Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

FHIE INFEENAT@RNAL JeUERNAL @[S

FiGICIS

E=IE) ECeMEUTING ANG asSSIENCEE

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Future Generation Computer Systems 29 (2013) 1235-1253

Contents lists available at SciVerse ScienceDirect - “M =
FiGICIS
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs i

A general scalable and accurate decentralized level monitoring method for
large-scale dynamic service provision in hybrid clouds

Yongquan Fu®*, Yijie Wang?, Ernst Biersack”

2 National Key Laboratory for Parallel and Distributed Processing, College of Computer Science, National University of Defense Technology, Hunan province, 41007 3, China
b Networking and Security Department, EURECOM, France

ARTICLE INFO

ABSTRACT

Article history:

Received 15 January 2012

Received in revised form

6 September 2012

Accepted 4 November 2012
Available online 27 November 2012

Keywords:

Decentralized algorithm

Service provision

Application health monitoring
Hierarchical decomposition
K-means clustering

Decentralized matrix factorization

Hybrid cloud computing combines private clouds with geographically-distributed resources from public
clouds, desktop grids or in-house gateways to provide the most flexibility of each kind of cloud platforms.
Service provisioning for wide-area applications such as cloud backup or cloud network games is sensitive
to wide-area network metrics such as round trip time, bandwidth, or loss rates. In order to optimize
the quality of the service provision in hybrid clouds, it is highly valuable for the hybrid clouds to
collect detailed network metrics between participating nodes of the hybrid clouds. However, since nodes
can be large-scale and dynamic, the network metrics may be diverse for different cloud services, it is
challenging to increase the generality, scalability, accuracy, and the robustness of the measurement
process. We propose a novel distributed level monitoring method HPM (Hierarchical Performance
Measurement) satisfying these requirements. For each kind of network metric, HPM represents the degree
of pairwise closeness with discrete level values inspired by the hierarchical clustering tree. HPM maps
probed metric to discrete levels based on an existing distributed K-means clustering method that helps
maximize the similarity of the network metric in the same level, which therefore optimizes the matching
between pairwise levels and the real-world pairwise proximity. Furthermore, for scalability reasons, HPM
computes the pairwise levels with decentralized coordinates. Each node independently maintains its
low-dimensional coordinate based on a novel decentralized implementation of the Maximum Margin
Matrix Factorization method, which optimizes the mapping between the network metrics and the level
values. Simulation results for the round trip time, bandwidth, loss, and hop count metric confirm that
HPM converges fast, is robust to parameter settings, scales well with increasing levels or system size, and
adapts well to diverse metrics. A prototype deployment on the PlanetLab platform shows that HPM not
only converges fast, but also incurs modest bandwidth costs. Finally, applying HPM to optimize the service
provision of hybrid clouds shows that HPM can achieve close to optimal solutions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

to millions of clients by combining processing capacity of the pri-
vate clouds, elastic resources of public clouds and low-latency

Service provisioning in hybrid clouds that combines geograph-
ically distributed and heterogeneous platforms such as private
and public clouds, clusters, grids, desktop grids, or in-house gate-
ways, can maximize the benefits each kind of platforms. For ex-
ample, high performance computing (HPC) applications can be
better completed by combining the internal capacity of the private
clusters and elastic resources of the public clouds; cloud backup
(e.g. Wuala [1]) services can store users’ data on nearby in-house
gateways for fast response and remote distributed desktop grids
for redundancy; network gaming (e.g. Halo [2]) services can scale

* Corresponding author. Tel.: +86 13875828390.
E-mail addresses: yongquanf@nudt.edu.cn (Y. Fu), wangyijie@nudt.edu.cn
(Y. Wang), erbi@eurecom.fr (E. Biersack).

0167-739X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.11.001

desktop grids. Several hybrid clouds such as Aneka [3,4], MOON [5],
NaDa [6], and Elastic Cluster [7] have already attracted tremendous
attention from both academic and industrial fields.

Unfortunately, resource provisioning with wide-area dis-
tributed nodes comes with costs, since the quality of many cloud
services such as high performance computing (HPC), cloud backup
(e.g. Wuala [1]), network gaming (e.g. Halo [2]) is sensitive to an
end to end network metric; for instance, the HPC scientific appli-
cations need minimum pairwise delays when synchronizing states
of different nodes [4]; the file backup service is affected by low
bandwidth or high packet losses; game players’ experiences may
be impaired by high RTTs or packet losses.

As a result, in order to improve the quality of the service
provision in hybrid clouds, the hybrid cloud platforms need to
monitor the network conditions between participating nodes.

1236 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

However, the number of participating nodes could grow to
thousands or millions, which implies that directly measuring
pairwise network conditions does not scale well; worse still,
the participating nodes may also join or leave the hybrid cloud
dynamically because of failures, maintenance or decentralization.
Therefore, a scalable and decentralized measurement method is
valuable for performance optimization in hybrid clouds.

1.1. Related work

Existing work on measuring network conditions for large-scale
and dynamic nodes can be categorized into the absolute-value
measurements and the relative-value measurements:

e The absolute-value measurement provides detailed end to end
network metric, such as the RTT, bandwidth that can satisfy
diverse performance-optimization requirements. However,
measuring the precise absolute values is costly, since covering
all-pair routing paths for O(N) sized systems requires O(N?)
measurements. As a result, most absolute-value measurements
use mathematical models to predict pairwise network metric.

e The relative-value measurement only provides degrees of prox-
imity between nodes, which is less powerful than the absolute-
value measurements, but can also fulfil many performance
optimization needs. For example, they allow to select proxim-
ity nodes for matchmaking in network games in terms of RTTs,
or losses, or select the backup servers based on the proximity
of the bandwidth values or the loss rates. Moreover, since the
measurements only need to infer the relative proximity rela-
tions, the measurement bandwidth cost can be reduced.

1.1.1. Absolute-value measurement

Many absolute-value measurements predict end to end net-
work metric in order to improve the scalability of the mea-
surements. Existing prediction methods can be categorized into
network coordinate based methods, topology based methods and
network tomography based methods.

First, the network coordinate based methods embed nodes
into low-dimensional coordinate space and predict end-to-
end absolute-value metric based on point-to-point coordinate
distances. Each node maintains its own coordinate using a fixed
number of neighbors, the overall bandwidth cost of the method is
O(N). However, most network coordinate methods are specifically
suitable for the RTT metric, such as GNP [8], Vivaldi [9], Htrae [10],
NetICE9 [11], DMF [12], Phoenix [13], which limits the generality
of the measurement process. Recently, researchers have extended
network coordinates to predict the bandwidth or hop metric. The
NonMetric [14] method can predict both delays and bandwidth
with the min-plus metric. Beaumont et al. [15] and Douceur
et al. [16] predict end-to-end bandwidth based on the constraints
of the upload and download capacity of decentralized nodes.
Xing et al. [17] have proposed an Ultra metric based bandwidth
estimation scheme. However, these extended network coordinates
for bandwidth or loss rates are less accurate than those that predict
the RTT metric.

Second, the topology based methods predict a virtual topol-
ogy for participating nodes and estimate end-to-end metric using
topology distances. The topology expresses flexible proximity in-
formation between nodes. iPlane [18] and iPlane Nano [19] create
an approximated Internet topology based on extensive Traceroute
measurements from distributed vantage points. The Sequoia meth-
ods [20,21] construct multiple trees to predict the delays and band-
width between decentralized nodes. Unfortunately, due to the
dynamics of the network metric and the participating nodes, main-
taining the topology incurs high bandwidth cost.

Third, some of the network tomography based methods predict
end-to-end absolute-value metric using algebra based models. The

algebra models assume a linear relationship between path links
and path metric such as the delay and loss metric. As a result,
these models are no longer useful when the linear relationship
does not hold as is the case for the bandwidth metric. Chen
et al. [22] propose to select a basis set of routing paths to monitor
and estimate pairwise delay and loss of overlay nodes with linear
systems. But it is not clear whether such an approach applies
to other performance metric. Coates et al. [23] estimate end-to-
end path metric based on the diffusion wavelets and nonlinear
estimation that tolerate incomplete path measurements. Qazi and
Moors [24] further show that the overlay monitoring quality can
significantly degrade when some parts of the routing topology
are missing or incorrect. Besides, the routing topology is usually
assumed to be known for establishing the algebra models, which
may be challenging for hybrid clouds involving distributed and
dynamic nodes.

1.1.2. Relative-value measurement

The relative-value measurement methods directly compute
pairwise proximity based on mathematical models for scalability.
Existing methods can be categorized into divisive clustering
methods, hierarchical clustering methods and the coordinate
based methods.

First, the divisive clustering based methods group nearby nodes
into the same cluster. The intra-cluster nodes are closer than inter-
cluster ones. Unfortunately, nodes in the same cluster are assumed
to be equally close to each other and no proximity information is
available for inter-cluster nodes. Beaumont et al. [25] aggregate
distributed resources into proximity clusters of nodes based on
approximately solving the problem of bin covering under distance
constraints. SOLARE [26] constructs utility-optimized proximity
clusters of nodes in the P2P structured overlay. Malik et al. [27]
iteratively divide nodes into proximity clusters based on static
proximity threshold values.

Second, the hierarchical clustering based methods constructs
a logical tree to represent multilevel proximity. The hierarchical
clustering method [28] recursively groups nearby nodes into
multiple levels to produce a logical tree structure. Tiers [29]
organizes distributed nodes as a logical tree where cluster-head
nodes recursively re-cluster themselves in a bottom-up manner.
Sequoia [20] creates logical trees where distributed physical nodes
are added into the tree as the leaf vertices and virtual nodes are
added to connect all leaves as a tree. Wieser and Boszoényi [30]
recursively aggregate P2P nodes based on the pairwise hops on
the overlays, and nodes with the highest identifiers are recursively
selected as the cluster heads at each level.

Fig. 1 plots an example of the hierarchical clustering tree for six
nodes based on the RTT metric. The level value of two nodes at the
bottom level of the tree is the layer number of their closest common
ancestor in the tree that is depicted by the horizontal dashed lines
in the figure. Higher levels correspond to larger RTTs.

Although the hierarchical clustering tree provides intuitive and
powerful proximity information, it also has two drawbacks:

e It is unsuitable for dynamic nodes, since it requires an update
of the logical topology whenever a node leaves or joins the
tree or a pairwise network metric changes, which increases the
maintenance costs.

e It cannot guarantee the matching between the topology struc-
ture and the ground-truth metric, since most trees are created
based on local heuristics. Several network metrics such as the
available bandwidth [31-33], routing hops are asymmetric, i.e.,
the bandwidth or hop count in one direction differs from that
in the reverse direction. For example, the asymmetry of the net-
work metric is missing on the topology structure.

Third, the coordinate based methods embed nodes into prox-
imity space and represent the pairwise proximity based on the co-

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253 1237

Fig. 1. Asimple hierarchical clustering example. There are three levels in the logical
tree. The level number decreases one per layer from the top layer to the bottom
layer.

ordinate distances. Unfortunately, most existing coordinate based
approaches typically focus on one kind of network metric. Netvi-
gator [34] creates relative coordinates using the vectors of RTTs
from edge nodes to landmarks and some ‘milestone’ routers found
based on traceroute measurements. Netvigator’s similarity is com-
puted as clusters of coordinates. CRP [35] constructs coordinates
of end hosts as the frequency of being forwarded to different CDN
edge servers. The pairwise similarity of CRP is based on the cosine
similarity of two coordinates. Shen and Hwang [36] computes the
vectors of RTTs from edge nodes to landmarks as coordinates and
uses the space-filling curves to represent the pairwise proximity
of nodes. Liao et al. [37] propose a general and distributed method
to map absolute-value measurements to binary performance
classes, i.e., good or bad, which is perhaps the most related work
with us. However, there are three differences between [37] and
our study:

e The level mapping process is different. Liao et al. [37] perform
only a binary classification, while we explicitly map a network
metric to a tunable number of levels. Since the network metric
values are usually skewed, we propose a distributed K-means
clustering based level mapping process that maximizes the
similarity of network metric values in each level.

e The coordinate structure is different. Liao et al. [37] represent
the coordinate structure with matrix factorization and take
the sign of the coordinate distances as the binary performance
classes. We represent the coordinates with matrix factorization
and thresholds that optimally map the coordinate distances to
discrete levels.

e The coordinate movement is different. Liao et al. [37] use the
stochastic gradient descent method to update coordinates with
fixed movement step. We propose a distributed conjugate
gradient method to adjust the coordinates with optimal
movement steps.

1.2. Our approach

Our objective is to provide fine-grained relative-value measure-
ments for optimizing the service provision of hybrid clouds. To
that end, inspired by the layered proximity of the hierarchical clus-
tering tree, we propose a novel network metering metric, i.e., the
level number, to quantify the pairwise proximity. The level num-
ber is represented by integer numbers, where higher level num-
bers mean worse network metric. The level number is computed
for each direction of a pair of nodes. Therefore, the asymmetry of
network metric can be preserved by defining suitable level map-
ping procedures, which improves the granularity of proximity by
the hierarchical clustering tree.

We propose a novel distributed level measurement method
called Hierarchical Performance Measurement (HPM) that can

measure the levels for any kind of network metric for large-scale
and dynamic nodes of hybrid clouds. For each kind of network
metric, HPM first maps measured network metric to level values
that preserve the proximity of network metric values and then
estimates pairwise levels based on decentralized coordinates for
scalability.

First, in order to provide accurate proximity information, we
propose a distributed K-means clustering based level mapping
method to group the most similar network metric to the same
level. Therefore, the level values are able to match the pairwise
proximity between nodes. The number of levels can be tuned to
show detailed proximity of nodes. Besides, we also recommend
how to set the number of levels based on the distributions of
network metric. Since we separately compute level values for
unidirectional measurements, the asymmetry of network metric
values can be preserved.

Second, since directly measuring all-pair level values does not
scale, we propose a novel distributed implementation of a well-
known collaborative filtering method called Maximum Margin
Matrix Factorization (MMMEF) [38,39]. The key idea of MMMEF is to
learn adaptive thresholds to optimally map coordinate distances
to level values. For level completion, each node independently
maps the coordinate distances from itself to other nodes to discrete
levels using its own thresholds that are part of the coordinate
structure. We propose a decentralized implementation of MMMF
method to adapt the large-scale and dynamic nodes. Each node
maintains its coordinate based on the distributed implementation
of the conjugate gradient method. At each step, the coordinate is
adjusted with an optimal step size towards the conjugate gradient
direction.

In summary, we make the following contributions:

e We propose a novel level based network metering method that
represents the hierarchical proximity for any kind of network
metric. The method is general for different network metric such
as RTTs, bandwidth, hop counts or loss rates.

e We propose a scalable and accurate decentralized level
measurement procedure HPM that estimates pairwise levels in
a fully decentralized manner.

o We extensively evaluate the efficiency and efficacy of HPM with
simulations and the PlanetLab-deployment experiments.

e We apply the level metric to optimize the service provision
of hybrid clouds and show its superiority against state-of-art
methods for estimating pairwise network metric.

The rest of the paper is organized as follows. Section 2 defines
the level concept and presents the level-estimation problem.
Section 3 introduces the data sets used in this paper. Section 4
presents key ideas of HPM. Section 5 shows how to map network
metric to optimal levels. Section 6 presents the level estimation
method. Section 7 presents the simulation results on the real-
world data sets. Section 8 presents the implementation of HPM
and the performance on the PlanetLab. Section 9 shows several
application examples of HPM. Section 10 concludes the paper.

2. Problem definition
2.1. Level

As discussed in Section 1, the concept of the level is inspired by
the hierarchical clustering tree. Each level value is an integer for
ease of representation. Higher level values imply worse network
performance.

We illustrate the level values with the hierarchical clustering.
Consider five geo-distributed machines indexed by A, B, C, D and

1238 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

Layer 2

Layer 1
0.9 Y

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Dissimilarity

D E C A B

Fig. 2. A hierarchical clustering example for the bandwidth matrix. Since the
hierarchical clustering requires the dissimilarity metric, but the bandwidth is
a similarity metric, i.e., higher bandwidth corresponds to higher proximity, we
transform the bandwidth into a dissimilarity value: D; = 1— (D;;/MaxBW), where
MaxBW denotes the maximal pairwise bandwidth, i.e., 8 Mbps.

E that are located in different networks. The pairwise bandwidth
matrix D (Mbps) is given as:

0 0.125 0.125 0.125 0.125

0.125 0 0.125 0.125 0.125

D= 1 1 0 1 1 (1)
1 1 1 0 1
1 1 8 8 0

where the i-th row vector corresponds to the bandwidth from the
i-th node to other nodes.

We use the standard hierarchical clustering method to create
the logical tree for these five nodes. Fig. 2 plots the result. We
set the level number between two nodes as the layer number of
their closest common ancestor in the tree. For example, node C, D
and E are grouped in a cluster, and their pairwise level value is 1;
since node A and B have low bandwidth to all other nodes, their
level values to other nodes are 2. In fact, the pairwise levels by the
hierarchy clustering are symmetric, since there is only one closest
common ancestor for any two leaf nodes.

However, the symmetry of the hierarchical clustering tree dis-
torts the structure of the bandwidth matrix, since the bandwidth
matrix D is typically asymmetric. On the other hand, the pairwise
level numbers can preserve the asymmetry, since we can sepa-
rately compute the level number for each unidirectional network
metric value. As a result, the level value is more general than the
hierarchical clustering tree.

2.2. Measurement goals and challenges

Given a set of large-scale and distributed nodes provisioned by
hybrid clouds. These nodes may dynamically join or leave cloud
services. Assume that these nodes are able to probe any kind of
network metric to each other using active measurement tools.
However, due to the limited capacity and fixed access bandwidth
constraints, each node can concurrently probe a small number of
nodes.

Our goal is to compute pairwise levels for these large-scale
and dynamic nodes. There are two main challenges for the level
measurement process:

e How to map metric values into optimal levels. An ideal level
mapping process should maximize the similarity of network
metric values that are mapped into the same level, and separate
those dissimilar ones into different levels.

e How to scale the level measurements. The measurement proce-
dure should incur modest computation overhead and band-
width overhead with increasing number of nodes or levels.

1
09} — RTT
0.8} —— Loss
07b Bandwidth
0.6} "~ Hop ,
W /
5 0.5 — i’
0.4 —Lloss A~ S
0.3 L
0.2 , R e
ot for o
o -
0 2
0 0.2 0.4 0.6 0.8 1
Asymmetric Ratio
Fig. 3. The asymmetry ratio of all data sets.
3. Data sets

We use four representative network metric for our evaluation:
the RTT metric, the available bandwidth metric, the end-to-end
routing hop metric and the end-to-end loss rate metric. We then
choose four publicly available data sets for the experiments:

e RITT, the pairwise RTT metric between 169 PlanetLab machines
from the pairwise Ping project [40];

e Bandwidth, the pairwise available bandwidth metric between
360 PlanetLab machines from the S project [41];

e Hop, the pairwise routing hop metric between 188 PlanetLab
machines by the iPlane project [18];

e Loss, the loss rate metric between 146 DNS servers by the Queen
project [42].

Some of the data sets are asymmetric, which are illustrated by the
asymmetry ratio:

min (DU s Dﬁ)

max (Dl]’ Dﬂ) (2)

Tasy =
for D > 0,D;; > 0 but D; # Dj. The asymmetry ratio rg is
always < 1. A data set is symmetric if and only if 5, = 1 for
every pair of nodes. We set r,; = 0 when Dj; or Dj; is zero. Fig. 3
plots the results. We can see that all data sets contain a fraction of
asymmetric metric values. The loss rate data set has nearly 100%
asymmetry for all node pairs.

4. Our design

We design and implement a scalable decentralized level
estimation method called Hierarchical Performance Measurements
(HPM). Assume that a set of decentralized nodes run the HPM
method. For each kind of network metric, each node estimates level
values to other nodes based on decentralized coordinates that is
computed in a fully decentralized manner: Each node periodically
probes the network metric to a small number of sampled nodes
(called neighbors), then computes the optimal levels for these
probed metric, and finally incrementally updates its coordinate
based on these sampled level values and the coordinates of its
neighbors.

In order to accurately preserve the proximity of nodes into the
pairwise levels, HPM proposes two complement techniques:

e Distributed K-means clustering based level mapping. Given a net-
work metric, each node maps the absolute-value measure-
ments into discrete levels based on an existing distributed
K-means clustering method [43] that maximizes the similarity
of the network metric values in the same level.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253 1239

e Distributed Maximum Margin Matrix Factorization based level
estimation. We complete unobserved level values based on
a novel distributed implementation of the Maximum Margin
Matrix Factorization method, in order to optimize the mapping
of coordinate distances to discrete levels. The coordinate
includes low-dimensional vectors and thresholds. The products
of vectors are treated as the coordinate distances; the
thresholds are used to map coordinate distances to discrete
levels. Each node incrementally adjusts its coordinate based
on a distributed conjugate gradient method that has low
computational costs and fast convergence speed.

HPM has the following advantages:

e Applies to diverse metric. The level estimation process assumes
that the pairwise level matrix has low effective ranks. Such an
assumption holds for a wide range of network metric. Since
many end hosts share partial routing paths to some target
nodes [20], the network metric values from end hosts to the
targets are correlated with each other. The pairwise level values
between these end hosts to the targets are also correlated with
each other. Therefore, the pairwise level matrix can be well
approximated by a low-rank matrix.

e Scales with increasing number of hosts. The measurement process
is fully distributed.

e Adapts to system churn. The estimation accuracy does not
change significantly when hosts join or leave the system.

e Adapts to the temporal variations of network metric. The
estimation keeps up-to-date levels using periodical coordinate
updates.

5. Mapping network metric into discrete levels

In this section, we introduce how to optimally map a network
metric into a discrete level in a distributed manner.

5.1. Problem formulation

As discussed in the introduction section, the level mapping
process should maximize the similarity of network metric values
in the same level, so that the level results stably represent latent
proximity between nodes. To that end, since the network metric
values can be arranged into points in a line according to their
magnitudes, we should perform clustering on the network metric
values.

Clustering network metric values means we need to cluster
points in a one-dimensional space. Let the L; distance between two
network metric values dy, d, be the absolute difference of dy and d,,
ie.,

|dx —dy|. (3)

The clustering objective is to optimally separate points into dense
regions in the line. We choose the well-known K-means clustering
method [28] to cluster network metric values to L groups:

L

argmin) Y~ (D —)’ (4)

=l Ie[LU 1= pyeyy

where L denotes the number of levels, D; denotes the network
metric value from node i to node j, I; represents the set of network
metric values in the [-th cluster, I denotes the whole set of network
metric values, and w; represents the cluster centroid of the I-th
cluster:
> Dy
Djjely
(5)
It

As a result, the objective of the level mapping is transformed to
solve Eq. (4) for large-scale and dynamic nodes.

M=

5.2. Outlier detection

When the network metric values that do not belong to typical
clusters, i.e., outliers, are adopted for the K-means clustering
process, the cluster quality can be severely impaired. For robust
clustering, we need to remove the effects of these outliers.

Intuitively, in a one-dimensional space, the outlier points are
far away from other points. Therefore, if a network metric value is
not in dense clusters, this value can be regarded as an outlier. We
propose a hierarchical clustering based outlier detection method.
For each node 4, it performs the following steps:

1. In order to construct accurate clusters, node A collects network
metric values measured by its neighbors. For each neighbor,
node A randomly samples at most nyyyier Network metric values
without replacement.

2. Node A constructs a hierarchical clustering tree for the network
metric values. The distance between two network metrics is
calculated by Eq. (3). Let the maximum layer number in the
hierarchical clustering tree be L3%% ...

3. In the hierarchical clustering tree, each network metric value

that has layer number L% .. with every other network metric

values is regarded as an outlier. In other words, network metric

values in singleton clusters are treated as outliers.

After detecting outliers from the samples, the remained network
metric values that are not outliers are used for obtaining cluster
centroids in Section 5.3.

Removing these network metric values may be inappropriate,
since the cluster centroids may evolve due to the dynamics of
network metric or nodes, therefore the set of outliers may also
change dynamically. As a result, after a network metric value is
regarded as an outlier, this value is only skipped for one round of
the K-means clustering process.

For a node A with |S,| neighbors, constructing the hierarchical
cluster tree needs O((Noutier X |Sa| + 14)%) computing complexity
in the worst case, where ngyier denotes the maximum number of
samples from each neighbor, n, denotes the number of network
metric values measured by node A.

5.3. Obtaining cluster centroids

For K-means clustering, each network metric value is mapped
to the nearest clustering centroid. Therefore, the key problem is to
obtain the optimal clustering centroids ;& = {1, ..., i}

We use an existing distributed K-means clustering method [43]
to optimize Eq. (4). The basic idea is to let each node learn the
optimal cluster centroids via gossip communications. When a node
A joins the system, it randomly samples a number of online nodes
as neighbors. Node A then initializes its global cluster centroids
ita as a random vector. Then each node updates its global cluster
centroids with its neighbors via rounds of gossip communications.
The global cluster centroids of different nodes gradually converge
to identical positions.

In order to adapt the dynamics of network metric values, each
node A periodically performs the following operations:

1. Measurement based local-centroid update. Node A periodically
performs measurements to its neighbors and then computes its
local cluster centroids w4 based on the current global cluster
centroids [i4: For each network metric value dy, node A selects
the centroid j14(j) in 1z, that is nearest to d,, i.e.,
j=argmin|ua(i) — dyl . (6)

ie[1,1]
Then, for each cluster i € [1,L], node A computes the local
centroid w) as the average value of all network metric values

1240

@ Network metric sample

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

Cluster centroids

Cluster 1.‘/ Cluster 2V

o 0 e

1

Ni{e e

——, Cluster3

]
'
'
L
3 Level number

Fig. 4. Map network metric values to levels.

assigned to each cluster, i.e.,
; 1
Wy = —
A
|Dl| djeD;

d, (7)

where D; denotes the set of network metric values in the i-th
cluster. Let the size of the i-th cluster be nj'\ = |Dj|.

2. Gossip based global-centroid update. Let the vector of the local
cluster centroids be Wy = {w},..., w,}. Let the vector of
the cluster sizes be i, = {n}, ..., ns}. Node A periodically
pushes its local centroids w4 and the size of each cluster 7i4 to
its neighbors and pulls back the local centroids and size of each
cluster of neighbors. Then, each node A aggregates its j-th global
centroid w4 (j) as:

> mu
iESA

>

ieSp

na() = (8)

forj € [1, L], where S4 includes neighbors and node A itself, ni

denotes the size of the j-th cluster of node i in S, wf denotes
the j-th centroid of node i.

5.4. Mapping network metric to levels

Having obtained the clustering centroids, we next assign level
values for network metric values in each cluster. The cluster
centroids are sorted in an ascending (or descending for bandwidth)
order. Then each node A stores the sorted centroids into a list
Leentroid- Each network metric value is mapped to the nearest
centroid. The level number is calculated as the index of that
mapped centroid in the list. Formally, given a network metric
sample dy measured by node A. Node A then maps d, to the nearest
centroid w4 (l) in the list Leentroia:

' = arg min |dy — pa(i)] - 9
ie[1,L]

Fig. 4 illustrates the results after the level mapping process. We
can see that points of a cluster are mapped to an identical level
number. Therefore, the similarity of network metric values in a
level is maximized.

5.5. Determining the number of levels

The number of levels is up to the applications’ needs and can be
configured to a wide range of integer numbers. However, all nodes
should have the same number of levels for interoperability.

We also propose an offline heuristic to recommend the number
of levels L that tries to find the optimal clustering structure for
a kind of network metric. Assume that a node A collects the
measurement results from some of online nodes. Then the node
A computes the optimal number L of clusters that minimizes
Eq. (4), i.e., the K-means clustering error function. Finally, node A
distributes the optimal number L of clusters to other nodes.

5.6. Example

We next use an example to illustrate the process of the level
mapping. Let the number L of clusters be 2. Assume that each
node has two neighbors. Using the measurements to neighbors, we
construct an incomplete bandwidth matrix D1 as follows:

0 0 0125 0 0.125
0125 0 0.125 0 0
pDiI=| 1 1 o0 0 1 (10)
1 0 0 0 1

1 0 0 8 0

based on the bandwidth matrix D in Eq. (1).

We first perform the outlier detection. Node E, i.e., the node
corresponding to the fifth row vector of D1, constructs a hi-
erarchical cluster tree based on network metric values (1,8,
0.125,0.125, 1, 1) that include the measurements from its neigh-
bors A and D. From the hierarchical tree, we found that only the
sample 8 Mbps is in a singleton cluster. As a result, the value 8 Mbps
is regarded as an outlier.

We next calculate the K-means clustering centroids. We run
the distributed K-means clustering until all nodes reach identical
centroids, which are 0.125 and 1 Mbps.

Finally, we compute the level value for each measured
bandwidth in D1. For example, 0.125 Mbps should be mapped to
level 1, 1 and 8 Mbps should be mapped to level 2. As a result, the
pairwise level matrix Y for the bandwidth matrix D and the level
matrix Y1 for the bandwidth matrix D1 are as follows:

022 2 2 0020 2
2.0 2 2 2 2 0200
y=[(110 11 Yl={1 1 0 0 1 (11)
1110 1 1000 1
11110 100 10

The level matrices Y and Y 1 preserve most observed asymmetries
in the bandwidth matrix, except the one between D and E because
of a limited number of levels.

6. Decentralized level estimation

Having shown how to map measured network metric values to
discrete levels, we next introduce how to estimate level numbers
with decentralized coordinates for unobserved network metric
values. In order to accurately predict pairwise levels, we model
the optimization objective of finding the coordinates based on
the well-known Maximum Margin Matrix Factorization (MMMF)
[38,39]. We implement a decentralized MMMF algorithm based
on a novel distributed conjugate gradient method that converges
within a few tens of rounds and keeps to be stably accurate after
convergence. Table 1 summarizes key notations in HPM.

6.1. Problem formulation

For large-scale and dynamic nodes in hybrid clouds, we prefer
to estimate pairwise levels in a distributed manner. Besides,
in order to preserve the asymmetry of level values, we should
estimate unidirectional level values for a pair of users.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253 1241

Table 1
Key notations in HPM.
Notation Meaning
N The number of nodes
D Performance measurement matrix
L Number of layers
d Coordinate dimension
I I-th cluster of the performance measurements
I Whole set of clusters I,
i Averaged performance value of the I-th cluster
S Set of neighbors of a node
Y Layer matrix
X"f Coordinate distance from node i to node j
6 Thresholds for layer mappings
h(z) Soft-margin loss function
T A function quantifying the layer estimation errors
(@, v, a) Coordinate of each node, X = ; x 7
o The regularization constant
2 The set of observed layer values
A Steepest direction
A Conjugate direction
Bi Polak-Ribiére scalar
o Movement step
Yy An estimated layer matrix
I, Number of UDP packets per measurement
Cum Maximal number of neighbors
T, Inter-gossip interval

Coordinate {hresholds
distance

<02 | (02031 >03

)

=1 =2 =3

/

levels
Fig. 5. Map coordinate distances to level values.

6.1.1. Estimating the level

We define the coordinate distances based on the matrix
factorization, in order to be general enough to adapt different kinds
of network metric: The pairwise coordinate distance is represented
by the linear combination of two low-rank matrices:

X=UxV (12)

where U isa N x d matrix and V isad x N matrix and d denotes
the rank of the matrices U, V,d < N.

Suppose that there are a total of L levels. Since a pairwise level
Yj is an ordinal value, i.e., Y; € {1,2,..., L}, but the coordinate
distance ?,-j is a real-valued number, we have to classify the

continuous coordinate distance)?ij into the ground-truth level Y.
For robust classification against coordinate errors, we use
thresholds to map coordinate distances to level values. Each
node maintains adaptive thresholds and use thresholds as
separation points of mapping continuous coordinate distances
to ordinal level values. For each node i, it maintains L — 1
real-valued thresholds 6; = (6, ..., 6ic—1). The thresholds
separate the whole range of real values into L disjoint intervals:
(=00, 6], (6i1,6], ..., (9,~<L_1>, +oo). Then, node i maps each
coordinate distance to the interval that contains the distance.
Finally, node i compute the level value as the index of that mapped
interval. For example, let the number of levels L be 3 and let two
real-valued numbers —0.2, 0.3 be two thresholds. Fig. 5 plots such
an example of how to compute the levels for a specific node.
Setting proper thresholds is fundamental for accurately com-
puting the levels. Uniformly distributed thresholds do not pre-
serve the proximity of network metric values, since most kinds
of network metric are distributed non-uniformly, as shown in

Fig. 6. Therefore, we need to adaptively set the thresholds ac-
cording to the distributions of network metric values. To that
end, we treat the thresholds 6; of a node i as new dimensions of
the coordinate, which will be computed in a fully decentralized
manner.

6.1.2. Coordinate structure

The coordinate includes low-rank vectors and the thresholds.
Let u; denote i-th row vector of U, v; denote the i-th column vector
of V and 6; denote the i-th row vector of the threshold matrix

6= (51, R 07\,) We set the coordinate of node i to be the vector
;éi - (ﬁiv ljis él)

The coordinate distance X-j between node i and j is computed by
the inner product of u; and v;:

d

Xl‘]‘ = Zuimvmj. (13)
m=1

The coordinate distance can be symmetric or asymmetric, since)?,-j

may differ from 3(\1,

For level estimation, each node i independently maps the
coordinate gistances from itself to other nodes using node i’s
thresholds 6;. Suppose that we need to estimate the level value
from node i to node j. We first compute the coordinate distance
X;j from node i to node j. Then, we map X;; into a level value using
node i’s threshold vector 5,-. Algorithm 1 summarizes the steps.
Step 3 computes the coordinate distance. Step 4 initializes Ehe level
number. Steps 5 — 9iterate through the threshold values 6; to find
anumerical interval that contains Xj;. Steps 6 — 8 detects whether
the current numerical interval contains)?,J

Algorithm 1: level Completion from node i to node j.

. {Input: node i’s coordinate i, ¥, 6;, node j's coordinate uj, vj, 5j}
: {Output: estimated level value [}
: X,'j = lj,‘ X 'l_);
=1
:fork=1:(L—1)do

iinj > 6; then

l<—1+1

end if

end for

—_

6.1.3. Level estimation error

Having defined how to map coordinate distances to discrete
levels, we next define the optimization objective for computing the
coordinates, which measures the difference between the ground-
truth level values and the estimated level values.

Assume that we have measured the level value Yj; (Yj; € [1, L])
from node i to node j based on Section 5. Then in order to
estimate the ground-truth level values by Algorithm 1, node i
should map the coordinate distance X;; to the numerical interval

(Gi(yij,]), Giyi}.], where 6;p = —00, 6;; = +00. Otherwise, the level

estimation process incurs an error, where the coordinate distance
X;; is either mapped to the left intervals of the threshold 9,4(},,,],71),

ie,)A(ij — bi(y;—1) < Oor to the right intervals of the threshold 6yy;,

ie., Qmj — X < 0. We next measure the level-estimation error
based on the soft-margin loss function h(z) = max (0, 1 — z) for
robustness against input noises:

£ (Y0 %) = 1 Ry = By) + (0, ~ %) (14

1242

0.14
0.12

o
o

0.08
0.06

Frequency

0 100 200 300 400
RTT (ms)

0.12 7

0.1 1

Frequency
© o© o
o o o
H (] [e°)

1 1 1

0.02 1

0 10 20 30
Hop

(c)Hop.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

0.4

Frequency
o o
n w

o
=

0 1 2 3 4 5

Bandwidth (kbps) «10°

(b) Bandwidth.

Frequency

Loss
(d) Loss.

Fig. 6. Distributions of popular network metrics based on publicly available data sets in Section 3.

f (YU,)A(u) is a convex differential loss function that can be opti-
mized efficiently by gradient based methods [38]. Therefore, when
the estimated levels are incorrect, f (Y,-j,)A<,-j) takes a positive value.

Besides, for robustness against threshold errors, we incorporate
all thresholds into Eq. (14):

Yij—1 L—1

L) = S n(R=0) « Sn (0 -4)
r=1 r=Yjj
- Zh(r Y] - (eir —XU)) (15)
where T} [r, Y;] is defined as:
+1 r>Yj
T [r, Y] = {—1 r< YZ (16)

Although Eq. (15) defines the classification errors, finding op-
timal coordinates matching all observed levels is likely to fail (the
overfitting phenomenon), since the level matrix Y is only approxi-
mately low-rank. In order to avoid such overfitting situations, com-
bining the error function with an adequate regularization model
is a common practice. Therefore, by incorporating the sum of the
Frobenius norm of #; and v; as the regularization term for ca-
pacity control, we minimize the following regularized objective
of Eq. (15):

Je = T Yl] (ir — (L_[l S 17])))

L—
17&]1]6[1N]Z=:
o N -2 -2
+5 (2 (il + sz

i=1

(17)

. . - 2
where o denotes the regularization constant, and |zim|; =
>, z* denotes the Frobenius norm.

6.2. Distributed conjugate gradient optimization

We now introduce how to compute the coordinates for each
node in a fully decentralized manner. Generally, assume that
each node i periodically samples a number of online nodes S; as
neighbors. Node i probes several kinds of network metric values
to and from its neighbors with cooperation. Then for each kind of
network metric, node i maps the network metric values to discrete
levels by Section 5. Each node then predicts unobserved pairwise
level values to nodes that are not its neighbors.

The objective (17) needs the complete pairwise level matrix Y,
which implies a centralized computation process. Since we prefer a
fully distributed computation process, we decompose the objective
Jc into separable objectives],g of each node i and its neighbors S;:

= S -

je§i r=1

+ 5 ((alz + i)

Therefore, Eq. (18) can be independently optimized by node i.

We choose the Polak-Ribiére variant of the nonlinear conjugate
gradient methods (PR-CG) to minimize the objective (18) due to
its fast convergence and robustness [44]. For a nonlinear objective
function, PR-CG iteratively updates the position of the solution
vector x according to the conjugate direction of X until reaching a
local minimum. There are two important parameters for PR-CG:

(Ui x 1))

(18)

e Conjugate direction Ax.Itis a conjugate version of the successive
gradients obtained as the progress of the iterations.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253 1243

Algorithm 2: HPM Algorithm

1: {Input: node i’s current coordinate 1;, v;, 5, node i's steepest direction Ax;,
node i’s conjugate direction Ax;, the set of neighbors S, the level values Y
from node i to its neighbors in S, the coordinates of neighbors in S.}

2: {Output: node i's updated coordinate u;, v;, 8;, node i’s updated steepest
direction Ax;, node i's updated conjugate direction Ax;}

3K« [ﬁi; 17,-;(;‘.-]:

%:auihfZZT' r, Y

(T [Ya] - (6 — X)) vin (20)
jesi r=1
a ~
ajD —avm—zz T [, Y] b (T [Y - (8 = X5)) tyn @1
Vi jesi r=1
0, ~
S [) H (T [) (6~ %) @)
JESi
5:
b, b b
Vo () = | 32 22, 39] 23
6: A« —V)JD(i).
Toas
70 B < 7AA(§A§:“);
8: A «— A+ BAx;

9: a; < argmin]p (X; + o A);
a;

10:)?, (—)?, + o A;

11: Ax; < A;

12: Axj < A;

13: U; < x;[1:d];

14: 12; <~ X[(d+1):2d];

15: 0; < x[(2d+1): 2d+L—1];

e Movement step «. It determines how far we move in the con-
jugate direction. The movement step « is calculated through a
line search method [44].

For example, let X; be the concatenation of the coordinate
components of i, i.e., X; = [ﬁi; R 5,] Let x;(0) be a random vector.

Inaround ! (I > 1), for each node i, PR-CG updates node i's vector
xi(I — 1) a small step «; towards X;(I — 1)’s conjugate direction
Ax;(D):

Xi(D) < %1 = 1) + a; Axi (D). (19)

We can see that PR-CG incurs low computation overhead that is
comparable to gradient based methods.

Algorithm 2 presents the detailed steps of the distributed
coordinate update procedure. Each node periodically updates its
coordinate according to Eq. (19). The procedure first constructs
the vector x; (line 3) and calculates the steepest direction A (line
4 — 6) that is the negative gradient of the vector X;. Then, line
7 computes the Polak-Ribiére scalar 8 for updating the conjugate
gradient. Line 8 updates the new conjugate direction A based on
the steepest direction A and 8 times of the conjugate direction of
last round. Line 9 determines the optimized step length «; based
on the line search method [44]. Then line 10 updates the vector
based on the conjugate gradient vector A and the step length o;.
Lines 11 — 12 compute the new steepest direction Ax; and the
conjugate direction Ax;. Finally, lines 13 — 15 update node i’s
coordinate.

We now analyze the storage requirement at each node for
Algorithm 2. First, the length of the steepest direction and the
conjugate direction both equals that of the vector x. Storing the
node’s coordinate, its steepest direction and its conjugate direction
requires O (2d + L) space. Second, each node needs to store recent
level samples to neighbors and the coordinates of neighbors. For
|S;| neighbors, the storage becomes O (|S;| x (2d + L)). Therefore,
the overall space overhead of Algorithm 2 is O (|S;| x (2d + L)).

Table 2

Default parameter configuration for HPM.
Parameter Value
Number of levels L 10
Regularization constant « 0.3
Number of neighbors Cy 32
Coordinate dimension d 5
Neighbor choice Random
Update round 120 rounds

7. Simulation

In this section, we evaluate HPM's performance with real-world
data sets. We address four questions:

e Does HPM predict accurate hierarchical proximity that is
consistent with the pairwise proximity of nodes?

e Is HPM sensitive to parameter settings?

e [s HPM robust to missing measurements or coordinate errors?

e Does HPM scale with increasing number of levels or system
size?

We use the data sets described in Section 3. We repeat the ex-
periments in ten times and compute the average results and the
corresponding standard deviations. HPM’s default parameters are
shown in Table 2.

7.1. Performance comparison

We first test whether the level numbers predicted by HPM
preserve the pairwise proximity of the data sets. For that purpose,
we use a well-known metric Cophenetic Correlation Coefficient
(CCC) [45] to quantify the matching degree between the estimated
pairwise levels Y and the pairwise proximity D:

> (p;-D) (ﬁj - 9)
(i.)e2
CCC = (24)

LJ}ZEQ (D — D) } L.j}zeg (% -7) }

Z(T Z(l])e.@ D; is the average value of the per-
ij)e

where D =
formance matrix D, Y = Z(U)e.@] > jeq Vi is the average level

value of the estimated level matrix Y, and £2 is the set of per-
formance measurements. The CCC takes values between —1 and
+1. Higher CCC values mean that the pairwise levels match much
closer with the pairwise proximity.

We compare HPM with six related methods:

e Optimal. We regard the pairwise levels computed by the cen-
tralized K-means clustering method as the optimal pairwise
levels, since the K-means clustering based results optimally
preserve the similarity of the metric values mapped into each
level number. Accordingly, HPM tries to estimate the pairwise
levels computed by the K-means clustering method.

e Hierarchical clustering. As discussed in the introduction section,
the hierarchical clustering method can compute the logical tree
that represents multilevel proximity between a set of nodes
with respect to any distance metric. Accordingly, we compute
the logical tree using the hierarchical clustering method, and
treat the pairwise level of their closest common ancestor of two
bottom leaf nodes as the estimated levels by the hierarchical
clustering method.

e NonMetric. The NonMetric method [14] estimates the latency
or the available bandwidth based on decentralized coordinates.

1244 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

The coordinates are updated based on the spring field simu-
lation. However, the NonMetric method only estimates con-
tinuous distances. For ease of comparison, we compute the
logical tree of the estimated distances based on (ii) the hierar-
chical clustering method.

e LandmarkMDS. The LandmarkMDS method [46] estimates the
pairwise hops based on the Multidimensional Scaling (MDS)
method. Similar to the NonMetric method, we compute the log-
ical tree of the estimated distances based on the hierarchical
clustering method.

o Vivaldi. The Vivaldi method [9] estimates the RTTs based on de-
centralized coordinates that are calculated based on the spring
field simulation. Similar to the NonMetric method, we compute
the logical tree of the estimated distances based on the hierar-
chical clustering method.

e Sequoia. The Sequoia method [20] constructs the logical tree of
participating nodes based on a tree embedding process.

We can see that all methods except optimal and HPM do not
specify the maximum number of allowed levels. For fair compari-
son, our evaluation consists of two parts depending on whether or
not we limit the number of levels: First, we do not specify the max-
imum levels. We compute the logical trees for Hierarchical clus-
tering, NonMetric, LandmarkMDS, Vivaldi and Sequoia. Then we
compute the Cophenetic Correlation Coefficient values for these
logical trees. Second, we limit the maximum levels for all meth-
ods. After we construct the logical trees for Hierarchical clustering,
NonMetric, LandmarkMDS, Vivaldi and Sequoia, we compute the
pairwise levels for these logical trees, then we re-scale the corre-
sponding levels of the tree into the interval whose upper bound is
the allowed maximum level. We finally compute the Cophenetic
Correlation Coefficient values for the re-scaled levels.

Fig. 7 shows the results for the case without limiting the
maximum number of levels. The optimal method has the highest
matching degree with the ground-truth pairwise proximity, and
HPM has similar accuracy as the optimal approach. We can see that
the optimal and HPM methods are able to estimate the accurate
levels that match the latent structure of the data sets.

However, optimal and HPM methods have much lower CCC
values on the loss data set than those on other data sets. This
is because most pairwise loss rates are zeros, which makes the
distributed clustering process prone to be trapped into bad local
minimum.

On the other hand, the Hierarchical clustering, NonMetric,
LandmarkMDS and Vivaldi methods have much smaller CCC values
than the optimal and HPM methods, which implies that the
estimated logical trees do not well match the pairwise proximity
of the data sets. Furthermore, optimal and HPM have similar
CCC values on all four network metrics, but other methods have
varying CCC values for different network metrics, which means
that optimal and HPM have better generality with respect to
different network metric than other methods. For example, the
Hierarchical clustering method has a high CCC value on the RTT
metric, but has quite low CCC values on the other three metric.

Second, let all methods use the same number of levels, we
compare the matching degree between the estimated levels and
the pairwise proximity of the data sets. Fig. 8 shows the Cophenetic
Correlation Coefficients as we vary the maximum number of
levels. Similar to Fig. 7, the optimal method has the highest
matching degree. HPM has nearly the same accuracy as the optimal
approach. We can see that the optimal and HPM methods are
able to accurately predict the pairwise proximity of the data sets
with respect to different number of levels. On the other hand,
the Hierarchical clustering, NonMetric, LandmarkMDS, Vivaldi and
Sequoia have much lower CCC values than the optimal and the
HPM method, less than 0.4 on average, which implies that the
logical trees estimated by these four methods have a high degree
of mismatch with respect to the ground-truth pairwise proximity.

H Vivaldi
H NonMetric
H Sequoia
B LandmarkMDS .
1 - Hierarchical Clustering
0.9 A — OBtlmaI
: 1 HPM &
0.8
0.7
0.6
Q 05
8 0.4
0.3
0.2
0.1
!
-0.1 1
RTT Bandwidth Hop Loss

Fig. 7. The average values and the corresponding standard deviations of the
Cophenetic correlation coefficients of different methods when we do not limit the
maximum number of levels.

7.2. Sensitivity analysis

We analyze the effects of the parameter choice on the accuracy
of HPM. Since HPM incrementally adjusts its coordinate position,
we evaluate its convergence and robustness as a function of the
number of rounds of coordinate updates increase. Assume that
all nodes join the system at time zero, and each node updates its
coordinate once per round. Let the default parameter configuration
of HPM be defined in Table 2. We compare the differences between
the estimated levels of the optimal method and those of the HPM
method based on the Normalized Mean Absolute Error (NMAE):

> |Yi— Yz‘j’
NMAE = el (25)
> Y

(i.j):Y;>0

where Yj; denotes the level value from i to j by the optimal method,

f/ij denotes the estimated level value from i to j by HPM. The
NMAE metric can adapt to various performance metric that have
different level intervals. Smaller NMAE values correspond to higher
prediction accuracy. We report the averaged results that are based
on ten repeated simulations.

7.2.1. Number of levels

We first test HPM’s accuracy as a function of the number
of levels. Fig. 9 shows the convergence for different number of
levels. HPM converges in about 20 rounds, then remains accurate
afterwards. We see that HPM converges fast and that varying the
number of levels does not affect the convergence speed of HPM.
Therefore, HPM can achieve very good accuracy independent of the
number of levels.

7.2.2. Size of neighbors

We next evaluate the accuracy of HPM as a function of the num-
ber of neighbors. Fig. 10 shows the results. We see that increasing
the number of neighbors generally increases the accuracy of HPM.
But the performance improvements become negligible when the
number of neighbors exceeds 16. Therefore, a moderate number of
neighbors is enough for accurate level estimations.

7.2.3. Neighbor selection choice
We test whether the choices of neighbors affect HPM's accuracy.
We use four kinds of neighbors:

e Random. We choose neighbors uniformly at random from the
whole set of nodes.

e (losest. We choose neighbors that have lowest RTT, loss, hops
or highest bandwidth.

e Farthest. We choose neighbors that have highest RTT, loss, hops
or lowest bandwidth.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

11 0.8 1
091 S A— Vivaldi * 071 -
0.8 1 — — NonMetric o064 / Vivaldi
] Sequoia] — — NonMetric
0.7 —v— LandmarkMDS 0.5 Sequoia
0.6 1 —6— Optimal o 0.4 4
Q —%— HPM 15) =~ LandmarkMDS
8 0.5 7 Hierarchical Clustering O 0.3 1 —©— Optimal
047 eeiFeeeeeeeees] I 0.2 1 —¥— HPM
034F L — — — g ——— — — — — — 0.1 4 —— Hierarchical Clustering
- T
0.2 4 I/‘f L 0-
0.1 4 —0.1 4 —a
S O e e Yy -3 :
T T T T T T T T T T T T T T T 1
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 4
Levels # Levels
(a) RTT. (b) Bandwidth.
0.8 4
17 —o— °
0.9 /_’/ _— N 0.7 3
-
0.8 4 E
07 1] /‘——*,-----Vivaldi 0.6 s __ k
0.6 E — — NonMetric o 0.5 -z \ng/r?rl\j:etric
Q 051 Sequoia 8 Sequoia
8 7] - LandmarkMDS 0.4 1 —~ LandmarkMDS
0.4 —6— Optimal —©— Optimal
0.3 1 ——HPM 0.3 1 —%— HPM
0.2 4 . . . Hierarchical Clustering
: — Hierarchical Clustering 029 ;
0.1 1 D — e e e a2
04 = 0.1 -x .4 v v
T T T T T T T 1 T T T T T T T T
0 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Levels # Levels
(c) Hop. (d) Loss.
Fig. 8. The Cophenetic correlation coefficients for various methods with increasing number of levels.
1.1
1 —L=2
081 § L=10
0.7
w w ‘ —_— =20
=< < 06|k
= S o5t \3 ==+ 1=40
z zZ . %
0.4 %
0.3 (\
0.2 N
0.1 S Sl Bl " el e T Sl et ¢
0
0 10 20 30 40 50 60
Round Round
(a) RTT. (b) Bandwidth.
2 7fs
—L=2 . —L=2
1.8 —L6 6ht — L6
1.6 H =
nE L=10 s L=10
: —=1=20 : —_l=
w 2] w4 z L=20
ESENIAY el=40 £ |y ----L=40
z . Z 3t
2y
i
1 .
\\i.;'.'_': HR L P T AT T TLT LN
0
0 10 20 30 40 50 60
Round
(c) Hop. (d) Loss.

Fig.9. The rate of convergence of HPM as we vary the number of levels.

1245

1246 Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

0.16 — RTT
Bandwidth
0.14 = = Hop
= Loss
|_u 012 ------------------------
<C
=
Z o041
0.06

8 16 24 32 40 48 56 64
Neighbors

Fig. 10. The effectiveness of the number of neighbors.

0.8
- Random
0.7 =
[Closest
o6r []Farthest
w 0.5 -Hybrid
< 04
=z
0.3
0.2
0.1
oL
RTT Bandwidth Hop Loss
Data Sets

Fig. 11. The effect of neighbor selection policies on rate of convergence.

e Hybrid. We select half neighbors using the Closest based
selection and the other half neighbors using the Farthest based
selection.

Fig. 11 shows that the Random based neighbor selection
policy achieves the highest accuracy, compared to the other three
policies. As a result, we can randomly choose neighbors for level
estimations, which can be implemented easily.

7.2.4. Dimensionality

We next evaluate the effectiveness of the coordinate dimension
on the accuracy of HPM. Fig. 12 plots the simulation results
with varying coordinate dimensions. The results show that low
coordinate dimensions are enough for converging to accurate
level predictions. Increasing the coordinate dimensions does not
significantly increase the accuracy of level predictions.

7.2.5. Regularization constant o

We finally test whether the regularization parameter « in the
loss function of Eq. (18) affects HPM’s accuracy. When varying
o from 0.1 to 2, we did not see any significant effect on the
accuracy. Therefore, HPM is quite robust against the choice of the
regularization parameter .

7.3. Robustness
We test the robustness of HPM in this section.

7.3.1. High erroneous nodes

We first test whether HPM is sensitive erroneous coordinates.
We divide the overall set of nodes in the data sets into two equal
halves, only half of the nodes join the system at time O and the
other half nodes join the system after 40 rounds. As a result,

0.13 . — RITT
.
‘s Bandwidth
.
0.12 ‘ammammn . = = Hop
0”
0’ ==== | 0SS
0.11 RS
W \
s \
4 \ ’0
0.1 —_——_—— .
AN
N\
AN
0.09 \
RTT,Bandwidth N\
* N\
N\
0.08 e .
0 5 10 15 20

Coordinate Dimension

Fig. 12. The effect of coordinate dimension on the rate of convergence. We vary
the coordinate dimension ranging from 2 to 16 on all data sets.

the erroneous coordinates are injected into the system after 40
rounds. To quantify the stability of the coordinate of each node i,
we calculate the Coordinate Drift using the I; norm defined as

2d+L—1
> |xitm) — Fi(m)| (26)
m=1

where x; = [ﬁi; Ui 5,] denotes the updated coordinate, and X;

denotes the previous coordinate. We plot the accuracy of level
estimations and coordinate drifts in Fig. 13.

We can see that the first half nodes converges to stable
coordinates within 20 rounds and keep steady until 40 rounds.
Furthermore, the coordinate drifts decrease close to zeros after
the coordinates are stabilized after 20 rounds. When the other
half nodes join the system after 40 rounds, the overall coordinate
errors increase sharply after 40 rounds, since the coordinates
of newly-joined nodes are randomly initialized and incur high
errors. Accordingly, the coordinate drifts also increase. However,
the whole set of coordinates converge within the next 20 rounds to
stable positions. The newly stabilized coordinates have the similar
accuracy as those before 40 rounds and the coordinate drifts also
decrease to the similar degrees as those before 40 rounds.

7.3.2. Missing measurements

We next test HPM’s performance when some level measure-
ments to neighbors are unavailable due to node failures or rout-
ing disruptions. In each round, for each node, we choose uniformly
at random a fraction of neighbors that do not respond to the level
measurements. We than collect the final performance statistics of
all nodes. Fig. 14 plots the results. We can see that HPM is robust
against missing measurements: the estimation accuracy degrades
slightly with increasing percent of missing measurements. This is
because the conjugate gradient optimization method is quite ro-
bust to incomplete information.

7.4. Scalability

In this section we show the scalability of HPM.

7.4.1. CPU efficiency

We first test the efficiency of HPM as a function of the number
of levels. We compute the CPU time of completing one round
of distributed K-means clustering algorithm and that of finishing
one round of coordinate update. From Fig. 15 we can see that
with increasing number of levels, the CPU time of the distributed

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

4

;
0.9 35
08 3
0.7 25

w 0.6 | £

< o0s |’ 2 3

Z 04 15
i 1
“ [

o1 (] 05
% 20 Round 40 60 80

(a) RTT.

1 4
0.9 a5
08 .
07

w 0.6 | 2-5H

s 05 2 =

< 0.4l “' ‘ 1_50
-
g:? ||| : ||||||||||||||II|IIII ”| "" | " ""' i 0.5

o i ||||||||||III|IIII||II|||||||'

0 20 40 60 80

(c) Hop.

1247
1 4
0.9 35
0.8 “‘!:" 5
0.7
06 | 25
Y £
S 0.5 2 5
= 04 || 15
0.3
W mu |
0.2 flRE I |||
|“ i “| iy
0.1 il " [t o-5
0 | ||||||||||IIllllllllluuunu::n:u |||||||||||||||IIIIIIIIII||I|||||;
0 20 40 60 80
Round
(b) Bandwidth.
1 4
0.9 35
0.8 3
0.7 o5
w 06 S
< I 2 A
s 05 j
=z 0.4] H“‘ || ““‘ 15
os L i
0_2 ’ || ””” |! |!!||||III||||I|| g
Ll (O
0.:) “l||||||||||||II|II|II|IIu||I||l “|’|’|||||I|I|"""|"||"|||| 0
0 40 60 80
Round
(d) Loss.

Fig. 13. The effect of high-error coordinates on the rate of convergence. The vertical line after 60 rounds indicates the joining event of new nodes.

K-means clustering and the coordinate update increase almost
linearly. However, the slope of the fitted line is quite modest. As
a result, HPM scales well with increasing number of levels.

Besides, we also evaluate the CPU efficiency of HPM in terms of
the number of neighbors or the coordinate dimension. We found
that the CPU time is quite stable as we increase the number of
neighbors or the coordinate dimensions.

7.4.2. Accuracy with increasing system size

Our previous evaluation uses a fixed number of nodes. In
this section, we test HPM’s accuracy with increasing number of
participating nodes. We choose the RTT and bandwidth metric as
examples. Due to the limited size of the RTT data set, we use a larger
RTT data set from the Meridian project [47].

From Fig. 16, we can see that there are clearly phase changes
with increasing number of nodes on the RTT and bandwidth
data sets. The change points of different phases for RTT and
bandwidth metric occur when the system size is much smaller
than the overall size of the data sets. At the beginning, HPM incurs
higher estimation errors with increasing number of nodes; but
soon HPM keeps to be stably accurate. This is because smaller
system size means narrower search spaces for the optimization
problem, which implies that the solution is much closer to the
global optimum [38].

8. PlanetLab evaluation
8.1. Implementation

We have implemented HPM in Java. The main logic consists of
approximately 4000 lines, including the neighborhood management
component, the performance measurement component, the layer
mapping component, the layer estimation component, as shown
in Fig. 17. Each node periodically triggers the performance
measurement component to probe performance metric towards

— =RTT
0-27 - — - Bandwidth
—Hop
0.15 --Loss
w
S oy . _—__
z I
0.05 4
0 ,
0 002 004 008 008 0.1

Percent of Missing Measurements

Fig. 14. HPM'’s accuracy as a function of the percent of missing measurements to
neighbors.

available neighbors, then calls the layer mapping component
to calculate discrete levels with updated clustering centroids,
and finally updates its coordinate based on the layer estimation
component. Besides, each node can request the coordinates of
any pairs of nodes based on the XML RPC interface and compute
the corresponding two-direction levels based on the requested
coordinates.

Our prototype measures the RTT and loss metric simultane-
ously. Each node A periodically triggers a measurement event,
which sends a sequence of probe packets to a randomly selected
neighbor B, and returns immediately in an asynchronous manner.
Accordingly, the receiver B echoes the sender with an acknowledge
packet as soon as it receives a measurement packet. Finally node A
computes the RTT and loss metric as:

e RTT. The round trip time is calculated by averaging the period
of each pair of a measurement packet and the corresponding
acknowledge packet, (ZLS”“"” T:) /Lsuccess, Where Lgyccess iS the
number of successful pairs of measurement and acknowledge

1248

017 — Bandwidth

-—-- Linear fitting

CPU time (Sec)

=0.003"x + 0.02

0 T T T T T T T T 1

2 4 6 8 10 12 14 16 18 2
Levels

(a) Distributed K-means clustering.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

00257 o7
-—-- Linear fitting
0.02 A
o
[0
@ 0.015 1
[0}
£
> 001 4
o
(@]
0.005 { y ;\o.oooss*x +0.0047
0 T T T T T T T T 1
2 4 6 8 10 12 14 16 18 20

Levels

(b) Coordinate update.

Fig. 15. The CPU time as a function of the number of levels on the bandwidth data set.

0.22 7

0.2 1

I
N

0.12 T T 1
200 400 600 800
Nodes

(a) Meridian RTT data set.

NMAE

0.2 5

0.15 1

0.1 1

NMAE

0.05 1

O T T T T
50 100 150 200 250

Nodes

T 1
300 350

(b) Bandwidth data set.

Fig. 16. HPM’s accuracy as a function of the size of nodes.

---» Measurements
>

Node 2

Function Calls

Node 1

Laycrgsti ation Layerfsti*‘nation
Neighbor¥ [¥ Layer Neighbor¥ [¥ Layer
management | 4 mapping management | 4 mapping
Performance nteasuremem Performance nteasuremcnt
\ ’/,

Fig. 17. The HPM architecture.

packets, T; is the time period of the i-th pair of measurement
and acknowledge packets.

e Loss rate. The loss rate is calculated by the ratio between the
number of acknowledge packets to the total number of mea-

surement packets, (1 — LZ“%) where Ly is the overall num-
ota
ber of measurement packets.

Furthermore, as the performance measurements to neighbors
keep changing due to dynamic network conditions, we use
the exponential moving average filter with a coefficient at
0.05 to smooth out short-term fluctuations. After completing a
performance measurement to a neighbor, node A updates its
coordinate vector based on available performance samples of all
neighbors, in order to optimize the convergence of its coordinate
vector.

8.2. PlanetLab experiments

We selected 269 physical machines on PlanetLab and installed
the HPM program. We update the cluster centroids and issue the

performance measurement based on the gossip communication.
The inter-gossip interval Ty is 30 s. Accordingly, the coordinates
are updated approximately per 30 s. Each node independently
maintains two coordinates based on HPM, one coordinate for the
RTT metric and the other one for the loss metric. We choose other
parameters for HPM as those shown in Table 2 in the Simulation
section.
The evaluation metric for the prototype include:

e Relative error, each node i calculates the relative error with each
neighbor j between the estimated level and the ground-truth
it
Y,'j R
by the distributed K-means clustering method and Y;; denotes
the estimated level number by Algorithm 2. Then each node i
updates the relative error towards the neighbor j when node
i's coordinate changes or node i obtains new performance
measurements to node j. The updating rule is based on the
exponentially moving average with a coefficient at 0.05.
e Coordinate drift, we calculate the coordinate drift per minute
based on Eq. (26) in order to quantify the stability of each node’s
coordinate.
Bandwidth costs, we collect the bandwidth costs of HPM per
minute, including the gossip messages and measurement costs
incurred by the packet trains.
Relative error: Fig. 18(a) plots the CCDF of the relative errors
of level estimations by HPM. For the RTT based level estimation,
HPM incurs low estimation errors for each node pair, where the
maximum relative error is around 0.4. For the loss based level
estimation, HPM is even more accurate and predicts accurate level
values for most node pairs, where in around 95% of the cases of
the median relative errors are below 0.1. Therefore, HPM predicts
representative metric quite accurately.

level as , Where Yj; denotes the level number computed

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

— RTT
==== Loss

CCDF

0.3 0.4

Relative Error

(a) Accuracy.

Costs (KB/Min)

1249
2
=15 — RTT
a e Loss
c 1
[
[
=05
O L
0 200 400 600 800 1000
2
1.5 .
po] H
»n 1 '
05 l
) , 3
0 .
0 400 600 800 1000
Time (Minutes)
(b) Movement drift.

— mean
A mean+std
v mean-std

0 200 400

600 800 1000

Time (Minutes)

(c) Bandwidth costs.

Fig. 18. Performance statistics of HPM on PlanetLab. Std denotes the standard deviation.

Coordinate drifts: We next plot the dynamics of the coordinate
drifts in Fig. 18(b). The results show that the coordinate drifts are
relatively high at the bootstrap phase, with mean and standard
deviation at around two. This is because the initial coordinates
move at large steps to converge to accurate positions. On the
other hand, after ten minutes, the coordinates keep to be stable
with close-to-zero coordinate drifts. We can see that ten minutes
correspond to twenty rounds of coordinate updates, since the
coordinate update interval is around 30 s. The convergence
speed of the PlanetLab deployment is consistent with that in the
simulation results.

Bandwidth costs: Fig. 18(c) depicts the dynamics of the system
overhead. The mean control overhead stay around 1.8 kB/min
during the experiment period, which is quite modest. However,
the standard deviations of the control overhead at the beginning
are relatively large, since each node needs to contact multiple
potential neighbors returned from the bootstrap node. After the
initial contact process, the overhead becomes steadily low.

Summary of results: We confirm that HPM can converge to stable
positions with accurate level predictions at low bandwidth costs.
Furthermore, HPM can still estimate levels very accurately for
skewed network metric such as the loss rates where most of them
are zeros.

9. Application

In this section, we illustrate several service provision that
can benefit from HPM in the context of the Nano Data Center
(NaDa) [6], which is a kind of hybrid clouds that uses Nano
data centers to reduce the energy consumption of traditional
data centers. NaDa comprises geographically distributed in-house
gateways. NaDa can allow ISPs to host Internet applications and
content on residential gateways to reduce the access time for end
hosts.

We assume that each node in NaDa computes its coordinate
using HPM, and that each node learns the coordinates of all nodes
in the system through a coordinate propagation scheme such
as the anti-entropy gossiping procedure. Since each coordinate
requires (2d + L) space, storing the coordinates of N nodes incurs
O (N - (2d 4 L)) space, which is quite modest.

9.1. K nearest neighbor search

The K nearest neighbor search aims to find K nano servers
having the lowest delays or the highest bandwidth to the target. K
nearest neighbor search helps optimize the streaming applications
and the content backup service, since redirecting host requests
to nearest nano servers can reduce the delays and increase the
transmission throughput. Furthermore, locating K nearby nano
servers (K > 1) can be used for parallel connections in the content
backup service to avoid the performance bottlenecks of some nano
servers.

We simulate K nearest neighbor search using HPM as follows:
first, we randomly choose a target from the whole set of nodes, and
configure the other nodes as nano servers; second, we randomly
choose nano servers that have the smallest levels to the target to
be the closest nodes to the target, since lower levels correspond to
lower delays or higher bandwidth. For indirect methods including
Vivaldi, NonMetric, Sequoia and LandmarkMDS, we determine
the closest nano servers to the target using estimated delays or
bandwidth. Besides, in order to quantify the effectiveness of the K
nearest neighbor search, weZ calculated the stretch of found closest

. jEEi ij
nodes for each target i as Siec By
nodes found by HPM, and C; represents the ground-truth closest
nodes. The ground-truth closest nodes correspond to nodes that
have the lowest delays or the highest bandwidth to the target.

, Where a denotes the closest

1250
256 - vy Vivaldi
128 i\ — — NonMetric
""XV Sequoia
& 641 k. W =7 LandmarkMDS
5 32_‘# ER\V —— HPM
3 i ~ .
d S \\\ ~< —©— Optimal
S 161 \’\. SO~
<
[}
°
7

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

1 -
0.9 - ety o o £ ”
0.8 1
0.7 1
:LC_)' 0.6 /,__T-___,_.-_-_--_"."'_Z'—'- ————— .
- Lot - _—— -
ol LR ot Vivaldi
O 0.4 Fove — — NonMetric
0.3 1 Sequoia
0.2 —v— LandmarkMDS
0.1 4 —¥— Optimal
. —e—HPM
0 T T T T 1

T
0 5 10 15 20 25 30

(b) Bandwidth.

Fig. 19. The stretch of K nearest neighbor search with varying number of required nodes.

(a) RTT.
1289 e Vivaldi
— — NonMetric

641 Sequoia
5 324 It - LandmarkMDS
3 lr\‘7 —%—HPM
5 167 ,"“‘ -o-Optimal
g !
[
»

(a) RTT.

< 0.61 | .
g o059 1
& o4 !/ =Y
0.4 . ey e Vivaldi
0.34 - N — — NonMetric
' PR 4 Sequoia
029 X - —7 LandmarkMDS
0.1 var —4—HPM
.O —©— Optimal

0 5 10 15 20 25 30

(b) Bandwidth.

Fig. 20. The stretch of proximity-aware matchmaking with increasing number of required nodes.

According to the definition of the stretch, for RTT, the stretch
is >1, the lower the stretch, the better HPM performs; on the
other hand, for the bandwidth metric, the stretch is <1, the closer
to one the better HPM performs. Fig. 19 shows the evaluation of
mean stretch with increasing number K of required nano nodes.
The optimal method and HPM significantly improve the stretch
compared to other indirect methods including Vivaldi, NonMetric,
Sequoia and LandmarkMDS. Moreover, HPM has similar stretch as
the optimal method for the bandwidth metric and the delay metric
(when K exceeds 5), implying that HPM can find closest nodes that
are as good as those using the Centralized method. On the other
hand, indirect methods including Vivaldi, NonMetric, Sequoia and
LandmarkMDS have much worse stretch than optimal and HPM on
the delay and bandwidth data sets.

For the delay metric, the stretch values of optimal and HPM
decrease from around 3 and around 6 to nearly 1 as K reaches 2 and
5, respectively, and stay close to 1 afterwards. This means that the
use of optimal and HPM may select inaccurate closest nodes when
K is low, since the level values are only coarse-grained proximity
metric. On the other hand, optimal and HPM become very accurate
with increasing K. On the other hand, for the bandwidth metric,
optimal and HPM have a stretch close to 1, which decreases slightly
with increasing K, indicating that HPM could find high bandwidth
nodes, but may miss some of the best ones.

9.2. Proximity-aware matchmaking

Proximity-aware matchmaking finds nodes that have the best
proximity [10], by locating hosts that have lowest pairwise delays
or highest bandwidth to each other. The proximity-aware match-
making is useful for finding groups of nodes in networked games
in order to increase the responsiveness between game levels.

The proximity-aware matchmaking differs from the K nearest
neighbor search, since now we need to select nodes for each node
i such that the selected nodes and node i have the lowest delays or the
highest bandwidth to each other, however, in the K nearest neighbor
search we only need to find K — 1 nodes have the lowest delays or
the highest bandwidth to node i.

Furthermore, in order to quantify the network quality of
matchmaking nodes, we redefine the stretch of the matchmaking as
the ratio between the averaged delays or bandwidth of the found

2jotk j keC; Dik
. " ik j.kec; Djk’
where C; denotes the set of found nodes plus i, and C; denotes the
set of ground-truth nodes plus i.

To simulate the proximity-aware matchmaking for K nodes
using HPM (indirect methods including Vivaldi, NonMetric,
Sequoia and LandmarkMDS) with low computation overhead, for
each node i, we locate (K — 1) nodes that minimize the sum of
pairwise levels of these K nodes (minimize the sum of pairwise
delays or maximize the sum of pairwise bandwidth for indirect
methods) through N log (N) randomized combinations of nodes,
where ties are broken arbitrarily.

Fig. 20 shows the mean stretch of matchmaking as a function
of the number of required nodes. Optimal and HPM can find nodes
that have much higher proximity with each other than those found
by Vivaldi, NonMetric, Sequoia and LandmarkMDS. Furthermore,
HPM has nearly identical stretch as the optimal method.

For the delay metric, HPM and optimal increase the stretch
when K reaches 3, and decrease the stretch to close to 1 afterwards,
implying that the level based matchmaking produces less accurate
results when participating nodes are very few. However, in an
interactive game, the number of players is typically around ten, in
which case HPM will do a very good job in match-making. On the

nodes and those of the ground-truth closest nodes, i.e.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

*\'—'.!—:: * -
0.9 1 .
2 \
= 08] N T
3 N
e STVl T
S 077 — — NonMetric
= Sequoia
0.6 4 —~ LandmarkMDS
—¥#—HPM
VYT m e
05 T T T 1
0 10 20 30 40
Thresholds
(a) RTT.
1 -
0.9 S * *
----- Vivaldi
_2 — — NonMetric
’é 0.8 7 Sequoia
o -~ LandmarkMDS
g 074 — —¥—HPM
= N
0.6 1
V/V‘-Vu— e o Ran s an a2 s =7
05 T T T 1
0 10 20 30 40
Thresholds
(c) Hop.

1251
119 \
e s *
089 ... Timi-
o e TimTimImAT I
=
-‘§ T T T T,
o 0.6 7
© Vg ——————y
= Vivaldi
[— — NonMetric
0.4 1 Sequoia
-~ LandmarkMDS
—¥—HPM
0.2 T T T !
0 10 20 30 40
Thresholds
(b) Bandwidth.
" \w\,\'_‘
° T Vivaldi
2 0.8 — — NonMetric
= :
n? Sequoia
> —~ LandmarkMDS
> —¥—HPM
F06] TTmm e
A28 20 s Aty v
0.4 T T T !
0 10 20 30 40
Thresholds
(d) Loss.

Fig. 21. True positive statistics.

other hand, for the bandwidth metric, HPM and optimal improve
the stretch from 0.85 to 0.9 when the number of nodes reaches 4,
and stay around 0.9 afterwards, indicating that HPM and optimal
increase the matchmaking accuracy with increasing number of
participating nodes.

9.3. Detection of network performance anomalies

Finding the occurrence of a performance anomaly (such as high
delay or loss events) becomes increasingly important for network
infrastructures. Using thresholds to detect anomalous network
performance is a popular anomaly detection approach [48], which
determines whether the performance measurements violate the
thresholds. Accordingly, the anomaly detection aims to find all
node pairs whose end to end performance measurements are
above (or below for the bandwidth) these anomaly thresholds.

Similar to Barford et al. [48], we explicitly introduce per-
formance thresholds as a set of percentile values of the mea-
surement distribution that separate equally with each other. To
simulate the threshold based anomaly detection using HPM, we
use the anomaly thresholds as additional level separation points
and a performance measurement mapped to one of these level
separation points is regarded as an anomaly. For indirect methods
including Vivaldi, NonMetric, Sequoia and LandmarkMDS, we com-
pare the estimated delays or bandwidth with the thresholds to de-
tect anomalies. For comparison, we vary the number of anomaly
thresholds, and compute the mean percentage of anomaly that
is detected successfully (true positive) and the percentage of es-
timated anomaly that do not belong to the true anomaly (false
positive).

Figs. 21 and 22 depict the true positive and false positive statis-
tics by varying the number of anomaly performance thresholds.
The optimal approach has the highest detection precision. HPM
has slightly lower anomaly detection accuracy than the optimal
method due to the low-dimensional approximations. Furthermore,

HPM has higher detection accuracy than Vivaldi, NonMetric, Se-
quoia and LandmarkMDS.

10. Conclusion

Hybrid cloud computing provides promisingly elastic, flexible
and secure service provision for diverse cloud services. Due to the
geographically distributed and heterogeneous participating nodes,
metering the network conditions between nodes is increasingly
important for optimizing the performance of service provision.
However, the large scale and dynamic nature of hybrid-cloud
nodes cause challenges for the measurement process. HPM
solves this challenging problem in a scalable and decentralized
manner. It offers a powerful primitive: given any performance
metric, it constructs a hierarchical structure with tunable levels
of proximity, and does so scalably and accurately. In order to
preserve the asymmetry in the hierarchy, we propose a distributed
K-means clustering method [43] based level mapping method that
maps performance measurements into levels that are separable for
dissimilar measurements and coherent for similar ones. Next, in
order to reduce the performance measurement overhead of level
mappings for all node pairs, each node measures the level values
to a small number of nodes, then maintains a low-dimensional
coordinate with these level measurements by a novel distributed
conjugate gradient optimization scheme, and uses the coordinate
distances to extrapolate the level values to other nodes.

Simulation results and PlanetLab experiments confirm that
HPM can achieve close to optimal performance, and is quite robust
with respect to the choice of the parameter values. Furthermore,
we show how to use HPM in the context of the novel Nano data
center architecture [6].

Acknowledgments

We would like to thank the reviewers for their numerous
and very constructive comments. This work was supported

1252
1 T Vivaldi
0.9 —— NonMetric
0.8 4 Sequoia
2 0.7 1 -~ LandmarkMDS
3 0.6 —%— HPM
o
o o4
el anat SEn et ST E et =
© 0.4
©
L 0.3 1
0.1 4 L " N
0 i * —%
T T T]
0 10 20 30 40
Thresholds
(a) RTT.
----- Vivaldi
0.7 7 — —NonMetric
Sequoia
067 — LandmarkMDS
0.5 4 —¥—HPM
GZ) ' A < N-——— y—————— -
2 0.4
Q_
g 03 .o
S] e —
% 024
014 m/m———m—’*r —*
0 . . ; .
0 10 20 30 40
Thresholds
(c) Hop.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253

1 Vivaldi
0.9 4 —— NonMetric
0.8 1 Sequoia
o 0.7 =7 LandmarkMDS
% 0.6 —— HPM
o
£] SR TSy —"
> 0.5 -~ ¥ ===
B 04 e
© e —_—— e ———————
L 0.3 4
0.2 1
0.1 4 - * *
O T T T 1
0 10 20 30 40
Thresholds
(b) Bandwidth.
0.25 7
0.2 4)
o v - R Vivaldi
> -
= 0.15 1 (A — — NonMetric
£] Sequoia
3 o1 1 ~- LandmarkMDS
= ’ 1 —%—HPM
/
0.054 !/
|
|
0 v T T T 1
0 10 20 30 40
Thresholds
(d) Loss.

Fig. 22. False positive statistics.

by the National Grand Fundamental Research 973 Program of
China (Grant No. 2011CB302601), the National High Technology
Research and Development 863 Program of China (Grant No.
2013AA010206), the National Natural Science Foundation of
China (Grant No. 60873215), the Natural Science Foundation
for Distinguished Young Scholars of Hunan Province (Grant
No. S2010J5050), Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No. 200899980003) and
the Collaborative Project FIGARO supported by the European
Commission under the 7th Framework Program (Grant No.
258378).

References

[1] LACIE, Wuala secure online storage, 2011. http://www.wuala.com/.

[2] Microsoft, Halo game, 2011. http://halo.xbox.com/en-us.

[3] R.N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The Aneka platform
and QoS-driven resource provisioning for elastic applications on hybrid clouds,
Future Gener. Comput. Syst. 28 (2012) 861-870.

[4] C. Vecchiola, R.N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with
Aneka, Future Gener. Comput. Syst. 28 (2012) 58-65.

[5] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, Z. Zhang, Moon: mapre-
duce on opportunistic environments, in: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, HPDC'10,
pp. 95-106.

[6] N.Laoutaris, P. Rodriguez, L. Massoulie, ECHOS: edge capacity hosting overlays
of nano data centers, SIGCOMM Comput. Commun. Rev. 38 (2008) 51-54.

[7] G.Mateescu, W. Gentzsch, CJ. Ribbens, Hybrid computing—where HPC meets
grid and cloud computing, Future Gener. Comput. Syst. 27 (2011) 440-453.

[8] T.S.E. Ng, H. Zhang, Predicting Internet network distance with coordinates-
based approaches, in: Proc. of IEEE INFOCOM 2002.

[9] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a decentralized network
coordinate system, in: Proc. of ACM SIGCOMM 2004, pp. 15-26.

[10] S. Agarwal, J.R. Lorch, Matchmaking for online games and other latency-
sensitive P2P systems, in: Proc. of ACM SIGCOMM 2009, pp. 315-326.

[11] D.Milic, T. Braun, NetICE9: a stable landmark-less network positioning system,
in: Proc. of LCN'10, pp. 96-103.

[12] Y. Liao, P. Geurts, G. Leduc, Network distance prediction based on decentral-
ized matrix factorization, in: M. Crovella, L. Feeney, D. Rubenstein, S. Raghavan
(Eds.), NETWORKING 2010, in: Lecture Notes in Computer Science, vol. 6091,
Springer, Berlin, Heidelberg, 2010, pp. 15-26.

[13] Y. Chen, X. Wang, C. Shi, E.K. Lua, X. Fu, B. Deng, X. Li, Phoenix: a weight-based
network coordinate system using matrix factorization, IEEE Trans. Netw. Serv.
Manag. 8 (2011) 334-347.

[14] P.B. Key, L. Massoulié, D.-C. Tomozei, Non-metric coordinates for predicting
network proximity, in: Proc. of IEEE INFOCOM, pp. 1840-1848.

[15] O. Beaumont, L. Eyraud-Dubois, Y.J. Won, Using the last-mile model as a
distributed scheme for available bandwidth prediction, in: Proc. of Euro-
Par'11, pp. 103-116.

[16] J.R. Douceur,]. Mickens, T. Moscibroda, D. Panigrahi, Collaborative measure-
ments of upload speeds in P2P systems, in: Proc. of INFOCOM 2010.

[17] C.Xing, M. Chen, L. Yang, Predicting available bandwidth of Internet path with
ultra metric space-based approaches, in: Proc. of GLOBECOM'09, pp. 584-589.

[18] H.V.Madhyastha, T.Isdal, M. Piatek, C. Dixon, T.E. Anderson, A. Krishnamurthy,
A. Venkataramani, iPlane: an information plane for distributed services, in:
Proc. of USENIX OSDI 2006, pp. 367-380.

[19] H.V. Madhyastha, E. Katz-Bassett, T.E. Anderson, A. Krishnamurthy, A.
Venkataramani, iPlane nano: path prediction for peer-to-peer applications, in:
Proc. of USENIX NSDI 2009, pp. 137-152.

[20] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
A. Akella, On the treeness of Internet latency and bandwidth, in: Proc. of ACM
SIGMETRICS 2009, pp. 61-72.

[21] S.Song, P.J. Keleher, B. Bhattacharjee, A. Sussman, Decentralized, accurate, and
low-cost network bandwidth prediction, in: INFOCOM, pp. 6-10.

[22] Y. Chen, D. Bindel, H.H. Song, R.H. Katz, Algebra-based scalable overlay
network monitoring: algorithms, evaluation, and applications, IEEE/ACM
Trans. Netw. 15 (2007) 1084-1097.

[23] M. Coates, Y. Pointurier, M. Rabbat, Compressed network monitoring for IP and
all-optical networks, in: Proc. of ACM IMC 2009, pp. 241-252.

[24] S.Qazi, T. Moors, On the impact of routing matrix inconsistencies on statistical
path monitoring in overlay networks, Comput. Netw. 54 (2010) 1554-1572.

[25] O.Beaumont, N. Bonichon, P. Duchon, H. Larchevéque, Use of Internet embed-
ding tools for heterogeneous resources aggregation, in: Heterogeneity in Com-
puting Workshop (HCW)—in IPDPS 2011, IEEE Internationale, Anchorage, USA,
2011, pp. 114-124. http://hal.inria.fr/inria-00588650/PDF/HCW2011.pdf.

[26] H. Eom, D.I. Wolinsky, RJ.O. Figueiredo, SOLARE: self-organizing latency-
aware resource ensemble, in: HPCC, pp. 229-236.

[27] S. Malik, F. Huet, D. Caromel, Latency based dynamic grouping aware cloud
scheduling, in: Proc. of WAINA’12, pp. 1190-1195.

[28] R.Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16
(2005) 645-678.

Y. Fu et al. / Future Generation Computer Systems 29 (2013) 1235-1253 1253

[29] S. Banerjee, C. Kommareddy, B. Bhattacharjee, Scalable peer finding on the
Internet, in: Global Internet Symposium.

[30] S. Wieser, L. Boszorményi, Decentralized topology aggregation for QoS
estimation in large overlay networks, in: Proc. of NCA, pp. 298-301.

[31] H.Balakrishnan, R.H. Katz, V.N. Padmanbhan, The effects of asymmetry on TCP
performance, Mobile Networks and Applications (MONET) 4 (1999) 219-241.

[32] Y. He, M. Faloutsos, S. Krishnamurthy, B. Huffaker, On routing asymmetry in
the Internet, in: Proc. of IEEE GLOBECOM 2005, vol. 2.

[33] A. Pathak, H. Pucha, Y. Zhang, Y.C. Hu, ZM. Mao, A measurement study of
Internet delay asymmetry, in: Proc. of PAM 2008, pp. 182-191.

[34] P. Sharma, Z. Xu, S. Banerjee, S.-]. Lee, Estimating network proximity and
latency, Comput. Commun. Rev. 36 (2006) 39-50.

[35] A.-]. Su, D. Choffnes, F.E. Bustamante, A. Kuzmanovic, Relative network
positioning via CDN redirections, in: Proc. of ICDCS’08, pp. 377-386.

[36] H. Shen, K. Hwang, Locality-preserving clustering and discovery of resources
in wide-area distributed computational grids, IEEE Trans. Comput. 61 (2012)
458-473.

[37] Y. Liao, W. Du, P. Geurts, G. Leduc, Decentralized prediction of end-to-end
network performance classes, in: Proc. of CONEXT'11, pp. 14:1-14:12.

[38] J.D.M. Rennie, N. Srebro, Fast maximum margin matrix factorization for
collaborative prediction, in: Proc. of ICML 2005, pp. 713-719.

[39] M. Weimer, A. Karatzoglou, A. Smola, Improving maximum margin matrix
factorization, Mach. Learn. 72 (2008) 263-276.

[40] J. Stribling, All pairs of ping data for PlanetLab, 2005. http://pdos.csail.mit.edu/
~strib/pl_app.

[41] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, R. Fonseca, Measuring bandwidth
between PlanetLab nodes, in: Proc. of PAM 2005, pp. 292-305.

[42] Y.A. Wang, C. Huang,]. Li, KW. Ross, Queen: estimating packet loss rate
between arbitrary Internet hosts, in: Proc. of PAM 2009, pp. 57-66.

[43] S. Datta, C. Giannella, H. Kargupta, Approximate distributed K-means
clustering over a peer-to-peer network, IEEE Trans. Knowl. Data Eng. 21(2009)
1372-1388.

[44] J.R. Shewchuk, An introduction to the conjugate gradient method with-
out the agonizing pain, Technical Report, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 1994. http://www.cs.cmu.edu/~quake-papers/
painless-conjugate-gradient.pdf.

[45] R.R. Sokal, F.J. Rohlf, The comparison of dendrograms by objective methods,
Taxon 11 (1962).

[46] B.Eriksson, P. Barford, R.D. Nowak, Estimating Hop distance between arbitrary
host pairs, in: Proc. of IEEE INFOCOM, pp. 801-809.

[47] B. Wong, A. Slivkins, E.G. Sirer, Meridian: a lightweight network location
service without virtual coordinates, in: Proc. of SIGCOMM’05, pp. 85-96.

[48] P. Barford, N. Duffield, A. Ron,]. Sommers, Network performance anomaly
detection and localization, in: Proc. of IEEE INFOCOM 2009, pp. 1377-1385.

Yongquan Fu received the B.S. degree in computer
science and technology from the School of Computer
of Shandong University, China, in 2005, and received
the M.S. in Computer Science and technology from the
School of Computer Science of National University of
Defense Technology, China, in 2008. He is currently a Ph.D.
candidate in the School of Computer Science of National
University of Defense Technology. He is a student member
of CCF and ACM. His current research interests lie in the
areas of network measurement, Peer-to-Peer network and
distributed system.

Yijie Wang received the Ph.D. degree from the National
University of Defense Technology, China in 1998. She was
arecipient of the National Excellent Doctoral Dissertation
(2001), a recipient of Fok Ying Tong Education Foundation
Award for Young Teachers (2006) and a recipient of
the Natural Science Foundation for Distinguished Young
Scholars of Hunan Province (2010). Since 2005, she has
been a Professor in the National Key Laboratory for
Parallel and Distributed Processing, National University
of Defense Technology. Her research interests include
network computing, massive data processing, parallel and

distributed processing.

Ernst Biersack studied computer science at the Technis-
che Universitdt Miinchen and at the University of North
Carolina at Chapel Hill. He received the Dipl. Inf. (M.S.) and
Dr. rer. nat. (Ph.D.) degrees in computer science from the

- — Technische Universitit Miinchen, Munich, Germany, and
. the Habilitationa Diriger des Recherches from the Univer-
L ;r‘ sity of Nice, France. From March 1989 to February 1992, he

was a Member of Technical Staff with the Computer Com-
munications Research District of Bell Communications Re-
k\; search, Morristown, US. Since March 1992, he has been

a Professor in telecommunications at Institut Eurecom,
Sophia Antipolis, France. His current research is on peer-to peer systems, and net-
work tomography of TCP connections.

