Meridian, HybridNN and
the DirectDN2S; even worse, a fraction of search hops of CoordNN
are larger than ten.
Fig. 15. The latency ratio between the nearest server found by HybridNN and that
by DirectDN2S.

6.4. Applying adjustments to improve meridian

Having shown HybridNN is able to outperform Meridian in
orders of magnitudes, we next put key components of HybridNN
on Meridian and see whether the performance of Meridian is also
improved. The variants of Meridian include:

• OM , denotes the original Meridian with β = 0.5 and gossip
based neighbor discovery;
• Mβ1, denotes the Meridian with β = 1 and gossip based

neighbor discovery;
• IMβ1, denotes the Meridian with β = 1, gossip based neighbor

discovery and the inframetric model based candidate selection;
• IVMβ1 denotes the Meridian with β = 1, gossip based neighbor

discovery and the inframetric model based candidate selection
and the latency prediction;

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1501
(a) DNS3997. (b) Host479.

Fig. 16. The CCDFs of search hops.
(a) DNS3997. (b) Host479.

Fig. 17. The CCDFs of absolute errors for Meridian and several variants.
• VMβ1, denotes the Meridian with β = 1, gossip based neighbor
discovery and the latency prediction;
• BMβ1 denotes the Meridian with bias neighbor discovery and

β = 1.

Fig. 17 plots the results. We can see that only the bias based
neighbor discovery significantly improves Meridian’s accuracy,
while the other variants just add minor improvements.

First, comparing Fig. 14 with 17, we confirm that setting β =
1 improves Meridian’s accuracy. Intuitively, setting β to larger
numbers will increase Meridian’s accuracy, since we will se-
lect more candidate neighbors at each search step [(1 − β)dPT ,
(1 + β)dPT] = [0, 2dPT]. However, the search process will termi-
nate much slower than that for β = 0.5.

On the other hand, Meridian with β = 1 also approximates
the inframetric model based neighbor sampling process, since
the latter selects neighbors from the interval [0, ρdPT], where ρ
denotes the inframetric parameter.

Second, using the inframetric model based neighbor sampling
results in similar or better performancewith that by setting β = 1.
As a result, even when we do not change the β value, the infra-
metric model based neighbor selection can significantly improve
Meridian’s accuracy.

Third, we see that using the bias method for the neighbor
discovery significantly reduces the absolute errors compared to
Meridian variants that use the gossip method, since the bias
method provides more neighbors covering the inner and outer
rings.

Finally, replacing the direct measurements with the Vivaldi
coordinate based delay estimation decreases the search accuracy.
This is because network coordinate may incorrectly predict the
ground-truth nearest node to the search at each search step, which
decreases the search accuracy accordingly.
7. PlanetLab experiments

We have implemented a prototype for distributed nearest ser-
vice node location in Java using the asynchronous communica-
tion library. We implemented both, HybridNN and Meridian. The
core logic consists of around 5000 lines of codes comprising three
main modules: (1) probe module, which uses the kernel-level ping
for delay measurements, to reduce application level perturbations
caused by high loads of PlanetLab nodes; (2) neighborhood man-
agement module, which finds and maintains neighbors on the con-
centric rings; (3) DNNL module, which implements the distributed
nearest service node location of HybridNN and Meridian.

Our objective is to compare the accuracy and efficiency of
DNNL queries based on real-world deployments. We choose 173
servers distributed globally on the PlanetLab as the service nodes.
Then we select another 412 servers on the PlanetLab as the target
machines. Service nodes are sequentially added into the system.
We introduce a warm-up period for each newly joined service
node in order to stabilize the DNNL algorithm. During the warm-
up period, each service node updates its concentric ring, but does
not answer DNNL queries. Our experiments last one week in May
2011 between May 5 and May 12.

We compare HybridNN with Meridian and iPlane [29]. We
choose the same parameter configurations for HybridNN and
Meridian as in the Simulation section (Section 6.1). For iPlane, we
query iPlane to obtain the delays between service nodes and target
machines. Then we compute the nearest service node for each
target machine.

Besides, we compute the ground-truth nearest servers using
direct probes in order to compare the found nearest servers to
the ground-truth nearest servers (denoted asDirect). Furthermore,
since the pairwise delays between PlanetLab machines dynami-
cally vary, we represent the pairwise long-term delay based on the
median value of ping records. Finally, we select the service node

1502 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
(a) Absolute error. (b) Query time. (c) Query load.

(d) Control overhead.

Fig. 18. Performance comparison on PlanetLab.
that has the lowest median delay to the target as the ground-truth
nearest server.

7.1. Accuracy

We first compare the accuracy of different methods with the
absolute error metric defined in Section 6.1. The results are shown
in Fig. 18(a). HybridNN has significantly lower absolute errors
than Meridian; iPlane is similar with HybridNN, but incurs slightly
higher errors. For instance, iPlane also has around 3% of DNNL
queries with absolute errors above 100 ms. The inaccuracy of
iPlane is caused by the mismatch of the estimated routing paths
and the real-world ones. The inaccuracy of Meridian shows that
Meridian is easily trapped at local minimum far away from the
optimal solution.

7.2. Completion time

We next evaluate the completion time of individual DNNL
queries for HybridNN and Meridian. The completion time of a
DNNL query equals the sum of the search delay at each step, which
then equals the slowest responses from all candidate neighbors.

Empirically, we have found that both HybridNN and Meridian
complete DNNL queries within three search hops, which is
consistent with the simulation results in Fig. 16. However, the
overall query time for DNNL searches depends on not only the
number of search hops, but also the completion time of the
message exchanges and delay probes.

Fig. 18(b) plots the distributions of query time of HybridNN and
Meridian. Around 85% of the DNNL queries in HybridNN are similar
with those of Meridian. Therefore, query time for HybridNN and
Meridian are similar in most cases.

However,we also see that inMeridian around20%of the queries
take much more time to answer, and 10% have query time larger
than 15 s; while the hybrid measurement approach of HybridNN
can avoid large query latencies. Since Meridian requires direct
probes from all candidate neighbors to targets, some candidate
neighbors that are far from the target take much longer time to
send the response to the requesting node. As a result, the total
search period is prolonged by these nodes.

On the other hand, HybridNN avoids most direct probes
by delay predictions. Moreover, since Vivaldi coordinates have
converged after the warm-up period, the candidate neighbors are
mainly the top-m nodes whose coordinates are nearest to the
target. As a result, collecting delays from these candidate neighbors
to the target complete quickly. Therefore, some of HybridNN’s
search processes has lower search times than Meridian.

7.3. Query overhead

Wedefine the load of a DNNL query as the total size of the trans-
mitted packets during the DNNL process. We plot the Cumulative
Distribution Function (CDFs) of the loads for HybridNN andMerid-
ian in Fig. 18(c). The load of HybridNN is significantly lower than
that of Meridian. In more than 95% of the cases the load of Hy-
bridNN is less than 2 kB, while in more than 50% of the cases the
load ofMeridian ismore than 10 kB,which is due to the large size of
the candidate neighbor set for DNNL queries. Therefore, the delay
estimation of HybridNN substantially reduces the query overhead.

7.4. Control overhead

We measure the bandwidth overhead of the neighborhood
management in HybridNN and Meridian for each service node
every two minutes, as shown in Fig. 18(d). The maintenance
overhead ofMeridian includes both, the gossip process and the ring
maintenance costs, while the maintenance of HybridNN includes
the gossip messages and random-walk sampling messages. The
average maintenance overhead of HybridNN is around 2 kB per
minute, and for Meridian is over 20 kB per minute. Since the time

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504 1503
interval of ring maintenance for both, HybridNN and Meridian is
identical, the all-pair probes between nodes in the same ring are
the main cause of the control overhead in Meridian. On the other
hand, as HybridNN uses the coordinate distances to update the
rings, it does not need to do all-pair probes between nodes in a
ring.

8. Conclusion

We have addressed the problem of designing an accurate
and efficient DNNL algorithm in a principled and comprehensive
way. We first show that the Internet delay space is not a metric
space and propose to use the inframetric model that allows for
violations of the triangle inequality and delay asymmetries. We
then use the inframetric as a foundation to design new DNNL
algorithms with strong theoretical guarantees concerning search
overhead and accuracy of the search results. Finally, we apply all
the insights to design a new DNNL algorithm called HybridNN,
which locates nearest service nodes accurately and efficiently.
HybridNN contains several techniques to improve its accuracy and
efficiency: (i) It maximizes the diversity in the neighbor set by
discovering neighbors within each delay range through a light-
weight neighbor sampling process. (ii) It reduces themeasurement
costs for locating closer servers. HybridNN combines network
coordinate based delay estimation and direct probes for fast and
efficient nearest service node selection. (iii) Finally, HybridNN
terminates the search process conservatively in order to obtain
better approximations of nearest service nodes.

We also evaluate how each of the techniques used in HybridNN
can improve the search accuracy of Meridian. We see that it is
the biased neighbor discovery brings the biggest improvement in
accuracy.

Extensive simulation and a prototype deployment on the
PlanetLab confirm the efficiency and effectiveness of HybridNN.

Acknowledgments

We would like to thank the reviewers for their numerous
and very constructive comments. This work was supported
by the National Grand Fundamental Research 973 Program of
China (Grant No. 2011CB302601), the National High Technology
Research and Development 863 Program of China (Grant No.
2013AA010206), the National Natural Science Foundation of
China (Grant No. 60873215), the Natural Science Foundation
for Distinguished Young Scholars of Hunan Province (Grant
No. S2010J5050), Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No. 200899980003) and
the Collaborative Project FIGARO supported by the European
Commission under the 7th Framework Program (Grant No.
258378).

References

[1] U. Schwiegelshohn, R.M. Badia,M. Bubak,M. Danelutto, S. Dustdar, F. Gagliardi,
A. Geiger, L. Hluchy, D. Kranzlmüller, E. Laure, T. Priol, A. Reinefeld, M. Resch,
A. Reuter, O. Rienhoff, T. Rüter, P. Sloot, D. Talia, K. Ullmann, R. Yahyapour,
G. von Voigt, Perspectives on grid computing, Future Generation Computer
Systems 26 (2010) 1104–1115.

[2] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou,M.Mordacchini,M. Pennanen,
K. Popov, V. Vlassov, S. Haridi, Peer-to-peer resource discovery in grids:models
and systems, Future Generation Computer Systems 23 (2007) 864–878.

[3] W. Yu, S. Chellappan, D. Xuan, P2P/grid-based overlay architecture to support
VoIP services in large-scale IP networks, Future Generation Computer Systems
21 (2005) 209–219.

[4] P. Morillo, S. Rueda, J.M. Orduña, J. Duato, Ensuring the performance
and scalability of peer-to-peer distributed virtual environments, Future
Generation Computer Systems 26 (2010) 905–915.
[5] R. Rodrigues, P. Druschel, Peer-to-peer systems, Communications of the ACM
53 (2010) 72–82.

[6] Microsoft, Office live workspace, 2011. http://workspace.officelive.com/zh-
hk/.

[7] Google, Google Maps, 2011. http://maps.google.com/.
[8] M.S. Artigas, P.G. López, eSciGrid: a P2P-based e-science grid for scalable

and efficient data sharing, Future Generation Computer Systems 26 (2010)
704–719.

[9] G. Mateescu, W. Gentzsch, C.J. Ribbens, Hybrid computing—where HPC meets
grid and cloud computing, Future Generation Computer Systems 27 (2011)
440–453.

[10] F. Agboma, A. Liotta, QoE-aware QoS management, in: Proc. of MoMM 2008,
ACM, New York, NY, USA, 2008, pp. 111–116.

[11] R. Krishnan, H.V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T.
Anderson, J. Gao, Moving beyond end-to-end path information to optimize
CDN performance, in: Proc. of IMC 2009.

[12] A.-J. Su, D.R. Choffnes, A. Kuzmanovic, F.E. Bustamante, Drafting be-
hind Akamai (travelocity-based detouring), in: Proc. of SIGCOMM 2006,
pp. 435–446.

[13] B. Wong, A. Slivkins, E.G. Sirer, Meridian: a lightweight network location
service without virtual coordinates, in: Proc. of SIGCOMM 2005, pp. 85–96.

[14] M.J. Freedman, K. Lakshminarayanan, D. Mazières, OASIS: anycast for any
service, in: Proc. of NSDI 2006.

[15] V. Vishnumurthy, P. Francis, On the difficulty of finding the nearest peer in P2P
systems, in: Proc. of IMC 2008, pp. 9–14.

[16] C. Lumezanu, R. Baden, N. Spring, B. Bhattacharjee, Triangle inequality
variations in the internet, in: Proc. of IMC 2009, pp. 177–183.

[17] P. Fraigniaud, E. Lebhar, L. Viennot, The inframetric model for the internet, in:
Proc. of INFOCOM 2008, pp. 1085–1093.

[18] G.R. Hjaltason, H. Samet, Index-driven similarity search in metric spaces
(survey article), ACM Transactions on Database Systems 28 (2003) 517–580.

[19] K.L. Clarkson, Nearest-neighbor searching and metric space dimensions,
in: G. Shakhnarovich, T. Darrell, P. Indyk (Eds.), Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, MIT Press, 2006, pp. 15–59.

[20] E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric
spaces, ACM Computing Surveys 33 (2001) 273–321.

[21] G. Wang, B. Zhang, T.S.E. Ng, Towards network triangle inequality violation
aware distributed systems, in: Proc. of IMC 2007, pp. 175–188.

[22] R.L. Carter, M.E. Crovella, Server selection using dynamic path characterization
in wide-area networks, in: Proc. of INFOCOM 1997, pp. 1014–1021.

[23] R.L. Carter, M.E. Crovella, On the network impact of dynamic server selection,
Computer Networks 31 (1999) 2529–2558.

[24] J.D. Guyton, M.F. Schwartz, Locating nearby copies of replicated internet
servers, in: Proc. of SIGCOMM 1995, pp. 288–298.

[25] S.M. Hotz, Routing information organization to support scalable interdomain
routing with heterogeneous path requirements, Ph.D. Thesis, Computer
Science Department, University of Southern California, Los Angeles, California,
1994.

[26] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: Proc. of INFOCOM 2002, vol. 3,
pp. 1190–1199.

[27] P. Sharma, Z. Xu, S. Banerjee, S.-J. Lee, Estimating network proximity and
latency, Computer Communication Review 36 (2006) 39–50.

[28] A.-J. Su, D. Choffnes, F.E. Bustamante, A. Kuzmanovic, Relative network
positioning via CDN redirections, in: Proc. of ICDCS 2008, pp. 377–386.

[29] H.V. Madhyastha, E. Katz-Bassett, T.E. Anderson, A. Krishnamurthy, A.
Venkataramani, iPlane nano: path prediction for peer-to-peer applications, in:
Proc. of NSDI 2009, pp. 137–152.

[30] H.V.Madhyastha, T. Isdal,M. Piatek, C. Dixon, T.E. Anderson, A. Krishnamurthy,
A. Venkataramani, iPlane: an information plane for distributed services, in:
Proc. of OSDI 2006, pp. 367–380.

[31] S. Banerjee, C. Kommareddy, B. Bhattacharjee, Scalable peer finding on the
internet, in: Proc. of Global Internet Symposium 2002.

[32] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta, A. Akella,
On the treeness of internet latency and bandwidth, in: Proc. of the Eleventh
International Joint Conference on Measurement and Modeling of Computer
Systems, ACM, Seattle, WA, USA, 2009, pp. 61–72.

[33] M. Waldvogel, R. Rinaldi, Efficient topology-aware overlay network, ACM
Computer Communication Review 33 (2003) 101–106.

[34] A.-M. Kermarrec, M. van Steen, Gossiping in distributed systems, ACM SIGOPS
Operating Systems Review 41 (2007) 2–7.

[35] D.R. Karger, M. Ruhl, Finding nearest neighbors in growth-restricted metrics,
in: Proc. of STOC 2002, pp. 741–750.

[36] Y. Fu, Y. Wang, E. Biersack, HybridNN: supporting network location service
on generalized delay metrics for latency sensitive applications, 2011.
http://arxiv.org/abs/1108.1928.

[37] M. Costa, M. Castro, A.I.T. Rowstron, P.B. Key, PIC: practical internet
coordinates for distance estimation, in: Proc. of ICDCS 2004, pp. 178–187.

[38] P. Wendell, J.W. Jiang, M.J. Freedman, J. Rexford, DONAR: decentralized server
selection for cloud services, in: Proc. of SIGCOMM 2010, pp. 231–242.

http://workspace.officelive.com/zh-hk/
http://workspace.officelive.com/zh-hk/
http://workspace.officelive.com/zh-hk/
http://maps.google.com/
http://arxiv.org/1108.1928

1504 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1485–1504
[39] F. Dabek, R. Cox, M.F. Kaashoek, R. Morris, Vivaldi: a decentralized network
coordinate system, in: Proc. of SIGCOMM 2004, pp. 15–26.

[40] B. Zhang, T.S.E. Ng, A. Nandi, R.H. Riedi, P. Druschel, G. Wang, Measurement-
based analysis, modeling, and synthesis of the internet delay space, IEEE/ACM
Transactions on Networking 18 (2010) 229–242.

[41] K.P. Gummadi, S. Saroiu, S.D. Gribble, King: estimating latency between
arbitrary internet end hosts, in: Proc. of IMW 2002, pp. 5–18.

[42] D.R. Choffnes, M. Sanchez, F.E. Bustamante, Network positioning from the
edge—an empirical study of the effectiveness of network positioning in P2P
systems, in: Proc. of INFOCOM 2010, pp. 291–295.

[43] Y. Schwartz, Y. Shavitt, U. Weinsberg, A measurement study of the origins of
end-to-end delay variations, in: Proc. of PAM 2010, pp. 21–30.

[44] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, IDMaps: a
global internet host distance estimation service, IEEE/ACM Transactions on
Networking 9 (2001) 525–540.

[45] H. Zheng, E.K. Lua, M. Pias, T.G. Griffin, Internet routing policies and round-
trip-times, in: Proc. of PAM 2005, pp. 236–250.

[46] Y. Zhang, N.G. Duffield, On the constancy of internet path properties, in: Proc.
of IMW 2001, pp. 197–211.

[47] S. Voulgaris, D. Gavidia, M. van Steen, CYCLON: inexpensive membership
management for unstructured P2P overlays, Journal of Network and Systems
Management 13 (2005) 197–217.

[48] S. Voulgaris, E. Riviere, A.-M. Kermarrec, M. van Steen, Sub-2-Sub: self-
organizing content-based publish subscribe for dynamic large scale collabo-
rative networks, in: Proc. of IPTPS 2006.

[49] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, M. van Steen, Gossip-
based peer sampling, ACM Transactions on Computer Systems 25 (2007).

[50] A. Slivkins, Distance estimation and object location via rings of neighbors,
Distributed Computing 19 (2007) 313–333.

[51] A. Slivkins, Towards fast decentralized construction of locality-aware overlay
networks, in: Proc. of PODC 2007, pp. 89–98.

[52] J. Ledlie, P. Gardner, M.I. Seltzer, Network coordinates in the wild, in: Proc. of
NSDI 2007.

[53] D.R. Choffnes, F.E. Bustamante, Pitfalls for testbed evaluations of internet
systems, ACM SIGCOMM Computer Communication Review 40 (2010)
43–50.
Yongquan Fu received the B.S. degree in computer science
and technology from the School of Computer of Shandong
University, China, in 2005, and received the M.S. degree
in Computer Science and technology from the School
of Computer Science of National University of Defense
Technology, China, in 2008. He is currently a Ph.D.
candidate in the School of Computer Science of National
University of Defense Technology. He is a studentmember
of CCF and ACM. His current research interests lie in the
areas of network measurement, Peer-to-Peer networks
and distributed system.

Yijie Wang received the Ph.D. degree from the National
University of Defense Technology, China in 1998. She was
a recipient of the National Excellent Doctoral Dissertation
(2001), a recipient of Fok Ying Tong Education Founda-
tion Award for Young Teachers (2006) and a recipient of
the Natural Science Foundation for Distinguished Young
Scholars of Hunan Province (2010). Now she is a Professor
in the National Key Laboratory for Parallel and Distributed
Processing, National University of Defense Technology.
Her research interests include network computing, mas-
sive data processing, parallel and distributed processing.

Ernst Biersack studied computer science at the Technis-
che Universitä München and at the University of North
Carolina at Chapel Hill. He received the Dipl. Infom. (M.S.)
and Dr. rer. nat. (Ph.D.) degrees in computer science from
the Technische Universität München, Munich, Germany,
and the Habilitation à Diriger des Recherches from the
University of Nice, France. From March 1989 to February
1992, he was a Member of Technical Staff with the Com-
puter Communications Research District of Bell Commu-
nications Research, Morristown, US. Since March 1992, he
has been a Professor in telecommunications at Eurecom,

Sophia Antipolis, France. His current research is on peer-to peer systems and net-
work tomography.

	HybridNN: An accurate and scalable network location service based on the inframetric model
	Introduction
	Motivation
	Contribution

	Related work
	Centralized approaches
	Distributed approaches

	Background
	Problem definition
	Meridian
	Data sets
	The inframetric model for the delay space
	Stable RTTs lead to static inframetric model
	Growth metric in the inframetric model

	DNNL based on the inframetric model
	How to locate nodes closer to the target
	Random sampling condition
	DNNL on the inframetric model
	Making the theoretical DNNL algorithm more efficient
	Sample enough neighbors
	Intuitions
	Search accuracy for the ring based neighbor sampling
	Concentric ring based neighbor selection

	Details of HybridNN
	Neighbor maintenance
	Neighbor discovery
	Neighbor replacement

	Select candidate neighbors
	Coordinate maintenance for target
	Determine closest neighbor
	Termination test
	Putting it all together

	Simulation
	Experimental setup
	Comparing the performance of neighbor discovery
	Comparison
	Absolute error
	Search hops

	Applying adjustments to improve meridian

	PlanetLab experiments
	Accuracy
	Completion time
	Query overhead
	Control overhead

	Conclusion
	Acknowledgments
	References

