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ABSTRACT It is important to disambiguate names among persons in many scenarios. In this work, we
propose an unsupervised method Diting and a semi-supervised method Diting++ for author disambiguation.
In Diting, we learn a low-dimensional vector to represent each paper in networks, which are formed by
connecting papers with multiple types of relationship (such as co-author). During representation learning,
we focus on maximizing the gap between positive edges and negative edges. Further, we propose a clustering
algorithm which associates papers to their real-life authors. To make full use of the authorship information,
which is easy to obtain from the authors’ homepages, we design Diting++ to improve the performance
for name disambiguation. Diting++ uses the authorship information listed on the authors’ homepages to
construct label networks and uses a network representation learning method to learn paper representations
based on label networks and other networks. Further, Diting++ uses a semi-supervised clustering method
to partition learned paper representations into disjoint groups. Each group belongs to a distinct author.
By making use of the label information, the clustering method partitions papers written by the same
author in the same group, whereas papers written by different authors locate in different groups. Through
extensive experiments, we show that our methods are significantly better than the state-of-the-art author
disambiguation methods.

INDEX TERMS network representation learning, network embedding, author disambiguation

I. INTRODUCTION

MANY authors share the same names. When we search
for documents about one particular author in the field

of literature search, we may get many results (e.g., papers,
web pages) containing the author’s name. However, even
those documents share the same name we search for, they
can be different peoples. For example, a search query for the
name “Mark Newman” could obtain a physicist who works in
the University of Michigan, a computer scientist who works
in the same university, and so on. It is hard to determine
which the person we care about is. Apart from these, the
ambiguous name problem also appears in many other fields,
such as law enforcement and bibliometrics science. Table 1
shows a list of names, the number of documents, and the

number of actual persons associated with the names. We can
see that there are many ambiguous names, and the average
number of documents written by one distinct author varies,
from 1.1 to 77.0, which makes the ambiguous name problem
more challenging.

In this work, we focus on author disambiguation that as-
sociates documents (e.g., web pages, papers) to different per-
sons who share an identical name. Author disambiguation,
also known as name disambiguation, entity resolution [1],
name identification, has long been viewed as a challeng-
ing problem by many scholars in many domains [2], [3].
Researchers attempt to explore efficient methods to disam-
biguate ambiguous names. They collect ambiguous names
and related information associated with the names. That
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TABLE 1. Examples of name disambiguation in Arnetminer dataset.

Name #Document #Person #Doc/Person Name #Document #Person #Doc/Person

Ajay Gupta 36 9 4.0 Fan Wang 56 14 4.0
Alok Gupta 57 2 28.5 Fei Su 37 4 9.3

Bin Li 181 60 3.0 Feng Liu 149 32 4.7
Bin Yu 105 17 6.2 Feng Pan 73 15 4.9

Bin Zhu 46 15 3.1 Frank Mueller 101 3 33.7
Bing Liu 182 18 10.1 Gang Chen 177 46 3.8
Bo Liu 124 47 2.6 Gang Luo 47 9 5.2

Bob Johnson 11 7 1.6 Hao Wang 178 48 3.7
Charles Smith 7 4 1.8 Hiroshi Tanaka 40 7 5.7
Cheng Chang 27 5 5.4 Hong Xie 12 7 1.7
Daniel Massey 43 2 21.5 Hui Fang 42 8 5.3
David Brown 61 25 2.4 Hui Yu 32 21 1.5

David C. Wilson 65 5 13.0 J. Guo 13 10 1.3
David Cooper 18 7 2.6 J. Yin 18 7 2.6

David E. Goldberg 231 3 77.0 Jeffrey Parsons 31 2 15.5
David Jensen 53 4 13.3 Ji Zhang 64 16 4.0
David Levine 48 18 2.7 Jianping Wang 37 5 7.4
David Nelson 20 11 1.8 Jie Tang 66 6 11.0
Eric Martin 85 5 17.0 Jie Yu 32 9 3.6

F. Wang 19 17 1.1 Jim Gray 192 6 32.0

information can help distinguish ambiguous names. Albeit
author disambiguation has received much attention from the
research community, three significant challenges remain.

The first challenge is how to represent papers effectively
and flexibly by making use of biographical information such
as address and organization, and networking information
such as collaboration and citation. Albeit researchers have
proposed various feature construction methods [2], most of
them [4], [5] use only user-defined heuristics to learn the
graph properties from networking information. Moreover, as
the online data are becoming more complex and dynamic,
feature representation methods are required to be more
flexible and extensible for scenarios such as the privacy-
preserving scenario in which some information is not avail-
able.

The second challenge is how to determine the assignment
of papers to its authors. Previously, researchers use super-
vised methods [6] or unsupervised methods [3], [4] to address
this challenge. However, the supervised methods require data
labeling, and the unsupervised methods require manual input
of the number of unique authors (denoted as K) with an
identical name. For example, [2] uses the Bayesian Informa-
tion Criterion (BIC) to determine K. But this approach may
underestimate the actual number [7]. Author disambiguation
methods with little human labor are needed.

The third challenge is how to make use of the available
information of ambiguous names to assist disambiguation.
For some authors, their published papers are listed on their
homepages, which can be used to assist the author disam-
biguation. With such information, we can identify the true
authors of the papers in a more effective way. However, it
is unclear how to effectively encode such label information
and make use of it to improve the performance of author
disambiguation.

To address the first two challenges, we propose Diting1.
Diting uses a network representation learning2 method which
models the relationships between papers as a set of undi-
rected graphs and learns paper representations from these
networks jointly. Network representation learning can trans-
form complex information into different paper relationships
(the edges in networks), which are easy to be processed
through network representation learning methods. And this
method can make full use of the information regardless of
its completeness, as networks formed based on relationships
can be easily added or removed based on data availability. To
learn representations effectively, for an ambiguous name, we
build the networks among papers associated with the name,
rather than a network consisting of all the articles. In Diting,
each paper is treated as a vertex in a network, and we take into
account the paper relationships such as co-author, co-title, co-
summary, and co–organization. Further, we optimize the gap
between positive and negative edges and coarsen networks to
capture global structure information. The proposed method
can learn better network properties for disambiguation than
state-of-the-art methods.

To address the second challenge, Diting uses an unsuper-
vised clustering algorithm, which can adaptively determine
the assignment of papers to its real-life authors. At the same
time, our algorithm does not need to input the number of clus-
ters (K) manually. It can automatically determine the clus-
ter numbers during the algorithm process. We conduct our
clustering algorithm on paper representation vectors learned
by the network embedding method. Then these papers will
be divided into different parts, and the papers in the same

1Diting is a magical creature which is good at distinguishing objects in
Chinese mythology.

2In this work, we interchangeably use network representation learning and
network embedding.
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part represent that they are written by the truly same author.
Our algorithm chooses based on a density metric between
the results of two clustering algorithms HDBSCAN [8] and
affinity propagation clustering (AP) [9].

To address the third challenge, we propose Diting++,
which can make use of the label information to assist dis-
ambiguation. For the obtained authorship information (e.g.,
from authors’ homepage), Diting++ constructs a co-label
network. In the network, if two papers are written by the same
unique author, there exists an edge between them. Otherwise,
they are not connected. The co-label network models the
authorship information. Diting++ encodes such information
into paper representations by jointly learning embeddings on
the co-label network and other networks constructed accord-
ing to paper relationships. Further, besides encoding such
information into the learned paper representations, we design
a semi-supervised clustering method to partition papers into
distinct groups by using the authorship information.

The contributions of this work are listed as follows.
• We propose a novel network representation learning

method for author disambiguation, which models multi-
ple types of paper relationships to paper representations.

• We propose an unsupervised clustering algorithm for
author disambiguation, which does not require to input
the number of authors sharing the same name.

• We improve the network representation learning method
via incorporating label information to obtain better pa-
per representations.

• We propose a semi-supervised clustering algorithm to
partition papers according to constraints which model
authorship information.

• We show through experiments that our methods Diting
and Diting++ obtain better results than state-of-the-
art methods. The Marco-F1 score of Diting++ method
obtained on three widely used datasets is at most 28.8%
higher than others and is about 10.9% higher than the
best alternative.

The rest of this work is organized as follows. Section II
discusses related work, and Section III formulates the author
disambiguation problem. Section IV describes our unsuper-
vised approach Diting consisting of an unsupervised network
representation learning procedure and an unsupervised clus-
tering procedure. Section V depicts the semi-supervised ap-
proach Diting++, which improves the unsupervised approach
by taking the label information into account. Section VI
displays the experiment results compared with other state-
of-the-art methods on three datasets. Section VII concludes
this work.

II. RELATED WORK
In this section, we discuss related work regarding author
disambiguation and network representation learning.

A. AUTHOR DISAMBIGUATION
Author disambiguation has received much attention from re-
searchers. In general, the author disambiguation task consists

of two parts: the feature construction part which prepares
features for disambiguation and the assigning part which
assigns papers to their real-life authors. Based on the infor-
mation used for name disambiguation, there are mainly three
genres of name disambiguation methods: supervised-based,
unsupervised-based, and active-learning-based.

For supervised-based approaches, Han et al. [6] learn a
model for each name based on supervised data and then use
the model to tell whether a paper is written by an author,
thus determining the assignment of each paper. Supervised-
based approaches require labeled data, so these methods are
not widely adopted for name disambiguation.

For unsupervised-based approaches, [2], [4], [10]–[12]
model the relationships among papers using various methods
and then employ unsupervised clustering to partition and
group all the papers. Then each disjoint set of papers is
assigned to a distinct person. DISTINCT [10] uses neigh-
borhood relationships and the random walk probability to
measure object similarity and then uses an agglomerative
hierarchical clustering algorithm to cluster objects into dis-
joint sets. Tang et al. [2] model the relationships between
papers using Hidden Markov Random Field and then use
Bayesian Information Criterion to determine the number of
distinct authors. Finally, they use Xmeans and Kmeans to
cluster papers. Zhang et al. 2016 [11] propose a Bayesian
non-exhaustive classification method for the name disam-
biguation problem. Lin et al. [4] calculate metric confidences
and use the most confident metric to cluster papers. Different
from them, in this work, we use network representation
learning to capture the relationships of papers.

For active-learning-based approaches, an initial name dis-
ambiguation result is calculated first, then pairs of objects
which need human intervention are presented for labeling.
Then the user inputs are used to guide clustering towards
better name disambiguation results. For example, [7] models
the name disambiguation problem using a pairwise factor
graph (PFG) model and an active learning approach. Then
it selects top pairs of documents that are most uncertain
to improve the results. Zhang et al. [13] use user inputs
as constraints to guide their name disambiguation method.
Imran et al. [14] propose a distance-based proximity method
and use hierarchical clustering to cluster papers. The active-
learning-based methods require human intervention thus are
not scalable. Different from these methods, our method Dit-
ing++ makes use of the existing labeled information (such
as the authors’ lists of publications labeled by themselves)
without any additional intervention.

Our work uses a network representation learning technique
to learn representation for each paper and uses a clustering
technique to partition papers into disjoint parts. For the
representation learning and clustering procedure, we use both
unsupervised and semi-supervised methods.

B. NETWORK REPRESENTATION LEARNING
Network representation learning, also called network em-
bedding, has attracted much interest of researchers [15],
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[16]. DeepWalk [17] performs random walks on a network
and uses the word2vec [18] method to learn representa-
tions. LINE [19] models the first- and second-order prox-
imity of nodes. GraRep [20] and [21] model node prox-
imity via factorizing multiple high-order adjacent matrixes.
Node2Vec [22] improves DeepWalk via combining depth-
first and breadth-first search. MMDW [23] proposes the max-
margin DeepWalk. Feng et al. [24] propose an approach to
embed scale-free networks. Yang et al. [25] compute high-
order matrixes via approximation. HARP [26] iteratively
merges nodes into higher-level nodes and then uses the high-
level representations as the initialization value. GraphGAN
[27] and ANE [28] learn graph representations through ad-
versarial training. GCN [29] uses a variant of convolutional
neural networks to learn the hidden layer representations.
GAT [30] leverages masked self-attention layers to address
the shortcoming in prior methods based on graph convolu-
tions. GraphSage [31] presents an inductive framework that
can learn representations for previously unseen nodes in the
network. For heterogeneous networks, PTE [32] constructs
word-word, word-document, and word-label networks and
learns them jointly. PathSim [33] studies the similarity search
in heterogeneous information networks. Mepapath2vec [34]
learns graphs based on meta-path. Tu et al. [35] propose a
method to learn hyper-graph. Different from all the above
methods, we learn network representations through jointly
analyzing multiple relationship networks to solve the author
disambiguation problem.

This paper is an extension of our previous work [12]. In
this work, besides considering more types of information, we
construct a co-label network using the authorship information
of papers to learn better representations for disambiguation.
Further, we propose a semi-supervised clustering algorithm
with the authorship information to obtain better disambigua-
tion results.

III. PROBLEM FORMULATION
In this section, we formulate the author disambiguation prob-
lem by using the network representation learning and a clus-
tering algorithm. We model the related information of papers
for disambiguation by constructing multiple networks. Then
we get the low-dimensional paper representations through
network representation learning. Thus we can distinguish dif-
ferent persons sharing the same ambiguous name by dividing
the learned paper representations into disjoint parts.

For an ambiguous name n, we denote the papers contain-
ing the name n as Pn = {pn1 , pn2 , ..., pnm}, where pni is the
ith paper in Pn. There can be more or fewer paper properties
depending on the availability of information. The properties
of publications considered in this work are described in
Table 2. This information of papers can be obtained from
online libraries, e.g., IEEE. For each ambiguous name n, we
seek to distinguish the actual real-life persons who share the
name n and assign true author label to each paper.

Then we construct our networks G = {Ga, Gt, Gs, ...}
based on the name n and the papers in Pn. We denote the

TABLE 2. Properties of publication pi considered in this work.

Attribute Description

pi.authors the authors’ names for pi
pi.title the title of pi
pi.venue the published conference/journal of pi

pi.summary the summary of pi
pi.organization the affiliation of the author of pi

pi.year the publication year of pi
pi.label the true author label for pi

network as GT = (V,ET ), in which ET represents the
edge set, and V represents the vertex set in the network. The
variable T means only vertices that have the T (co-author,
co-title, etc.) type relationship can form an edge e ∈ ET in
network GT .

In this work, we treat each paper pi ∈ Pn as a vertex vi ∈
V in the network and use different relationships between
papers to construct the edges in different networks. Then we
use network embedding method to obtain paper representa-
tions via learning the low-dimensional latent representation
vector for each vertex vi ∈ V in all the networks (each paper
corresponds to one vertex). After the network embedding,
we convert all vertices in the networks into low-dimensional
vectors. It can be considered that these vectors significantly
preserve the edge properties and connection relationships of
the vertices. And then we use a clustering algorithm to divide
the vertices (papers) into different groups according to the
characteristics learned by the vectors. We reasonably regard
the papers that are clustered into the same group are written
by the same actual person.

IV. DITING: AN UNSUPERVISED AUTHOR
DISAMBIGUATION APPROACH
The proposed method Diting in our paper consists of three
parts: network construction, network representation learn-
ing, and a clustering algorithm. For papers in Pn sharing
the ambiguous name n, we construct networks based on
Pn and their relationships (Section IV-A). Then we use
network representation learning to learn paper embeddings
(Section IV-B). After the clustering procedure, all papers
sharing the ambiguous name n in Pn are partitioned into
disjoint sets. Each set is viewed as all the papers written by
a distinct author (Section IV-C). The overview of the Diting
approach is depicted in Fig. 1.

A. NETWORK CONSTRUCTION
Given all names N = {n1, n2, ..., nm} and all papers P
published by the authors in a dataset, we can construct a
big network based on the whole P . However, the set P is
often huge, then the set of vertices in the big network is large,
which causes the network representation learning procedure
to be ineffective. Therefore, we construct multiple paper-
paper networks for each name n based on Pn, instead of P .
We show in Section VI-G that learning representations onPn

is better than on P .
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FIGURE 1. The overview of the Diting approach.

For name n, we create multiple networks connecting pa-
pers inPn based on different paper relationships, as specified
in Section III. The following paragraphs will describe in
detail the construction process of six types of network in
our work: co-author, co-title, co-summary, co-venue, co-
organization, and co-year. In these networks, V is the vertex
set, and each vertex vi represents a paper pi.

The co-author network is Ga = (V,Ea), where Ea is
the edge set. Given two papers pi and pj , and their authors,
the edge weight wa

ij between pi and pj is the number of
overlapping authors of these two papers (not counting n).
For example, if paper pi has authors A1, A2, A3, A4, and
paper pj has authors A1, A2, A3, A5, and the name A1 is the
ambiguous name, then the overlapping authors for pi and pj
are A2, A3. So the edge weight wa

ij is 2.
The authors may write their names in the abbreviation

form. For example, “Mark Twain” may be written as “M.
Twain.” Sometimes, the authors may write their names in
a different order. For example, “Frank Mueller” may be
written as “Mueller Frank.” A partially shortened name is
also extraordinarily ordinary, like “C. J. Lin” and “C. J. Lint.”
To deal with those problems, we adopt the method proposed
in [5] to assist the calculation of wa

ij .
The intuition behind the co-author network is that, if two

papers have many co-authors, the probability that the same
person writes them is high. Even if they do not have a co-
author, but their neighboring papers have many co-authors,
these two papers are likely to be written by the same person.

The co-title networkGt = (V,Et) models the relationship
between paper titles. The word set used in the title of pi is
denoted as ti (stop words are removed). We use NLTK [36] to
transform each word in ti to its word origin (e.g., networking
to network). Then, the edge weight wt

ij between pi and pj
is the number of words that overlap between ti and tj . That
is, wt

ij = |ti
⋂
tj |. We use NTEE [37] to get title words’

embeddings. If the similarity between two words’ vectors is
higher than a threshold, these two words are counted as the
same.

The co-summary network Gs = (V,Es) models the
relationship between paper summaries. For a paper pi, we
use the method proposed in [4] to extract a fixed number of
words from the abstract of pi as its summary si. Then, ws

ij

is calculated in the same way as wt
ij by using si and sj .

For the co-title and co-summary networks, we assume that
if two papers have similar usage of words in their titles and
summaries, they may be written by the same person.

The co-venue network Gv = (V,Ev) models the rela-
tionship among paper venues (e.g., conference, journal). To
deal with acronym and abbreviation, we collect about 20,000
venues’ full names from the Internet and obtain the full name
of each paper’ venue. After that, we use the same procedure
as the co-title network to calculate wv

ij . For the co-venue
network, if two papers are published in similar research areas,
their authors may be the same one.

The co-organization network Go = (V,Eo) models the
relationship among author affiliations. Given a paper pi, the
word set used in the authors’ organization name is denoted as
oi. The weight wo

ij measures the co-organization similarity
and is calculated in the same way as wt

ij by using oi and
oj . For the co-organization network, if the two same-name
authors are from the same organization, they may be the same
person.

The co-year network Gy = (V,Ey) models the relation-
ship between the papers’ publication date. If two papers are
published in the same year, then we add an edge between
them in the co-year network, and their weight wy

ij is set to 1.
Our method is flexible and extensible because a paper

relationship can be added or removed easily as a network.
For example, in a privacy-preserving context, only author and
title information could be available, then two networks based
on the two relationships can be created. As another example,
if the citation relationships of papers are available, a citation
network could be built.

There could be more ways to capture the relationships
between papers. For example, a paper-word network could be
created based on the abstract of papers. As another example,
a network could be created among names and papers based
on research topics. We plan to explore those networks in the
future.

B. NETWORK REPRESENTATION LEARNING
Generally, a network representation learning problem is de-
fined as: given a graph G = (V,E) wherein V represents the
node set, and E represents the edge set, the aim is to find a
function V → Rl that maps each node to an l-dimensional
(l� |V |) vector which captures its structural properties.

Given the six networks created in Section IV-A, the net-
work embedding algorithm generates for each paper pi (vi ∈
V ) an l-dimensional vector di ∈ Rl through jointly learning
on the networks. The basic idea is that vertices which are
close in networks are similar to each other and should be
encoded closely in Rl. Because the goal of the embedding
procedure is to obtain network representations which are use-
ful for author disambiguation, we do not seek to reconstruct
the whole network by minimizing the KL-divergent between
the probability and weight of edges. Instead of using softmax
function [17], [22] to calculate the score (e.g., probability) of
an edge, we define the score of an edge eij connecting vertex
vi and vj as follows (di and dj are corresponding vectors):
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s(vi, vj) =
dTi dj

‖di‖ · ‖dj‖
. (1)

For eij ∈ E, s(vi, vj) is defined as the cosine similarity
between the two vertices. As the networks in this work are
undirected, the cosine similarity ensures that s(vi, vj) =
s(vj , vi). Given a vertex k that is not connected to i, we
denote the non-existing edge as neik and the set of all non-
existing edges as NE. The score of neik is defined as the
cosine similarity s(vi, vk) between vi and vk. Then, we
model the loss for (i, j, k) triple as:

L(i, j, k) = max(ε, s(vi, vj)− s(vi, vk)). (2)

We set ε = 0.01 to avoid the case of divided by zero. The
probability can be viewed as the score gap between eij and
neik. The intuition for (2) is that the probability of preserving
the score order between eij and neik should be large to reflect
the edge status. Assuming that all the probabilities of score
orders are independent, we aim to maximize the objective
function defined in (3). For convenience, we transform (3)
into (4) by minimizing the negative log objectiveO = −lnF .

F =
∏

(vi,vj)∈E
(vi,vk)∈NE

L(i, j, k)

(3)

O = −ln(
∏

(vi,vj)∈E
(vi,vk)∈NE

L(i, j, k))

=
∑

(vi,vj)∈E
(vi,vk)∈NE

−ln(max(ε, s(vi, vj)− s(vi, vk))) (4)

The calculation of the loss function L(i, j, k) requires
sampling one existing edge eij and one non-existing edge
neik. When training, for each network with |E| edges, we
sample T × |E| triples. In Section VI-G, we evaluate the
performance of different T values. For each (i, j, k) triple,
we denote the existing edge eij as positive edge and the non-
existing edge neik as negative edge. Our sampling methods
for positive and negative edges are described as follows.
• Positive sampling: the probability of sampling eij is

proportional to the edge weight wij . The edge having a
larger weight connecting the current node is more likely
to be chosen as the positive sample.

• Negative sampling: for node i’s non-neighbor nodes, the
probability of sampling neik is proportional to the value
of an exponential function e−s, where s = s(vi, vk).
Through negative sampling, the more similar between
i and its non-connecting node k, the fewer sampling
probability of the non-existing edge neik.

i

j1

j3

k1j2

3

2

8

7 k3

k2

5

4

FIGURE 2. An example of positive and negative edge sampling.

An example of edge sampling is depicted in Fig. 2. As
in Fig. 2, supposing vertex i is the current node, we aim
to sample one positive edge and one negative edge for i.
Vertices j1, j2, j3 have existing edges with i, and eij2 has
the largest weight among them. Vertices k1, k2, k3 have non-
existing edges with i, and k3 is most dissimilar with i.
According to the above sampling methods, the probability
of sampling eij2 as the positive edge is the largest and the
probability of sampling neik3

as the negative edge is the
largest. So we sample the triple (i, j2, k3). Our sampling
method is different from DeepWalk, which samples negative
vertices according to their weights. We focus on keeping the
vertices that are least likely to have connected edges away
from each other as far as possible.

We denote the objective functions of the co-author,
co-title, co-venue, co-summary, co-organization, and co-
year networks as Oa, Ot, Ov, Os, Oo, Oy , respectively, and
the negative edge set of them can be denoted as
NEa, NEt, NEv, NEs, NEo, NEy , respectively. These
different objective functions ON ,N ∈ {a, t, v, s, o, y} are
described in (5). The final objective function ODiting is
defined in (6), where wi, i ∈ {a, t, v, s, o, y} are the weights
of the corresponding networks. L2 is the l2 regulation of the
learned parameters to avoid overfitting. For model training,
we use stochastic gradient descent (SGD) to optimize the
objective function.

ON =
∑

(vi,vj)∈EN

(vi,vk)∈NEN

−ln(max(ε, s(vi, vj)− s(vi, vk)))

N ∈ {a, t, v, s, o, y} (5)

ODiting =
∑

i∈{a,t,v,s,o,y}

wiOi + λL2 (6)

To better capture the global properties of networks, we
coarsen our networks to get the pre-trained vectors of all
vertices. The procedure is depicted in Fig. 3. We coarsen the
network by merging low-degree vertices. We randomly select
a low-degree vertex vi and merge it with its high-degree
neighbor vj . For vertices having the same degree, vertices
with a high-weight edge are preferred. During the process,
the edge weights of vertices which are not involved in the
merging remain unchanging. The merging procedure ends
when the number of nodes is 1/3 of the original network.
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FIGURE 3. Illustration of the coarsening procedure (shaded neighboring
nodes are merged).

This idea is inspired by [26]. Different from its edge col-
lapsing, we coarsen nodes according to node degree instead
of randomly, and [26] deals with only one network instead of
multiple. We first coarsen the most important network (i.e.,
co-author), then other networks are coarsened in the same
way. After that, the node representations in the coarsened
networks are learned. Then, these representations are used as
the initial value for the vertices in all the networks. Finally,
network representation learning is performed on the original
graphs to obtain the final representations.

C. CLUSTERING ALGORITHM
In Diting, for each ambiguous name, the clustering algorithm
divides the papers into non-overlapping clusters, and each
cluster belongs to a distinct author. Thus we can distinguish
the different persons sharing the same ambiguous name. To
reduce the human labors regarding labeling the true author-
ship information, Diting adopts an unsupervised clustering
method.

The problem of clustering papers in Diting has two special
features. Firstly, the number of clusters before clustering is
completely unknown to us. As shown in Table 1, the number
of publications per person is skewed. Some could publish
more than 70 papers, while some publish several. This in-
dicates that the size of cluster belonging to each author is
skewed. For skewed clusters, the most well-known clustering
algorithms are K-means [38], AP [9], and DBSCAN [39].
We do not adopt K-means in the unsupervised method Diting
as it requires the input of the number of authors. Secondly,
isolated papers, which actually represent different single
authors, may be merged into one cluster. In the networks
constructed by Diting, we find that there are many isolated
paper nodes in the dataset. Therefore, compared to other ag-
glomerative clustering methods, the agglomerative hierarchi-
cal clustering algorithm is more suitable for our problem. It
first treats each paper as a cluster center, and then repeatedly
merges the most similar clusters until convergence. Thus it
can reduce the possibility of merging isolated papers into one
cluster comparing to other agglomerative clustering methods
such as DBSCAN.

In Diting, we combine two methods HDBSCAN [8] and
AP to obtain our clustering results. HDBSCAN is an ag-
glomerative hierarchical clustering algorithm. It creates hi-
erarchical clusters and then condenses the small clusters to
larger ones. Albeit HDBSCAN is better than DBSCAN in our

scenario, we find that using HDBSCAN alone is not enough
to partition papers well. HDBSCAN prefers to cluster data
into a small number of clusters, as it condenses clusters into
larger ones. Thus a person with a small publication number
may be merged with others. To address this problem, we use
AP to cluster papers as well. AP initially treats all nodes as
cluster centers and exchanges responsibility and availability
messages between node pairs until convergence. AP tends to
produce more clusters, which may treat a person as multiple
persons via dividing a person’s publications into multiple
clusters. As the two methods (HDBSCAN and AP) both have
advantages and disadvantages, we use the results of them
together to mitigate their negative effects.

For clustering results, we expect that the publications of
the same person are closely clustered together, while the pub-
lications of others are far away. The SD index [40] matches
our requirement and is defined as follows:

SD = max
i,j

d(ci, cj)scat+ dis

scat =
1

M

∑
i

‖σ(ci)‖/‖σ(D)‖

dis =
maxi,j d(ci, cj)

mini,j d(ci, cj)

∑
i

(
∑
j

d(ci, cj))
−1

σ(ci) =
1

ni

∑
j

d(pj , ci)
2. (7)

In the above formulas, d(ci, cj) is the distance of two cluster
centers ci and cj . M is the number of clusters. σ(ci) and
σ(D) are the variances of cluster ci and the whole dataset
D. ni is the number of papers in cluster ci, and d(pj , ci)
is the distance between paper pj and the cluster center
ci. The first term of SD evaluates how closely papers are
together based on variance, and the second term measures the
difference among distinct authors based on distances between
clusters. We denote the SD value of the clustering results for
HDBSCAN and AP as SDH and SDA, respectively.
SD may lead to inferior performance when paper density

varies. To mitigate this problem, for each paper pi, we obtain
the top-k closest papers {pi1 , ...pik}. The density µi of pi
is defined as

√∑k
j=1 d(pij , pi). Given a density threshold

m, we count the total number of times µi < m as yd. If
yd > n/2 (n is the number of papers), it indicates that the
average paper density is high. In this case, if SDH ≤ SDA,
then the result of HDBSCAN is used as the final clustering
result. Otherwise, AP is used.

The unsupervised clustering algorithm procedure in this
paper is depicted in Algorithm 1.

V. DITING++: A SEMI-SUPERVISED AUTHOR
DISAMBIGUATION APPROACH
It is common for researchers to maintain and organize their
publication records online by posting them on some web-
sites (e.g., university website). This publication information
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Algorithm 1: The unsupervised clustering algorithm
in Diting.

Input: papers’ representation vectors {d1, d2, ...dn},
threshold m, SDH , SDA

Output: clustering results
yd = 0
for each di do

dist = min
√∑k

l=1 distance(di, dl)

if dist < m then
yd ← yd + 1

end
end
if yd > n/2 and SDH ≤ SDA then

adopt the results of HDBSCAN algorithm
else

adopt the results of AP algorithm
end

maintained by the authors can be utilized to assist the author
disambiguation procedure. For example, given a set of papers
Pn associated with an ambiguous name n for disambigua-
tion, we denote the true authors sharing the name n as
tn1 , t

n
2 , ..., t

n
i . If we can locate the homepage of a true author

tni , then we can quickly know that papers Ptni
listed in the

homepage are published by the author with high confidence,
while the other papers Pn − Ptni

may not be published by
the author. In the following section, we call this type of
authorship information as label information.

By taking consideration of such authorship information,
we design Diting++, a semi-supervised method to solve the
disambiguation problem. The same as the Diting method,
Diting++ consists of three parts: network construction, net-
work representation learning, and a clustering algorithm. In
addition to modeling other paper relationships in networks
(Section IV-A), the network construction part in Diting++
also models the authorship information about papers (Sec-
tion V-A). Then a network representation learning method
is used to learn paper embeddings (Section V-B). Further,
Diting++ introduces a semi-supervised clustering method
to partition papers into disjoint sets (Section V-C). The
overview of Diting++ is depicted in Fig. 4. We first construct
the multiple networks using different relationships between
papers and then get the paper representation vectors by a
network representation learning technique. At last, we devise
a semi-supervised clustering method to distinguish different
authors.

A. NETWORK CONSTRUCTION
Similar to Diting, Diting++ models the relationships among

papers using networks. For each ambiguous name n, Dit-
ing++ builds networks for papers in Pn. Besides modeling
the six relationships (e.g., co-author, co-summary) as that of
Diting, Diting++ models the true authorship information us-
ing a co-label network. We describe the construction process

of the co-label network in the following paragraph.
The co-label network Gl = (V,El) models the authorship

information among papers in Pn sharing with the ambiguous
name n. V is the set of vertices, that is the set of all papers.
El is the edge set of Gl. For two papers pi and pj associated
with the name n, if their authors are the same person, an edge
eij is created between the two papers in the co-label network,
and the edge weightwl

ij is set to 1. Otherwise, the weightwl
ij

is set to 0. Compared to the networks constructed by other
paper relationships, the label information is extracted from
places with high credibilities, such as the author’s homepage.
Compared to other forms of paper relationships, the true
authorship contains more information for disambiguation.
Thus, with the introduction of the co-label network, Diting++
encodes into paper representations with more information for
author disambiguation.

B. NETWORK REPRESENTATION LEARNING
The homepage information of authors may be located on
many different websites, so there may be only part of the
information that we can easily obtain, and there is also other
information that we do not obtain. For these reasons, we
choose the network representation learning to deal with such
information. Our method can model the partial information
as edges in the label network and encode this partial infor-
mation as much as possible. In this section, we use network
representation learning to obtain paper representations based
on the multiple networks constructed in Section V-A and
Section IV-A. For each paper pi (vertex vi in network), we
generate the low-dimensional vector di ∈ Rl by maximizing
the probability of existing edges appearing in the networks.

We call an existing edge between vertices vi and vj as a
positive edge and a non-existing edge between vertices vi
and vk as a negative edge. Similar to the other networks
such as the co-author network, when learning representations
on the co-label network Gl, we aim to make sure that the
score s(vi, vj) of a positive edge elij is larger than the score
s(vi, vk) of a negative edge nelik. We formulate the objective
function for the co-label network representation learning in
(8). In the formula, El is the set of positive edges, and NEl

is the set of negative edges in the co-label network.

Ol =
∑

(vi,vj)∈El

(vi,vk)∈NEl

−ln(max(ε, s(vi, vj)− s(vi, vk)) (8)

To reduce the computation cost of representation learning,
we use positive sampling and negative sampling techniques
introduced in Section IV-B. To learn both the unsupervised
features (such as co-author relationship) and the supervised
feature (such as authorship information) jointly, Diting++ re-
formulates the objective function defined in (6) as (9), which
takes the labeled authorship information into account. The
parameters wi, i ∈ {l, a, t, v, s, o, y} represent the weights
of different networks. During training, we use stochastic
gradient descent to optimize the objective function.
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FIGURE 4. The overview of the Diting++ approach.

ODiting++ =
∑

i∈{l,a,t,v,s,o,y}

wiOi + λL2 (9)

C. SEMI-SUPERVISED CLUSTERING
Diting uses an unsupervised clustering method (see Sec-
tion IV-C) to group and partition the papers of an ambiguous
name into disjoint sets. Each set of papers is viewed as
all the publications of a distinct author. This method can
identify authors without human labors and the actual number
of authors sharing the name. However, the unsupervised
clustering method does not take into account the fact that
much information useful for disambiguation is easy to be
obtained. In this section, Diting++ adopts a semi-supervised
clustering algorithm by taking such ground-truth authorship
information into account to improve the performance of
paper clustering.

Diting++ adopts a Kmeans-based semi-supervised cluster-
ing method to improve the results of the author disambigua-
tion problem. In the following, we introduce two types of
links used in Diting++ to assist the clustering method, and
then we describe the clustering algorithm procedure in detail.

1) Must and Cannot Links
Diting++ improves author disambiguation performance by
using Must-Link and Cannot-Link constraints. Must-Link
and Cannot-Link are collections of node pairs. In a given
dataset Pn, and pi, pj ∈ Pn, if pi and pj are written by the
same unique author, then we add (pi, pj) into the Must-Link
collectionML. If pi and pj are not written by the same true
author, then we add (pi, pj) into the Cannot-Link collection
CL. For papers in dataset Pn, if the labels of two papers
are identical, this paper pair is in the Must-Link collection;
otherwise, this pair is in the Cannot-Link collection.

We describe the construction of the Must-Link and
Cannot-Link collections using an example shown in Fig. 5.
For an ambiguous name A (the true persons sharing with the

Paper1

Author: 

A,B,C,D

Title: p1

Summary: p1

……

Paper2

Author: 

A,B,E,F

Title: p2

Summary: p2

……

Paper3

Author: 

A,G,H

Title: p3

Summary: p3

……

A1's papers:

paper1,

paper3

A1's Homepage P1

P3

P2

Must-link
pair

Cannot-Link
pair

Cannot-Link
pair

FIGURE 5. An example of Must-Link and Cannot-Link constraints.

name may be A1, A2, ..., Ai) and all the papers p1, p2, p3 as-
sociated with nameA in the dataset, we get the authors, titles,
summaries, and other information about papers. Moreover,
we can locate the homepage of person A1, and the papers
written by A1 are listed on the homepage. By analyzing such
information, we can construct the Must-Link collectionML
and the Cannot-Link collection CL. From the homepage of
A1, we find that p1 and p3 are truly written by the same
person, so we add (p1, p3) in ML. And we also know that
p2 is not written by A1, so we add (p1, p2), (p2, p3) in CL.
Through these two constraints, we can make better use of the
label information to improve our clustering procedure.

2) Semi-supervised clustering for disambiguation
In this section, we propose a semi-supervised clustering
method by using the Must-Link and Cannot-Link constraints.
Through the network representation learning proposed in
Section V-B, the representation of each paper is learned.
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Then the semi-supervised clustering method aims to partition
the learned representations into non-overlapping parts, each
disjoint set of papers corresponds to a unique author.

Diting++ uses a Kmeans-based method to cluster papers.
Firstly, it selects K papers in the dataset as cluster centers.
The selection of papers as cluster centers is based on their
distance to other cluster centers. Moreover, for any paper
pair pi and pj , if they are written by the same author, that
is (pi, pj) ∈ ML, then at most one of the papers can be
selected as cluster center. Secondly, during each iteration of
the clustering algorithm, the papers are assigned to its closest
cluster, which does not violate the Cannot-Link constraints.
At the end of each iteration, the cluster centers are updated.
The above iterations are repeated until convergence, and the
clustering results are returned. The main flow of the algo-
rithm is shown in Algorithm 2. In the following paragraphs,
we describe the selection of cluster centers and the distance
metric in detail.

When selecting the cluster centers, we must ensure the
Must-Link constraints are satisfied. Besides, Diting++ en-
hances the selection of cluster centers by using an improved
KMeans++ algorithm.

The main process of selecting cluster centers by
KMeans++ algorithm is to select a cluster center c1 from the
dataset Pn randomly and then calculate the distance between
c1 and all the other vertices. The vertex having the largest
distance with c1 will be selected as the next cluster center.
When the current cluster center is ci−1, the probability for
selecting vi as the next center is calculated as follows.

p(vi, ci−1) =
d(vi, ci−1)

2∑
v′∈Pn d(v′, ci−1)2

(10)

In the above formula, d(vi, ci−1) calculates the distance
between vertex vi and the cluster center ci−1. In Diting++,
we use the cosine similarity as a measure of the distance be-
tween two paper vertices. The distance measurement method
calculating the similarity between any two papers vi and vj
is defined as (di and dj are corresponding paper vectors):

d(vi, vj) =
1

2
+

di · dj
2 · ‖di‖ · ‖dj‖

. (11)

However, the KMeans++ algorithm is not suitable for
our disambiguation problem. In these datasets, there exist
multiple isolated papers associated with an ambiguous name.
This means the isolated papers which are not far enough from
the center of a cluster are very likely to be merged into the
cluster rather than forming a new cluster. For example, as
shown in Fig. 6, the black dots in the graph represent the real
cluster centers. If we use the KMeans++ algorithm to select
the cluster centers, supposing A is chosen as the first cluster
center, then the algorithm will choose B as the second cluster
center rather than E. Because the distance between A and B
is larger than the distance between A and E. This may lead
to the situation that the publications of a unique author are
partitioned into two disjoint clusters.

A

B

C

D

E

FIGURE 6. The problem of KMeans++ algorithm in selecting cluster centers.

Because of the above reason, we improve the selection of
cluster centers by assigning more probability to select iso-
lated papers as cluster centers. Diting++ uses the following
formula to calculate the probability of vi to be selected as the
next cluster center when the current cluster center is ci−1.
The measure of distance is the same as (11).

q(vi, ci−1) =
1

2
· d(vi, ci−1)∑

v′∈Pn d(v′, ci−1)

+
1

2
·
∑min(5,|Pn|)

j=1 Dvi
j

min(5, |Pn|)
(12)

The first term in (12) is to calculate the basic probability of
selecting vi as the next cluster center among all the paper
vertices. The second term is to increase the probability that
isolated papers are selected as cluster centers, which can
effectively avoid the situation that a big cluster is divided into
multiple clusters. Dvi

j is the distance between vi and its jth
closest node. We use the average distance of its top-5 closest
neighbors to obtain a robust estimation. If vi is an isolated
paper, its second term in (12) is larger than vertices that are
not isolated, so the probability of selecting the isolated papers
will be higher.

This clustering method is inspired by semi-supervised
clustering methods such as COP-Kmeans [41]. However, dif-
ferent from COP-Kmeans, we propose a new distance metric
(11) according to characteristics of the data, while COP-
Kmeans uses Euclidean Distance. Besides, COP-KMeans
chooses the K initial clustering centers randomly, while our
clustering algorithm chooses the K initial centers according
to (12). On the other hand, our algorithm uses the must-
link constraints in the center choosing process and uses the
cannot-link constraints in the node assigning process, while
COP-KMeans uses both constraints in the node assigning
process.

VI. EXPERIMENTAL RESULTS
In this section, we compare our methods with other dis-
ambiguation methods and evaluate the impact of different
network embedding methods and different clustering meth-
ods. We find that our unsupervised method Diting can ob-
tain at least 5.7% better Marco-F1 result than the other
author disambiguation methods, and our semi-supervised
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Algorithm 2: The semi-supervised clustering algorithm in Diting++.

Input: set of papers Pn = {vi}Ni=1, set of Must-Link constraintsML = {(vi, vj)}, set of Cannot-Link constraints
CL = {(vi, vj)}, number of clusters K

Output: Disjoint K-partition of Pn

choose an initial center c1 randomly from Pn.
repeat

choose the next center ci+1, selecting ci+1 = v′ ∈ Pn where v′ is the paper having the maximum q(v′, ci) value.
if ∃j∈(1,i)(ci+1, cj) ∈ML then

drop the selected cluster center v′, choose another v′ which has the second maximum q(v′, ci).
end

until get a total of K cluster centers C = {c1, c2, ..., cK};
repeat

for each paper vi in Pn do
assign it to the closest cluster Cj if ∀vj∈Cj (vi, vj) /∈ CL.

end
for each cluster Ci do

update its center by averaging all of the papers that have been assigned to it.
end

until convergence;
return the clustering results C = {C1, C2, ..., CK}

method Diting++ can obtain at least 10.9% better Marco-
F1 result. Besides, Diting++ can obtain at least 10.9%, at
best 23.3% better Macro-F1 result than other network em-
bedding methods (e.g., node2vec, PTE) for disambiguation.
In addition, the unsupervised clustering algorithm in Diting
and the semi-supervised clustering algorithm in Diting++
can disambiguate papers better than other unsupervised and
semi-supervised clustering methods respectively.

A. DATASETS AND EXPERIMENTAL SETUP
We conduct experiments on three datasets: Arnetminer,
DBLP, and CiteSeerX, which are depicted in Table 3. In these
datasets, each ambiguous name is a distinct dataset where the
disambiguation experiment is conducted. For these datasets,
we augment the records of each paper with its abstract and
authors’ organization by fetching them from the IEEE and
ACM repositories through web-crawling.
• Arnetminer3 contains 110 names, 7022 papers, and 13.8

authors per name for disambiguation. In this dataset,
each paper record consists of the following information:
author list, title, publication year, authors’ affiliation,
and publication venue.

• DBLP4 contains 679 names, 6478 papers, and 2.2 au-
thors per name for disambiguation. In this dataset, each
paper record consists: author list, title, venue, keyword,
download link, and publication year.

• CiteseerX5 contains 14 names, 8453 papers, and 33.4
authors per name for disambiguation. In this dataset,
each paper record consists of author list, title, and venue
information of the papers.

3https://aminer.org/disambiguation
4https://github.com/yaya213/DBLP-Name-Disambiguation-Dataset
5http://clgiles.ist.psu.edu/data/

TABLE 3. The three datasets used in this paper.

Arnetminer DBLP CiteseerX

Papers 7022 6478 8453
Names 110 679 14
Authors 1515 1463 468

Papers/Name 63.8 93.9 603.8
Authors/Name 13.8 2.2 33.4
Papers/Author 4.6 4.4 18.1

In our experiments, we set the representation dimension
for all the methods as 40. And the learning rate is η = 0.02,
the regularization coefficient is λ = 0.05. We obtain param-
eters wi in (6) and (9) through hyperparameter tuning in the
experiments and find out the most appropriate parameter val-
ues which gain the highest Macro-F1 result. The parameter
settings for other methods are the same as specified in their
publications. In the experiments, we find that the co-year
relationship has little effect on our result. Thus we do not
use the co-year information for all the methods. We adopt
the result using 10% Must-Link and Cannot-Link constraints
as the final Macro-F1 for semi-supervised method Diting++,
and we also conduct experiments on different percentages
of the two constraints. All the experiments in this work
are conducted at least five repetitions, and we calculate the
average values of Macro-F1 for all methods.

B. PERFORMANCE MEASURES

In this section, we describe the performance measures used in
this work. As Diting uses an unsupervised method to cluster
papers, we use the precision and recall metrics which are
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used in unsupervised clustering settings. They are defined as
follows.

For a dataset we conduct experiments on, our clustering
algorithm aims to divide all papers Pn associated with the
ambiguous name n into disjoint parts, and the clustering
result is denoted as C = {C1, C2, ..., Cr}. We get the
clustering result that each clusterCi represents a set of papers
written by the same author, but the actual paper distribution
maybe not like this. We suppose the number of true distinct
authors in Pn is |A| (|A| may not equal to r). We denote
ni as the number of papers in cluster Ci, and nij is the
number of papers in cluster Ci that are written by true author
j. And ji is the true author id that contains the maximum
number of papers in Ci among all the true authors, i.e.,
niji = max

|A|
j=1{nij}. The precision of a cluster Ci is the

same as its purity.

preci =
1

ni

|A|
max
j=1
{nij} =

niji
ni

And the recall of cluster Ci is defined as:

recalli =
niji
|Tji |

=
niji
mji

,

where Tji is the set of papers written by true author ji and
mji = |Tji | is the number of papers in the set. And recalli
measures the fraction of papers in partition Tji shared in
common with cluster Ci. The F1 is the harmonic mean of
the precision and recall values for each cluster. The measure
for cluster Ci is therefore given as:

F1i =
2

1
preci

+ 1
recalli

=
2 · preci · recalli
preci + recalli

=
2niji

ni +mji

.

The Macro-F1 for clustering C is the mean of cluster-wise
F1i values:

F1 =
1

r

r∑
i=1

F1i.

The Macro-Precision for clustering C is the mean of cluster-
wise preci values:

Precision =
1

r

r∑
i=1

preci.

The Macro-Recall for clustering C is the mean of cluster-
wise recalli values:

Recall =
1

r

r∑
i=1

recalli.

C. COMPETING DISAMBIGUATION METHODS
We compare our methods Diting and Diting++ with sev-
eral state-of-the-art disambiguation methods. The parameter
setting for each method is the same as specified in their
publications. The author disambiguation methods used for
disambiguation are listed as follows.
• Khabsa et al. 2015 [42] design a pairwise profile sim-

ilarity function and propose an improved-DBSCAN
method to cluster papers. This method first calculates

the neighborhood density of each record in the training
set. Then for new records, the Euclidean distance is
used to calculate their neighborhood densities. If the
neighborhood is sparse, the new record is assigned to
the new class. Otherwise, it is classified as an existing
class of the neighborhood containing the new record.

• Qian et al. 2015 [43] use hierarchical agglomerative
clustering to cluster papers. This method uses the num-
ber of occurrences of each attribute to calculate the class
conditional probability of each existing class, assuming
that all attributes are independent. The result of the
calculation is then compared to a defined threshold to
determine whether to assign the newly added record to
the current class or a new class.

• Zhang et al. 2016 [11] use a Bayesian non-exhaustive
classification framework for name disambiguation. This
method classifies the incoming sequentially observed
stream records into existing classes and emerges classes
by using one sweep Gibbs sampler. This model is
mainly for solving online name disambiguation task,
and the result of name disambiguation has not been
greatly improved.

• Zhang et al. 2017 [3] use the PTE method to learn
paper representations and a hierarchical agglomerative
clustering to cluster them. Zhang’s main intuition is that
neighboring nodes in a graph should have more similar
vector representations in the embedding space than non-
neighboring nodes. According to three different rela-
tion networks, this method maps each node to a low-
dimensional vector and then clusters them.

The upper part of Table 4 shows the results of comparing
Diting and Diting++ with other disambiguation methods. We
find that our methods significantly outperform all the other
methods. For some ambiguous names in Arnetminer dataset,
we list the Marco-F1 results of different methods in Table 5.
We find that our Diting method gets the best result most of
the time, and the PTE method gets the best result some times.

D. COMPARING NETWORK EMBEDDING METHODS
We evaluate the performance of different network embedding
methods (listed below). For comparison, we use the same net-
work construction method and clustering algorithm. As some
methods, like DeepWalk, LINE, and Node2Vec, are designed
for a single network rather than multiple networks, we use
these methods to learn a vector from a network sequentially
for each vertex, and then all the obtained vectors of the vertex
are concatenated together as the final representation.

• DeepWalk [17] is a random-walk based method for ho-
mogeneous networks. DeepWalk uses local information
obtained from truncated random walks to learn latent
representations by treating walks as the equivalent of
sentences. For each vertex, truncated random walks
starting from the vertex are used to obtain the contextual
information.

• LINE [19] is a method which models the first-order
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TABLE 4. The Macro-Precision(P), Macro-Recall(R), and Macro-F1(F) of different methods for the three datasets.

Arnetminer DBLP CiteSeerX

Method P R F P R F P R F

Khabsa et al. 2015 [42] 0.633 0.571 0.584 0.674 0.626 0.645 0.421 0.447 0.424
Qian et al. 2015 [43] 0.604 0.512 0.547 0.686 0.656 0.681 0.553 0.521 0.547
Zhang et al. 2016 [11] 0.523 0.745 0.613 0.741 0.716 0.723 0.547 0.522 0.536
Zhang et al. 2017 [3] 0.576 0.693 0.635 0.758 0.706 0.742 0.597 0.575 0.596

DeepWalk 2014 [17] 0.621 0.558 0.582 0.724 0.756 0.734 0.477 0.513 0.482
LINE 2015 [19] 0.654 0.573 0.609 0.723 0.735 0.722 0.536 0.591 0.553
Node2Vec 2016 [22] 0.625 0.541 0.589 0.675 0.705 0.685 0.524 0.465 0.498
PTE 2015 [32] 0.697 0.568 0.632 0.741 0.794 0.762 0.548 0.611 0.578
CANE 2017 [44] 0.588 0.674 0.624 0.682 0.764 0.712 0.499 0.543 0.511
Hin2Vec 2017 [45] 0.655 0.561 0.616 0.714 0.755 0.743 0.589 0.517 0.562

Diting 0.786 0.718 0.745 0.822 0.854 0.832 0.664 0.601 0.635
Diting++ 0.853 0.738 0.814 0.846 0.896 0.871 0.744 0.684 0.712

TABLE 5. The Marco-F1 of different methods for some ambiguous names in Arnetminer dataset.

Name Khabsa Qian Zhang16 Zhang17 DeepWalk LINE Node2Vec PTE CANE Hin2Vec Diting

Alok Gupta 0.564 0.571 0.672 0.652 0.618 0.625 0.636 0.745 0.681 0.566 0.985
Bin Li 0.615 0.591 0.682 0.676 0.545 0.558 0.579 0.486 0.608 0.582 0.769

Bing Liu 0.616 0.644 0.715 0.769 0.742 0.744 0.803 0.701 0.649 0.655 0.982
Bo Liu 0.549 0.484 0.664 0.668 0.538 0.641 0.546 0.625 0.626 0.626 0.814

Daniel Massey 0.498 0.525 0.556 0.546 0.581 0.517 0.559 0.497 0.743 0.640 0.846
David Brown 0.577 0.470 0.603 0.586 0.451 0.545 0.487 0.523 0.581 0.543 0.854
David Jensen 0.589 0.640 0.693 0.802 0.782 0.807 0.926 0.932 0.559 0.687 0.700
David Nelson 0.501 0.599 0.580 0.569 0.537 0.575 0.600 0.500 0.535 0.649 0.785

F. Wang 0.467 0.711 0.778 0.761 0.596 0.636 0.612 0.652 0.587 0.571 0.912
Feng Liu 0.563 0.563 0.485 0.551 0.558 0.542 0.477 0.590 0.525 0.529 0.866

Hao Wang 0.623 0.573 0.640 0.634 0.522 0.560 0.545 0.650 0.608 0.509 0.870
Hui Fang 0.806 0.643 0.685 0.716 0.629 0.688 0.667 0.755 0.512 0.541 0.862

J. Guo 0.686 0.497 0.466 0.613 0.465 0.618 0.541 0.645 0.658 0.634 0.918
J. Yin 0.454 0.492 0.583 0.584 0.561 0.624 0.488 0.598 0.704 0.556 0.804

Jeffrey Parsons 0.771 0.785 0.722 0.768 0.655 0.723 0.744 0.824 0.601 0.533 0.903
Ji Zhang 0.492 0.491 0.486 0.513 0.496 0.646 0.492 0.521 0.735 0.638 0.855

Jie Yu 0.631 0.698 0.717 0.558 0.713 0.724 0.799 0.831 0.558 0.574 0.825
Jim Gray 0.644 0.675 0.789 0.754 0.681 0.832 0.863 0.942 0.613 0.711 0.966

Avg Macro-F1 0.591 0.592 0.640 0.651 0.593 0.645 0.631 0.668 0.616 0.597 0.862

and second-order proximities. In the first-order, it learns
simulations over immediate neighbors of nodes. In
the second-order, it learns 2-hop information from the
source nodes.

• Node2Vec [22] is a broader abstraction of DeepWalk.
It adds a biased random walk strategy, which can be
either DFS or BFS. These two modes of travel focus
on the structural information and the importance of
neighborhood nodes respectively. Node2vec has two
hyperparameters p and q, which can be adjusted for
different networks.

• PTE [32] can obtain the representations for heteroge-

neous networks. PTE uses networks of Word-Word,
Word-Document, and Word-Label to build a heteroge-
neous network. The loss function of the three networks
is superimposed, which is very similar to LINE.

• CANE [44] adds a mutual attention mechanism to fuse
the structural information and text information of the
node so that the context information of the node can
be considered, and it has different representations when
interacting with different nodes.

• Hin2Vec [45] aims to learn vector representations of
heterogeneous networks. In HIN2Vec, for multiple pre-
dictive tasks, each task corresponds to a meta-path.
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This multi-task learning method can embed different
relationships and network structures into node vectors.

As shown in Table 4, Diting and Diting++ outperform all
the other disambiguation methods and network embedding
methods. For all the three datasets, our unsupervised method
Diting is 3.9% to 21.1% better than all the others, and the
semi-supervised method Diting++ is 11.6% to 28.8% better.
PTE and Hin2Vec obtain the second- and third-best perfor-
mance due to their ability to encode multiple networks di-
rectly while the other methods (DeepWalk, LINE, Node2Vec,
and CANE) cannot. Our methods perform better than PTE
and Hin2Vec because we focus on the gap between positive
and negative edges, which is suitable for disambiguation task,
and our methods capture global graph properties via learning
on coarsened networks.

E. COMPARING UNSUPERVISED CLUSTERING
METHODS
We evaluate the performance of different unsupervised clus-
tering algorithms together with our unsupervised method
Diting and semi-supervised method Diting++. For each algo-
rithm, we use the same parameters of them across the whole
experiments. The clustering algorithms used for comparison,
which do not require the input of the number of clusters
(the number of authors K for each ambiguous name), are
HDBSCAN, AP, MeanShift, and Xmeans.
• HDBSCAN [8]: an algorithm which performs DB-

SCAN over epsilon values and integrates the results to
find a cluster that gives the best stability over epsilon.

• AP [9]: an algorithm that uses density clustering. The
basic idea is to treat all data points as potential cluster
centers. The data points are connected to form a network
(similarity matrix), and then the cluster center of each
sample is calculated by passing messages through each
side of the network.

• MeanShift [46]: an algorithm which uses kernel density
estimation. It works by updating centroid candidates to
the mean of the points within an area.

• Xmeans [47]: an algorithm based on Kmeans. It itera-
tively determines K by using the Bayesian Information
Criterion.

Fig. 7 summarizes the comparison results. The semi-
supervised method Diting++ performs significantly better
than all the other unsupervised methods. As for the unsuper-
vised methods, for all the three datasets, our Diting method
consistently outperforms MeanShift and Xmeans, and can
always obtain a better result between HDBSCAN and AP by
using the method proposed in Section IV-C. The Marco-F1
of Diting is about 1.2% to 4.5% better than the second-best
unsupervised method (HDBSCAN).

F. COMPARING SEMI-SUPERVISED CLUSTERING
METHODS
We also evaluate the performance of different semi-
supervised clustering algorithms for disambiguation together
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FIGURE 7. The performance of different unsupervised clustering algorithms.

with our unsupervised method Diting and semi-supervised
method Diting++. For each algorithm, we use the same pa-
rameters in the experiments. The semi-supervised clustering
algorithms used for comparison, which require the input of
the number of clusters, are PCK-Means, COP-KMeans, MK-
Means, RCA-KMeans, and MPCK-Means.

• PCK-Means [48] utilizes constraints for seeding the
initial clusters and directs the cluster assignments to re-
spect the constraints without doing any metric learning.

• COP-KMeans [41] proposes the Must-Link and Cannot-
Link constraints in the Kmeans algorithm. It returns a
partition of the instances in the dataset that satisfies all
specified constraints.

• MK-Means [49] has a metric learning component and
does not utilize constraints for initialization. A single
metric parameterized by a diagonal matrix is used for
all clusters.

• RCA-KMeans [50] is accomplished by using side-
information in the form of equivalence relations. Equiv-
alence relations provide them with small groups of data
points that are known to be similar.

• MPCK-Means [51] involves both seeding and metric
learning in the unified framework. A single metric pa-
rameterized by a diagonal matrix is used for all clusters.

We only display the results of the Arnetminer and Cite-
seerX datasets, as the characteristic of DBLP dataset is
similar. Fig. 8 and Fig. 9 summarize the comparison results.
If there is no constraint or the percentage of constraints
is very small, the unsupervised method Diting proposed
in our paper is superior to all the other semi-supervised
clustering algorithms, including our semi-supervised method
Diting++. However, as the percentage increases, the advan-
tages of semi-supervised algorithms reveal. For all the semi-
supervised algorithms, the Macro-F1 increases rapidly with
the increase of the constraints and finally reaches 100%. And
most of the times, the Macro-F1 result of Diting++ is higher
than all the other methods. In conclusion, the proposed semi-
supervised algorithm in Diting++ outperforms existing semi-
supervised clustering algorithms for author disambiguation
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FIGURE 8. The Macro-F1 of semi-supervised algorithms in Arnetminer.
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FIGURE 9. The Macro-F1 of semi-supervised algorithms in CiteSeerX.

problem.

G. ALTERNATIVES AND SENSITIVITY RESULTS
In this section, we evaluate some alternatives that are dis-
cussed in the previous sections in our work. And we also
conduct experiments to analyze the sensitivity results. The
results are all shown in Fig. 10, which displays the experi-
ment results on Arnetminer dataset.

Firstly, in our experiments, when learning representations,
for a network with |E| edges, T×|E| triples are sampled. We
evaluate the impact of T by varying it from 1 to 4. As we can
see from the figure that T does not impact the performance
significantly.

Secondly, for each ambiguous name, we create networks
based on papers whose author list contains the name. An
alternative way is to create a big network based on all the
papers in a dataset. The results of the comparison are shown
in Fig. 10 with the legend All network representing the
Macro-F1 result by using the big network and the legend
Diting and Diting++ representing the results by using our
networks. The Marco-F1 for Diting and Diting++ are about
12% and 18.9% better than the All network. Compared to the
networks constructed in our work, there are more edges in
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FIGURE 10. The evaluation of some alternatives.

the big network consisting of all papers, which suggests more
information. However, most of the edges in the big network
are not relevant to the ambiguous name. In other words, they
are better treated as negative edges than positive edges.

Thirdly, in section IV-B, we use graph coarsening to
mainly learn the global network structure and get the pre-
trained representations for all vertices in our networks. As
shown in Fig. 10, compared with the non-coarsen networks,
our Diting method gains about 1% better Marco-F1 result and
Diting++ gains about 7.9% better result.

VII. CONCLUSION
In this work, we propose an unsupervised method Diting to
solve the author disambiguation problem. We first use the
network representation learning to get paper vectors through
jointly learning the multiple types of networks constructed
by different relationships of papers, and then design the
clustering algorithm to participate them into distinct parts
to distinguish the ambiguous authors. Further, we also pro-
pose a semi-supervised method Diting++ to improve the
result by taking account of the authorship information of
papers. Our method can learn heterogeneous relationships
(e.g., co-author, title similarity) between papers and can be
easily adapted to many other scenarios. Through extensive
experiments, we show that our methods can significantly
outperform other state-of-the-art methods.
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