
ar
X

iv
:1

10
8.

19
28

v1
 [

cs
.D

C
]

9
A

ug
 2

01
1

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

HybridNN: Supporting Network Location Service
on Generalized Delay Metrics

Yongquan Fu, Yijie Wang, and Ernst Biersack,

Abstract—Distributed Nearest Neighbor Search (DNNS) lo-
cates service nodes that have shortest interactive delay towards
requesting hosts. DNNS provides an important service for large-
scale latency sensitive networked applications, such as VoIP,
online network games, or interactive network services on the
cloud. Existing work assumes the delay to be symmetric, which
does not generalize to applications that are sensitive to one-way
delays, such as the multimedia video delivery from the servers
to the hosts. We propose a relaxed inframetric model for the
network delay space that does not assume the triangle inequality
and delay symmetry to hold. We prove that the DNNS requests
can be completed efficiently if the delay space exhibits modest
inframetric dimensions, which we can observe empirically.Fi-
nally, we propose a DNNS method named HybridNN (Hybrid
Nearest Neighbor search) based on the inframetric model for
fast and accurate DNNS. For DNNS requests, HybridNN chooses
closest neighbors accurately via the inframetric modelling, and
scalably by combining delay predictions with direct probesto a
pruned set of neighbors. Simulation results show that HybridNN
locates nearly optimally the nearest neighbor. Experiments on
PlanetLab show that HybridNN can provide accurate nearest
neighbors that are close to optimal with modest query overhead
and maintenance traffic.

I. I NTRODUCTION

Latency-sensitive applications, such as P2P based VoIP and
IPTV [1], interactive network services on the cloud (e.g.,
Office Live Workspace [2], Google Maps [3]), online network
games, need to transmit data from geo-distributed servers
(called a service node) in real-time to many hosts quickly. High
transmission delays reduce the Quality of Experience (QoE)
of users [4], which lead to significant business losses [5]. For
instance, Google reports that its revenue decreases by 20%
when the latency of showing search results increases by 500
ms; similarly, Amazon claims that its sales amount decreases
by 1% if the page-response latency increases by 100 ms [5].

Since there are hundreds or thousands of service nodes that
provide identical services to hosts, there is an increasingpush
for service providers to route real-time data to a host from geo-
distributed servers that are nearest to that host. For example,
Google routes users’ search queries to geographical-nearby
servers [6]; Akamai redirects hosts’ content requests to replica
servers mainly based on proximity conditions [7]; CoralCDN
[8] uses OASIS [9] and DONAR [10] to select proxy servers
near to end hosts based on geographic distances. However,
selecting nearest servers to hosts are still far from standard
due to several challenges.

Yongquan Fu and Yijie Wang are with National Key Laboratory for Parallel
and Distributed Processing, College of Computer Science, University of
Defense Technology.

Ernst Biersack is with Networking and Security Department,Eurecom.

Fig. 1. Illustrating the RTT and OWDs. SupposeB andC are two servers
that are able to supply short videos to hostA. If we use the RTT metric to
minimize the delay of video delivery, we may arbitrarily choose any of them
to send videos to hostA based on the RTT metric, since the RTT betweenA,
B and that betweenA, C are all 300 ms. However, since the video files are
transmitted from servers to hosts, the OWDs from servers to hosts become
more important [16]. We can see that the OWD from serverC to hostA
is four times less than that from serverB to hostA. Therefore, choosing
serverC to serve hostA significantly minimizes the content transmission
delay for hostA, which is feasible only when we use the OWD metric for
delay optimizations.

First, selecting nearest servers must prove to be reliable,
since service providers need to ensure the QoE fairly for all
hosts. Selecting nearest servers using proximity coordinates
[11], [12] or geographic distances [9] suffer from the mismatch
between the estimated delays and real-world delays [6], which
makes the selection accuracy hard to be predicted. On the
other hand, selecting nearest servers using distributed search
such as Meridian [13] or OASIS [9] avoid such mismatch
problems using direct probes, but may terminate at service
nodes that are much worse than the nearest ones, since the
search is easily trapped into local minima due to the clustering
[14] and Triangle Inequality Violations (TIV) [15] properties
of the delay space.

Second,selecting nearest servers must be aware of uni-
directional delays whenever possible. Since routing on the
Internet is asymmetric [16], the delays from servers to hosts
may deviate those in the reverse direction in several times.
Furthermore, One-Way Delay (OWD) measurements become
increasingly practical due to the advance of measurement
techniques such as OWAMP [17] or Reverse Traceroute [18].
However, delay optimizations using Round Trip Time (RTT)
ignores such delay asymmetry. For multimedia streaming,
application-level multicast, or more generalized applications
where data flows in one directions, such agnostics of unidi-
rectional delays degrades the effectiveness of selected servers,
as shown in Fig 1.

Third, selecting nearest servers must find good tradeoff
between the response time and timeliness. The response time
lasts several seconds for server selections using on-demand

http://arxiv.org/abs/1108.1928v1

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

probing such as Meridian [13] or OASIS [9]. However, the
response time degrades the QoE of users in latency-sensitive
applications, such as online workspace, online music. OASIS
caches nearest servers for each IP prefix using in-advance
probes once a week, which has better response time. However,
the cached server selections tend be suboptimal, since the
delays vary due to routing dynamics or server workloads [19],
and service nodes may be added or removed dynamically.
Therefore, it is difficult to find good tradeoff between response
time and the timeliness of server selections.

The goal of this paper is to provide new algorithms to ad-
dress the first two challenges. To this end, we develop a general
enough delay model that captures the major statistics of the
delay space, including: TIV, delay dynamics and asymmetry
of delays. This papers makes three contributions.

First, we analytically demonstrate that we can find approx-
imately nearest servers quickly by iteratively searching closer
nodes to the host using sampled nodes from proximity regions
of each node. However, the analytical method requires a large
number of samples, which does not scale well.

Second, we introduce a novel distributed algorithm, named
HybridNN, that finds nearest service nodes for any machine
on the Internet (called a target). This algorithm derives from
our analytical method, which preserves the accuracy and
speediness of the analytical method. However, HybridNN has
better dynamic adaptation and reduced measurement costs.
(i) Dynamic adaptation. A practical DNNS algorithm needs
to proactively maintain moderate service nodes as samples
for DNNS queries, irrespective of the system dynamics. Hy-
bridNN dynamically maintains such neighbors using a con-
centric ring used in Meridian [13] or OASIS [9]. However,
HybridNN has two improvements:

• The maximum number of nodes stored per ring is de-
rived from the lower bounds of required samples in the
analytical method, which implies that HybridNN requires
the lowest possible number of samples that has the same
accuracy guarantee as the analytical method.

• HybridNN proposes a biased sampling based concentric
ring maintenance scheme, in order to sample enough
nodes for each ring. Specifically, different from previous
neighbor discoveries based on a gossip protocol, we also
periodically discover a small number of nearest nodes
and farthest nodes to each node as neighbors in the
concentric ring. This is because given a concentric ring,
the innermost and outermost rings contain only a few
neighbors compared to other rings, which are hardly
to be sampled using a gossip based neighbor discovery
protocol.

(ii) Reducing measurement costs. HybridNN adopts scalable
delay predictions to reduce the measurement costs.

• HybridNN maintains the concentric rings using estimated
pairwise delays with the revision [20] of the Vivaldi
network coordinate [21], which significantly reduces the
maintenance overhead of HybridNN compared to Merid-
ian.

• HybridNN selects candidate neighbors that are close to
the target using delay predictions. Since delay predictions

are only approximations of real-world delays, HybridNN
also uses a small number of delay probes to avoid being
misled by inaccurate delay predictions. Interestingly, al-
though the network coordinate distances are symmetric,
we empirically find that our hybrid delay measurement
approach provides the accurate nearest next-hop neighbor
for both symmetric and asymmetric delay data sets. This
is because we replace inaccurate coordinate distances
with direct probes using the error indicator of Vivaldi
coordinate, which relieves the mismatch between sym-
metric coordinate distances and asymmetric delays.

Third, we validate our algorithm using real-world delay data
sets and PlanetLab deployments. Through simulation study,
we show that HybridNN finds servers close to optimal for
symmetric and asymmetric delay data sets. In fact, in more
than 95% of cases, HybridNN locates the ground-truth nearest
servers for the targets. Furthermore, most queries terminate
within four search hops, which implies that HybridNN can
return the search results fast. Using PlanetLab deployments,
we confirm that HybridNN can locate accurate nearest servers
with low query loads and control overhead, with moderate
query time that improves Meridian in more than 15% of cases.

II. SYSTEM MODEL

A. Problem Definition

In this section, we formally define the nearest server location
problem. LetV denote a set of service nodes and hosts. Let a
distance functiond denote the pairwise delays between node
pairs inV . Let N be the number of service nodes.

Our objective is to minimize the serving delays of latency-
sensitive applications by finding a service node for a requesting
host with the minimum delay. As discussed in the previous
section, we expect a generalized delay optimization scenario
where the delay may be symmetric or asymmetric according
to the problem context and measurement tools. Furthermore,
the service nodes may be added or removed, which causes
system churns. As a result, we need to locate the service node
that is closest to the target from dynamic service nodes.

We study a distributed approach to realize our objective,
since the centralized approach has several well-known weak-
nesses, including: it requires global delay measurements that
is hard to obtain for dynamic service nodes; it incurs the single
point of failures. On the other hand, the distributed approach
avoids such weaknesses through collaborations of service
nodes. Specifically, we formulate theDistributed Nearest
Neighbor Search(DNNS) as:

Definition II.1. (Distributed Nearest Neighbor Search): For
a set of dynamic service nodes, given any targetT on the
Internet, the objective of the Distributed Nearest Neighbor
Search is to find one service node that has the smallest delay
to T , based on the distributed collaboration of service nodes.

The definition of DNNS is not novel, since existing research
on closest server discovery [22], [23], [12], [13], [9], [10] has
formulated the similar problem. Intuitively, DNNS consists of
multiple steps. At each step, a current service nodeP tries to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Fig. 2. A DNNS query service substrate for network services.

locate a new service node that is closer to the targetT than
nodeP . The flowchart of a sample DNNS query is shown
in Fig 2. When a hostT accesses a networked service, the
local service client module creates a DNNS query to locate the
nearest service machine to the clientT . The query message
is firstly forwarded to the bootstrap machine of the DNNS
service (Step 1). Then our DNNS query system will forward
the query message recursively until locating a nearest service
machine (Step2 → 3). Finally, our system returns the contact
addresses of the found service nodes to hostT (Step 4).

B. Key DNNS Requirements

To be useful for latency-sensitive applications, we identify
key goals for the DNNS:

• Accurate, we need to find a service node with the
lowest interactive time in order to increase the Quality
of Experience of users.

• Fast, we need to obtain the nearest service node with
low query periods. Otherwise, long query time makes the
DNNS less attractive for server redirections in latency-
sensitive applications.

• Scalable, the DNNS process should incur low bandwidth
costs with increasing system size.

• Resilient to churns, the DNNS process should find
accurate results when the service nodes crash or new
service nodes are added.

C. Discussion

Since the DNNS process may last several seconds due to
on-demand probing, performing DNNS for each query from
hosts may even hurt the Quality of Experience of users, which
is significant for small Web objects. For example, Google
typically returns responses in less than 0.4 seconds; however,
such low response periods are difficult to be realized when
applying the DNNS process before returning the responses.

Therefore, in order to realize a practical nearest server
redirection service, we need to proactively run DNNS for
each host and redirect hosts’ requests using cached DNNS
results, in order to achieve millisecond-level response time.
For example, OASIS [9] shows that it is feasible to cache
DNNS queries of IP prefixes for server redirections without
reducing the DNNS accuracy.

We do not study how to organize cache results in this paper;
instead, we assume that a DNNS caching service exists to map
hosts’ requests to nearest servers using cached DNNS queries.
Our focus is to realize an accurate, scalable and resilient
DNNS system with low DNNS query periods. Since if the
DNNS query last long periods, then crawling DNNS for every
IP prefix will be less efficient.

III. R ELATED WORK

First, for the theoretical computer science field, research
on the nearest neighbor search mainly focuses on designing
efficient algorithms in the metric space [24], [25], [26], [27].
However, applying algorithms in the metric space into DNNS
is inappropriate, since the delay space violates the triangle
inequality that is required by the metric space model [20].

On the other hand, for the network system field, research
on nearest neighbor search can be classified into centralized
and distributed approaches according to the communication
patterns of the search process.

A. Centralized Approaches

The centralized scheme uses a centralized sorting process
to select nearest neighbors for target nodes. However, the
centralized approach does not scale well with increasing
system size, since collecting and transmitting the distance
measurements easily cause performance bottlenecks, which
degrades the service availability.

Guyton et al. [11] pioneer the research on finding the closest
server replica in a centralized manner. They use the Hotz’s
metric [28] to represent pairwise hop distances usingO(N)
measurements to landmark nodes, whereN denotes the num-
ber of server replicas. However, smaller hop distances do not
mean the shorter delays, because one hop may pass continents
or a data center. Later Carter and Crovella [29], [30] combine
the RTT and available bandwidth measurements to dynami-
cally select optimal server replica with minimal response time.
However, the dynamic server selection approach does not scale
well due to the quadric measurement costs. Netvigator [31]
collects RTT values from hosts to landmarks and milestone
nodes based on the Traceroute measurements, and estimates
nearest servers based on local clustering. However, Netvigator
does not guarantee the estimation accuracy, and may get
obsolete results since Netvigator does not perform active mea-
surements. Different from Netvigator, CRP [32] leverage the
dynamic association of nodes with replica servers from CDNs
to determine the proximity between end hosts. CRP incurs
low maintenance costs similar as Netvigator. However, CRP
does not guarantee the accuracy. iPlane [33], [34] constructs a
synthetic topology structure for the Internet. iPlane estimates
the nearest servers using the approximated delays on the
synthetic topology. However, in order to provide services for
hosts spanning geo-distributed places, iPlane consumes heavy
bandwidth costs to perform active measurements.

B. Distributed Approaches

The DNNS approach iteratively selects closer nodes using
distributed nearest neighbor search by local measurements

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

towards a small set of neighbors, which reduces the network
measurement overhead and is more scalable than the central-
ized approach. Existing DNNS methods fall into four families
based on their search rules: (i) Bin based DNNS; (ii) Topology
based DNNS; (iii) Greedy search based DNNS; (iv) Ring
search based DNNS.

Bin based DNNS. Ratnasamy et al. [22] assign nodes into
”bins” based on the ordered sequence of RTT measurements
to landmarks, and declare nodes are close to each other in the
same bin. However, the bin approach does not guarantee the
accuracy, and fails when the landmarks crashes.

Topology based DNNS. Tiers [35] locates the nearest nodes
by a top-down approach with a hierarchical clustering tree,but
may cause load imbalance for nodes near the root of the tree.
Besides, Tiers do not guarantee the search accuracy since the
tree does not strictly preserve the pairwise proximity.

Greedy search based DNNS. Mithos [23] iteratively lo-
cates proximate neighbors withO(N) hops by a gradient de-
scent based protocol in the overlay construction, but terminates
earlier before locating the real nearest nodes due to the limited
diversity in the neighbor set. PIC [12] iteratively locates
nearest neighbors at each search step in terms of the coordinate
distance. However, PIC is prone to be trapped into the local
minima since the coordinate distance only approximates the
delays. DONAR [10] redirects host requests to optimal server
relicas by considering the network proximity, the routing opti-
mization and server loads. DONAR uses geographic distances
as the proximity metric in order to reduce measurement costs.
However, DONAR may find suboptimal server replicas for
delay minimizations since the delay values are not consistent
with the geographic distances.

Ring search based DNNS. Our work is closely related
to Meridian [13], which seeks approximately nearest nodes
in log (N) steps. Meridian [13] maintains a loosely con-
nected overlay using a gossip based peer finding scheme. The
neighbors are organized in concentric rings with exponentially
increasing radii. For a DNNS request, Meridian iteratively
locates one next-hop node that isβ (β < 1) times closer
to the targetT than the current Meridian node. Compared to
other families of DNNS, Meridian is more accurate by using
rings of neighbors that promote the diversity of neighbor sets
[13]. However, several studies have identified that Meridian
may fail to find the closest service node due to the last-hop
clustering of servers [14], and TIV of the network delay space
[20]. Similar as Meridian, OASIS [9] organize neighbors as
concentric rings for each service node, and iteratively search
nearest service node for the request host in terms of the
geographic distances. OASIS reduces the delay measurement
costs in Meridian through the static geographic coordinates,
and has low response time using in-advance probes. However,
OASIS does not guarantee the accuracy of the search results,
since selecting the geographically closest servers may incur
high delays [6].

To address these problems, two adjustments are proposed:
(i) explicitly finding the clustering subsets based on the struc-
ture of IP addresses [14] or, (ii) adding additional neighbors
for DNNS that may not be chosen due to the TIVs [20].
However, finding the clusters of nodes sharing identical last

hops becomes insufficient when the service nodes spread over
nearby subnets, which may still mislead the DNNS queries
due to no forwarding nodes closer enough to the target.
Furthermore, finding all neighbors that are affected by the
TIVs is challenging since calculating the TIVs for decentral-
ized service nodes is very difficult; besides, adding additional
neighbors for DNNS also increases the query overhead. Due
to the limitations of modifications for Meridian, significant
challenges remain in DNNS. We focus on tackling these
challenges in this paper.

IV. DATA SETS

Our empirical data sets include four publicly available
real-world RTT data sets, covering the delay measurements
between wide-area DNS servers and those between end hosts
[36]. (i) DNS3997. A RTT matrix collected between 3997
DNS servers by Zhang et al. [37] using the King method [38].
The matrix is symmetric in thatdij = dji, for any pair of
itemsi andj, whered denotes the delay matrix. (ii)Host479.
A RTT delay matrix based on RTT measurements that last 15-
day periods between the Vuze BitTorrent clients [39]. Host479
is asymmetric, where in over 40% of the cases delay pairsdAB

anddBA in Host479 differ more than 4 times. This is because
RTT measurements between node pairs are not synchronized
and delay results are affected by varying queueing delays
at end hosts [39]. (iii)DNS1143. A RTT matrix between
1143 DNS servers collected by the MIT P2PSim project [40]
using the King method [38]. The matrix is symmetric in that
dij = dji, for any pair of itemsi and j, whered denotes
the delay matrix. (iv)DNS2500. A RTT matrix between 2500
DNS servers by the Meridian project [13] using the King
method. The matrix is also symmetric.

Since obtaining the one-way delays between large-scale
nodes is extremely difficult, we use Host479 as an asymmetric
delay data set. However, we do not claim that our experiments
on Host479 are the same as those on the one-way delay metric.

V. A GENERALIZED DELAY MODEL FOR THEDELAY

SPACE

In this section, we present a simple and general enough
delay model for the delay space. Our model captures the im-
portant characteristics of the delays, including TIV, dynamics
and asymmetry of RTTs and OWDs. In the next section, we
will analyze the DNNS problem on our model.

Assuming that we select a nodeP in V as the center of
a ball, and choose a positive real numberr as the radius of
the ball, then we call aclosed ballBP (r) as the set of nodes
whose delays to nodeP are not larger thanr, i.e.,BP (r) =
{v|d(P, v) ≤ r, P, v ∈ V }. Furthermore, thevolume of a ball
is the number of nodes covered by the ball. Besides, we define
the cover relation of different set of nodes as follows:

Definition V.1 (Cover). Let S andΩ be two sets of nodes, if
Ω ⊆ S, then the setS is said to cover the setΩ.

A. Definition

We first state the requirements for a delay model suitable
for RTTs and OWDs used for delay minimizations. (i) The

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

delay model should relax the symmetry requirements, since
the OWDs are asymmetric due to routing asymmetry [41].
Besides, although RTT is symmetric by only accounting for
the delays on the routing paths, real-world RTT measurements
may be asymmetric due to variations of queueing delays at
end hosts or un-synchronized measurements [42]. (ii) The
delay modeld should allow TIV to exist, since the RTT
metric exhibits TIV [15]. (iii) The delay modeld should allow
dynamic delays, since the delay varies from time to time [19].

Therefore, inspired by the inframetric model [43] that allows
the TIVs, we extend the inframetric model to a relaxed infra-
metric model that relaxes the symmetry requirement, where
the distance functiond satisfies:

Definition V.2 (Relaxed Inframetric Model). Let a distance
function d : V × V → ℜ+ be a relaxedρ-inframetric
(ρ > 1), if d satisfies the following conditions for any
pair of nodesu and v: (1) if d(u, v)=0, then u=v; (2)
d(u, v) ≤ ρmax {d(u,w), d(v, w)}, for any arbitrary node
w satisfyingw /∈ {u, v}.

Pros of the Relaxed Inframetric Model: The condition (2)
in Def V.2 states a generalized relation of any directed triple
from V , which has two beneficial properties:

• TIV-adaptive . Intuitively, smaller ρ implies that three
edges are closer to each other; while largerρ implies
that one edge is significantly larger than any of the other
two edges, which may introduce a TIV. Therefore, similar
as the inframetric model, the relaxed inframetric model
naturally allows the occurrence of TIVs.

• Dynamics-adaptive. The inframetric model allows the
delay variations by varying the inframetric parameterρ to
describe the relations of updated triples. Therefore, both
inframetric model and the relaxed inframetric model are
able to model variations of triples due to delay variations.

• Asymmetry-aware. The relaxed inframetric model al-
lows the asymmetry in the delay space, which generalizes
to RTTs and OWDs. As a result, we are able to analyze
DNNS on symmetric and asymmetric delays through the
relaxed inframetric model.

Having shown the advantages of the relaxed inframetric
model, next we discuss the statistical property of the infra-
metric parameterρ.

First, the seminal work states that if the delay space obeys
the triangle inequality, thenρ must be smaller or equal than 2
[43]. However, whenρ is smaller than 2, there may exist TIVs.
For example, given a triple with pairwise RTTs3, 1, 1.8, we
can see that the inframeter parameterρ is approximately 1.67
but there also exists a TIV in the triple. Therefore, we can see
that ρ ≤ 2 is only a necessarybut not asufficientcondition
for no TIVs.

Second, we find that the inframetric parameterρ is quite low
for most triples. First, the 95th percentiles of all data sets of ρ
are below2.5. Low inframetric parameterρ means the largest
edges in triples are not too much larger than the other edges of
the triples. Second, among the triples whoseρ are bigger than
2, theirρ values are around 3 on average. Therefore, selecting
ρ=3 is reasonable to model most of the triples.

B. Dimensions on the Relaxed Inframetric Model

Having introduced the definition of the relaxed inframetric
model, now we analyze the growth dimension of the relaxed
inframetric model, which is the ratio of the number of nodes
covered by two closed balls with the identical center and
varying radii [43], [44].

The growth dimension is important for efficient DNNS. As
shown by Karger and Ruhl [44], assuming that the growth
dimension is low, each nodeP can uniformly sample a modest
number of nodes to locate a node that is closer to any other
node inV . Therefore, we can recursively find nodes closer to
the target based on the above sampling procedure, which helps
the design of the DNNS algorithms. However, since Karger
and Ruhl assumes the triangle inequality to hold [44], we
cannot immediately apply their DNNS results into the relaxed
inframetric model. Accordingly, we need new proof techniques
for DNNS analysis.

The growth dimension for the inframetric space [43] is
defined as follows:

Definition V.3 (Growth [43]). For a ρ-inframetric model, for
any r ∈ ℜ+ and P ∈ V , if |BP (ρr)| ≤ γg |BP (r)|, where
γg ∈ ℜ+, the ρ-inframetric model is said to have a growth
γg ≥ 1.

The growth dimensionγg on the inframetric model general-
izes the growth definition in the metric space which assumes
the triangle inequality to hold [44], [37]. Therefore, the growth
γg inherits the intuitive meanings of the growth definition
in the metric space. Specifically, low growthγg means that
the number of nodes covered by the closed ballBP (ρr) is
comparable to the number of nodes covered by the closed
ball BP (r). Therefore, when we expand a ball around a node
P ∈ V , we can see that new nodes inV ”come into view” at
a constant rate [44].

Finally, based on Def V.3, the infimum of the growth
dimensionγg equals the ratio of the volume betweenBP (ρr)
and BP (r) for any nodeP and radiusr. Since we are
interested in the infimum, when we refer to the growth of
the inframetric space, we mean the infimum accordingly.

Next, we empirically evaluate the growth dimension of the
delay space with respect to the radiusr and the inframetric
parameterρ. Our evaluation complements the seminal work
on the growth in the inframetric model [43] using symmetric
and asymmetric data sets. Recall that computing the growth
is trivial by comparing the volumes of the balls with identical
centers and varying radii.

Fig 3 shows the median and 90th percentile growth values
for varying radii. The median growth of most data sets is
relatively small, and declines quickly with increasing radii
for most data sets except for Host479. For Host479, the
median growth may increase as the radii increase. On the other
hand, the 90th percentile growth shows divergent dynamics for
different data sets, revealing ”M”-shape dynamics, indicating
that a small fraction of growth values may increase or decrease
with increasing radii.

Furthermore, by selecting different percentages of nodes
for the statistics, Fig 3 shows that the median growth is less
sensitive to the sample size compared to the magnitudes of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

0 40 80 120 160 200
 0

 2

 4

 6

 8

10

12

Radius (ms)

G
ro

w
th

(a) DNS1143.

0 40 80 120 160 200
 0

 2

 4

 6

 8

10

12

Radius (ms)

G
ro

w
th

(b) DNS2500.

0 40 80 120 160 200
 0

 2

 4

 6

 8

10

12

Radius (ms)

G
ro

w
th

(c) DNS3997.

0 40 80 120 160 200
 0

 2

 4

 6

 8

10

12

Radius (ms)

G
ro

w
th

(d) Host479.

Fig. 3. The statistics of the median and 90-th percentile growth γg for
ρ = 3; -♦- denotes median values computed from sampled 20% nodes;
-x- denotes median values computed from sampled 50% nodes;-o- denotes
median values computed from sampled 75% nodes; - representsmedian values
computed from all nodes;
· · ·♦· · · denotes 90-percentile values computed from sampled 20% nodes;
· · ·x· · · denotes 90-percentile values computed from sampled 50% nodes;
-.o-. denotes 90-percentile values computed from sampled 75% nodes;-.-
represents 90-percentile values computed from all nodes.

radii; while the 90th percentile growth becomes relatively
more sensitive to the sample size.

In summary, the growth metricγg of the delay space is
quite low. Furthermore, with increasing radius, the growthγg
decreases to 2 quickly on average. However, sometimes the
growth values increase for increasing radius, which means that
there are many nodes that have similar distances to each other.
This usually corresponds to cases where the center of the ball
is a node on the edge of a cluster, where nodes in the same
cluster have smaller distances compared to those to other nodes
not in the same cluster.

VI. EFFICIENT DNNS ON THE RELAXED INFRAMETRIC

MODEL

In this section, using the relaxed inframetric model pre-
sented in Sec V, we analyze how to design an efficient DNNS
using localized operations suitable for distributed systems.
Proofs are omitted due to space limits, which can be found in
the full report [36].

Our major result is that it is feasible to design an accurate
and fast DNNS algorithm for the relaxed inframetric mode,
at the expense of sampling enough candidate servers from the
proximity region of each node. We construct a simple DNNS
process satisfying our major result. However, the simple
DNNS process incurs relatively high measurement costs due
to the sampling conditions, which will be improved in the next
section.

�

��

��

��

�

�

Fig. 4. Sampling closer nodes to a targetT fromBP (ρr) in theρ-inframetric
model with growthγg .

A. Sampling Conditions to Locate Closer Nodes To Targets

In this section, We analyze samples required to locate a node
closer to a target than the current node based on the growth
dimension in Sec V-B. The sampling conditions serves as the
basis for the efficient DNNS algorithmic design.

Our results show that we can sample a server closer to the
target using bounded samples at each node. In order to obtain
a node that isβ (β ∈ (0, 1]) times closer to the target than the
current node, we need to uniformly sample enough neighbors
from the proximity region of each current node.

Without loss of generality, assume that a nodeP needs to
locate a nodeQ that isβ (β ≤ 1) times closer to a targetT ,
which implies thatdQT ≤ β × dPT . Let dPT = r. We can
see that nodeQ must be covered by the ballBP (ρr), since
dPQ ≤ ρmax {dPT , dQT } = ρr. Fig 4 shows an example
of sampling a node closer to the targetT in the closed ball
BP (ρr) in the growth dimension.

We first quantify the volume differences of balls with
identical centers but different radii.

Lemma VI.1. Given aρ-inframetric with growthγg ≥ 1, for
any x ≥ ρ, r > 0 and any nodeP , the volume of a ball
BP (r) is at mostxα smaller than that of the ballBP (xr),
wherelogργg ≤ α ≤ 2logργg.

Lemma VI.1 states that the volume differences of the balls
with identical centers and different radii are bounded byxα,
wherex is the multiplicative ratio between different radii, and
the parameterα lies in a bounded interval.

We calculateα by varying the radiusr and the multiplicative
ratio x as shown in Fig 5. We can see thatα is mostly below
1, and decreases close to 0 quickly with increasing radiusr
or multiplicative ratiox. Therefore, the volume differencexα

scalessub-linearly in most cases. On the other hand, for small
radiusr or low multiplicative ratiox, the volume difference
xα may scaleultra-linearly .

Furthermore, we also characterize the inclusion relation of
balls with different centers, which generalizes the inclusions of
balls around a node pair in the metric space [44]. Lemma VI.2
lays the foundation for uniform sampling nodes to perform
DNNS on the inframetric model.

Lemma VI.2. (Sandwich lemma) For any pair of nodep and
q, anddpq ≤ r, then

Bq (r) ⊆ Bp (ρr) ⊆ Bq

(

ρ2r
)

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

0
20

40
60

80
100

10 40 70100130160
200

0

0.5

1

1.5

2

x
r (ms)

M
e

d
ia

n
 α

(a) DNS1143.

0
20

40
60

80
100

10
40

70
100

130
160

200

0

0.5

1

1.5

2

x
r (ms)

M
e

d
ia

n
 α

(b) DNS2500.

0
20

40
60

80
100

10 40 70100130160
200

0

0.5

1

1.5

2

x
r (ms)

M
e

d
ia

n
 α

(c) DNS3997.

0
20

40
60

80
100

10
40

70
100

130
160

200

0

0.5

1

1.5

2

x
r (ms)

M
e

d
ia

n
 α

(d) Host479.

Fig. 5. Medianα as function of the radiusr and the multiplicative ratiox.

Using Lemma VI.1 and VI.2, we can quantify the size of
sampled neighbors, to assure that at least one neighbor liesin
the closed ballBT (βr).

Theorem VI.3. (Sampling efficiency in the growth dimension)
For a ρ-inframetric model with growthγg ≥ 1, for a service
nodeP , and a DNNS targetT satisfyingdPT ≤ r, when

selecting3
(

ρ2

β

)α

nodes uniformly at random fromBP (ρr)

with replacement, with probability of at least 95%, one of
these nodes will lie inBT (βr), wherelogργg ≤ α ≤ 2logργg
and β < 1.

Sinceα andρ are determined by the delay space, we can
see that the number of samples decreases with increasing delay
reduction thresholdβ. As β approaches 1, the number of

required samples becomes approximately3
(

ρ2

β

)α

≈ 3ρ2α ∈
[

3γ2
g , 3γ

4
g

]

based on Lemma VI.1.

B. DNNS on the Inframetric Model

In this section, we present the analysis of DNNS on the
Inframetric model. We will show the search accuracy, search
periods and search costs related to a DNNS process. We prove
that, by recursively following such sampling conditions, we
can locate a server that is1/β-approximation to the optimal:
the delay from the found server to the target is not bigger than
1/β times that from the nearest server to the target.

First, we review the goal of each DNNS step using the
sampling conditions in Sec VI-A. Assume that a nodeP wants
to locate a node that isβ times closer to a targetT . The goal
of the current DNNS step is to locate a nodeβ times closer to
the target than the current nodeP . To that end, Theorem VI.3

shows that we need to sample up to3
(

ρ2

β

)α

nodes uniformly

at random fromBP (ρr) with replacement.
Based on the sampling condition in Theorem VI.3, perform-

ing DNNS in the growth dimension can be formulated into a

simple DNNS procedure in Definition VI.4.

Definition VI.4 (A simple DNNS method in the inframetric

model). sampling 3
(

ρ2

β

)α

neighbors from the closed ball

BP (ρdPT) at each intermediate nodeP , forwarding the
DNNS request to a next-hop nodeβ times closer to the target
than the nodeP , and stopping at a local minima when we
can not find such a next-hop node.

Furthermore, we can quantify the efficiency of found neigh-
bors based on the above DNNS procedure by Corollary VI.6.
As a result, we can locate an approximately optimal nearest
neighbor for a targetT whenβ approaches one. Furthermore,
the number of required search steps is a logarithm function of
the ratio∆ of the maximum delay to the minimum delay in the
delay space, indicating that the DNNS queries can complete
quickly.

Definition VI.5 (ω-approximation). For a DNNS request with
target T , a found nearest neighborA is a ω-approximation,
if the delay betweenA to T is smaller thanωd∗, whered∗ is
the delay between the real nearest neighbor toT .

Corollary VI.6. For a relaxed inframetric model with growth
γg, according to the DNNS process in Definition VI.4, the
found nearest neighbor is a1

β
-approximation, and the number

of search steps is smaller thanlog 1
β
∆, where∆ is the ratio

of the maximum delay to the minimum delay of all pairwise
delays.

C. Limitations of Theoretical Results

To find a better next-hop neighbor without missing any
closer nodes, based on the DNNS analysis in the inframetric

model in Sec VI-B, we should sample approximately3
(

ρ2

β

)α

nodes whose delays to current nodeP are not larger than
ρdPT . However, the number of the candidate neighbors may
be quite high, as shown in Fig 6. We can see that the number
of required samples exceeds 100 accordingly, forβ below 0.4
or α above 1. Such high number of samples implies that we
need extremely large number of samples for continuing the
DNNS query.

On the other hand, the number of samples decreases with
decreasingα or with increasingβ. Whenα is below 1, the
number of samples is below 33 if the delay reduction threshold
β is above 0.8. As a result, we can see that we need to choose
a largeβ in order to reduce the number of samples, since the
median values ofα are mostly no more than 1 from Fig 5.

D. Comparison with Previous Inframetric Study

Our relaxed inframetric model is inspired by the seminal
study on the inframetric model [43] that assumes the symmetry
of the distance function. We extend the inframetric model
study for the Internet delays in four aspects:

• We extend the inframetric model to allow both symmetric
and asymmetric distance functions, which generalizes the
RTTs and OWDs that are important for latency-sensitive
applications.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

0.10.2 0.4 0.6 0.8 10.5

1

1.5

2
10

0

10
1

10
2

10
3

10
4

10
5

β
α

N
u

m
b

e
r

o
f

S
a

m
p

le
s
 (

lo
g

 s
c
a

le
)

Fig. 6. The number of sampled neighbors3

(

ρ2

β

)α

by varying the volume

difference parameterα from the interval[0, 2] based on the analysis in Sec
VI-A and the delay reduction thresholdβ. We set the inframetric parameter
ρ to be 3 to represent most triples.

• We clearly show the relation between inframetric param-
eterρ and the TIV. The inframetric parameterρ ≤ 2 is a
necessary but not sufficient condition for no TIVs.

• We formulate the DNNS problem on the relaxed infra-
metric model and propose a simple DNNS method that
finds approximately nearest neighbor for any target using
at most logarithmic search hops. Interestingly, our simple
DNNS method works on both symmetric and asymmetric
delay metrics.

VII. R EALIZING A PRACTICAL DNNS

A. Overcoming Limitations of the Simple DNNS Method

Recall that the measurement costs limits the usefulness
of the simple DNNS method defined in Def VI.4 from Sec
VII-A. Besides, in the distributed system context, since each
service node does not have the global view of the delay space,
sampling enough neighbors from the closed ball centered at
each service node is difficult. We discuss design principlesto
tackle these two difficulties in this section.

1) Reduce Measurement Costs:We reduce the measure-
ment costs in two complementary approaches: (i) Given that
the number of required samples of the simple DNNS method
depend on varying parameters, we seek to modify the pa-
rameters to obtain the lower bound of the required number
of samples. (ii) Given that network coordinates can be used
for delay estimations, we avoid complete measurements from
selected samples to the target using delay estimations.

First, recall that the number of samples for the simple
DNNS method increases quickly with decreasing delay reduc-
tion thresholdβ. Therefore, to reduce the number of samples,
we should set the delay reduction thresholdβ to be close to 1.
On the other hand, since the approximation ratio of the simple
DNNS method is1/β, we can see that largeβ also leads to
better approximations of nearest neighbors. As a result, weset
β to 1 in order to reduce the number of samples and obtain
the best approximation accuracy.

Second, although we reduce the number of samples using
modified β, we still need delay measurements between se-
lected samples to the targets, which consume the bandwidth
costs and CPU loads of service nodes. Therefore, we hope
to reduce the required delay measurements while obtaining

the sample that is closest to the target. To that end, we use
delay estimations based on network coordinatesto reduce
the delay measurement costs. However, since the delay es-
timations incur errors due to the embedding distortions of
network coordinates, simply using delay estimations to find
the nearest neighbors becomes less reliable. Instead, we issue
delay measurements when the delay estimations are inaccurate,
so as to avoid the inaccurate delay estimations.

2) Sample Enough Neighbors For Continuing DNNS
Query: Based on the simple DNNS method, each DNNS
service has to maintain enough neighbors covering different
delay ranges in the delay space, in order to find the nearest
neighbor to any target. Therefore, each node has to maximize
its diversity in the neighbor set.

Gossip based neighbor management is frequently used for
existing DNNS methods. For example, Meridian [13] and
OASIS [9] use an anti-entropy gossip protocol to discover
neighbors, and store neighbors using rings of neighbors called
concentric rings. However, during our experiments, the inner-
most and outermost rings in the concentric ring often find no
or only few neighbors compared to the capacity of the ring,
while the rest of rings with radii lying in the middle portion
of the delay distributions are filled with too many neighbors,
leading to frequent ring management events, incurring heavy
computation and communication overhead.

We explain the insufficiency of the gossip process in details.
Assuming that we know the complete delay matrix, for each
node, we compute the percent of mapped nodes for each ring,
which serves as an upper bound of sampled neighbors for
that ring. Then we can analyze whether the distributions of
mapped nodes in concentric rings affect the gossip process.
As shown in Fig 7, we can see that most nodes are mapped
into a few number of rings, whose delay ranges lie in the
middle portion of the delay distributions. However, only quite
a few nodes are mapped into the innermost and outermost
rings, which result in a skewed distribution of mapped nodes
for the concentric rings. As a result, since the gossip process
adopts the uniform sampling approach, the gossip process will
inevitably sample insufficient neighbors from those rings that
have too few mapped nodes.

Accordingly, to improve the concentric ring maintenance,
we need to sample enough neighbors that lie in different delay
ranges. To that end, we propose to find nearest neighbors and
farthest neighbors for each service node, in order to fill the
innermost and outermost rings in the concentric ring.

B. Our Design

Based on the design principles in Sec VII-A, we design
a novel DNNS method namedHybridNN (Hybrid Nearest
Neighbor Search). We present an overview of HybridNN.
To sample enough candidate neighbors from the proximity
region of the current node, each node must first maintain
a neighbor set that contains enough neighbors within each
proximity region. Then using the neighbor set, we select can-
didate neighbors using the sampling conditions of the simple
DNNS method, in order to cover the neighbors closer to the
target with high probability. Next, we determine the candidate

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10111213
Ring Number

P
c
t

o
f

M
a

p
p

e
d

 N
o

d
e

s

(a) DNS1143.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10111213
Ring Number

P
c
t

o
f

M
a

p
p

e
d

 N
o

d
e

s

(b) DNS2500.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10111213
Ring Number

P
c
t

o
f

M
a

p
p

e
d

 N
o

d
e

s

(c) DNS3997.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10111213
Ring Number

P
c
t

o
f

M
a

p
p

e
d

 N
o

d
e

s

(d) Host479.

Fig. 7. The percent of mapped nodes into different rings, assuming that
we obtain the complete delay matrix. Thei-th ring contains neighbors whose
delays to a nodeP lie in the interval

(

αsi−1, αsi
]

, with i > 0, α a constant,
s a multiplicative increase factor (α = 1, s = 2 ms as configured by Wong et
al. [13]). Besides, since our objective is to determine the distribution of nodes
mapped into the concentric ring, we do not limit the maximum capacity of
each ring.

neighbor closest to the target, using delay estimations and
direct probes, in order to obtain a better tradeoff between
sampling bandwidth and accuracy. Finally, using the currently
nearest candidate neighbor to the target, we determine whether
to terminate the DNNS query. As shown in Fig 8, HybridNN
is composed of five components:
Neighbor Maintenance: This component maintains the neigh-
bor set for DNNS queries. Since nodes are mapped into the
rings at the middle portion of the concentric ring, which
implies that neighbors mapped into the head portion and tail
portion of the concentric ring are difficult to be sampled using
the uniform sampling based approach. As a result, we need to
increase the sampling probability of such neighbors, in order
to fulfill the sampling conditions for DNNS queries. To that
end, we over-sampling neighbors in the head portions and
tail portions of the concentric rings, besides we uniformly
sampling neighbors located in the middle portions of delays
and.
Selecting Candidate Neighbor: This component selects can-
didate neighbors to satisfy the sampling conditions of the
simple DNNS method. When a nodeP receives a DNNS
query, nodeP determines its delay towards the targetT , then
selects neighbors from its diversity-optimized neighbor sets
(Sec VII-C) by covering possible closer neighbors towards the
targetT (Sec VII-D). Furthermore, we prune those neighbors
that could mislead the DNNS query into poor local minima.
Coordinate Maintenance: This component updates the coor-
dinate of the target in order to estimate delays to targets from
candidate neighbors, since the target machine may not have
the coordinate for delay estimation (Sec VII-E). Additionally,
each service machine maintains a network coordinate used for
delay estimations.
Determining Closest Neighbor: This component determines

Fig. 8. The flow chart of four search steps at a service node fora DNNS
query.

the neighbor nearest to the target (Sec VII-F). Each node com-
putes the candidate neighbor closest to the target using delay
estimations and direct probes, in order to balance between the
measurement costs and measurement accuracy.
Termination Test: This component determines to continue
or stop a DNNS query (Sec VII-G). Recall that in previous
section we set the delay reduction thresholdβ to be 1 on
order to reduce the number of samples and obtain better
approximation ratios to the optimal results. Therefore, Hy-
bridNN conservatively terminate the DNNS query only when
all candidate neighbors having larger delays than the current
node.

Finally, HybridNN uses an extensible delay measurement
interface. For instance, by default HybridNN simply use
the system-built-in Ping command to obtain pairwise RTT
measurements. When there exist an on-demand OWD probe
service such as Reverse Traceroute [18], HybridNN configures
a RPC interface to request the pairwise OWD results.

C. Neighbor Maintenance

In order to facilitate the neighbor sampling for DNNS
forwarding, each service node maintains neighbors that are
sampled from different regions in the delay space. We intro-
duce the neighbor discovery and update in this section.

1) Organize Neighbors Into Rings for Proximity Selection:
Since the proximity region for neighbor sampling in the simple
DNNS method is a closed ball, we choose the concentric ring
to organize neighbors for each node. For instance, if we need
to locate all neighbors that are at mostd2 ms away, we select
all neighbors from those rings whose ring numbers are at most
⌈log2d2⌉.

An important parameter for the concentric ring is its ring
size∆, which determines the maximum number of neighbors
per ring. Since we need to sample enough neighbors using
the concentric ring to guarantee to locate a neighbor closerto
the target with a high probability, we analytically determine
the choice of∆ as follows. First, the total number of samples

3
(

ρ2

β

)α

is within the interval
[

3γ2
g , 3γ

4
g

]

, since we set the
delay reduction thresholdβ to 1. Therefore, if we set the
number of neighbors∆ at each ring to be at leastO(γ2

g),
we can ensure that with a high probability, we can find a
neighbor that is closer to the target than the current node
P . Furthermore, sinceγg is low on average from previous
sections, we can set the number of neighbors∆ to be a modest
integer (8 by default).

Furthermore, to adapt to the dynamics of delays, we use a
moving median as a latency filter for extracting stable delay
measurements to each neighbor [45], which allows to have up-
to-date delay estimates resilient to the measurement noises.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

2) Biased Sampling based Neighbor Discovery:Based on
the distribution of neighbors for each ring in the previous
section, we have seen that we need to over-sample neighbors
mapped into the head portion and the tail portion of the
concentric rings. To that end, we adopt both uniform sampling
and over-sampling approaches.

Uniform sampling. We reuse the gossip process in Merid-
ian. Briefly, each nodeP periodically starts the gossip process
by uniformly selecting a neighborQ from P ’s concentric
ring as communication partner, and sends a gossip request
message to nodeQ containing randomly sampled neighbors,
one neighbor per non-empty ring. WhenQ receives the gossip
request,Q will send a gossip ACK toP immediately; besides,
Q iteratively sends gossip requests towards the sampled neigh-
bors in the gossip request message ofP .

Finally, if we use the RTT metric, then nodeP insertsQ
into the corresponding ring according to the round trip delays
measured as the period between the gossip request and the
gossip ACK. Alternatively, if nodeP is able to measure the
one-way delay fromP to Q, then nodeQ is inserted into the
corresponding ring according to the one-way delay fromP to
Q.

Over-sampling. Our goal is to sample enough neighbors
from those mapped neighbors lying in the head and tail
portions of the concentric rings. For this purpose, we useK
closest neighbor search andK farthest neighbor search. The
returned nodes are directly stored into the concentric ring,
as the delay values between the current service node to the
returned nodes are obtained during theK closest neighbor
search andK farthest neighbor search processes.

• K closest neighbor search. Each nodeP periodically
finds nearby nodes by issuingK closest neighbor search
with itself as target. HereK is a system parameter. Firstly,
nodeP randomly selects a neighborQ from its concentric
ring, and sends toQ a K nearby neighbor search mes-
sage. Then nodeQ starts aK closest neighbor search
process. After theK closest neighbor search process is
completed, found nearby nodes and the corresponding
delays toP are returned to nodeP , andP saves these
returned nearby nodes into its concentric ring.

• K farthest neighbor search. Similar as theK closest
neighbor search process, each nodeP periodically issues
K farthest neighbor search. Later, theK farthest neighbor
search results include found distant neighbors and the
corresponding delay values to nodeP . P stores the
returned distant neighbors into its concentric ring by the
corresponding delay values.

Due to space limits, the details forK closest neighbor search
andK farthest neighbor search are omitted here, which can
be found in the full technical report [36].

3) Replacing Suboptimal Neighbors Without Probes:In
order to bound the memory overhead of the concentric ring,
we need to manage the size of the concentric rings when some
rings reach their maximum capacity∆. To reduce CPU costs
due to frequent ring managements, we lower the frequency of
ring managements: we first set up another tolerance threshold
∆t for each ring; then we begin the ring management when
some rings having at least∆+∆t neighbors; during the ring

management, we remove∆t neighbors from those rings that
have at least∆+∆t neighbors.

When we need to remove∆t neighbors from some rings,
we follow the removing philosophy of Meridian: preserve
those that maximize the diversity of neighbors in a ring using
the maximal hypervolume polytope algorithm ([13]). This is
because the higher diversity in the neighbor set translatesto
better chances of locating a nearby nodes for any target. How-
ever, the maximal hypervolume polytope algorithm requires
all-pair delay measurements of nodes in a ring, which needs
O
(

∆2
)

probes. In order to avoid such measurements, we turn
to adopt network coordinates for delay predictions.

For delay predictions, we use the revised Vivaldi algorithm
[21] that is robust to TIVs [20]. We denote the revised Vivaldi
[20] as TIV-Vivaldi(xi, ei, dij , xj , ej), where the inputxi,
xj denote the coordinate of nodei and j, respectively; the
input ei, ej denote the averaged error of nodei’s and j’s
coordinates, respectively. The output ofTIV-Vivaldi are the
updated coordinatexi and coordinate errorei of nodei.

Each service node passively maintains a coordinate, and
estimates delays using coordinate distances. Besides, fores-
timating delays with neighbors in the concentric ring, each
service node also stores its neighbors’ coordinates.

Since delay varies, each node updates its own and cached
coordinates periodically. Rather than introduce additional de-
lay probes, we update coordinates by reusing the delay mea-
surements to other service nodes during the biased sampling
procedure. Therefore, we significantly reduce the maintenance
costs compared to Meridian. First, each node receiving the
gossip message piggybacks its coordinate to the sender along
with the acknowledged gossip message. After receiving the
coordinate from the gossip receiver node, the gossip sender
node stores the new coordinate of the gossip receiver node,
and updates its own coordinate by triggeringTIV-Vivaldiusing
the delays obtained during the gossiping process.

D. Select Candidate Neighbors

Assume that nodeP receives a DNNS query to the target
T . Based on the sampling conditions of the simple DNNS

method, nodeP needs to select3
(

ρ2

β

)α

neighbors whose

delays to nodeP are in the delay range[0, ρdPT]. Since each
ring containsO(γ2

g) neighbors, we simply select all neighbors
of rings numbered in the range[1, ⌈log2 (ρdPT)⌉] as candidate
neighbors.

Furthermore, we also prune several neighbors that mislead
the DNNS process. First, candidate neighbors that contain
too few non-empty rings are more likely to provide no hints
on continuing the DNNS queries, thus the DNNS queries
can be trapped into local minima, due to the neighbors’
sparse diversity of the delay space. Therefore, we remove
all neighbors with fewer thanτ non-empty rings (τ = 4 by
default). Second, all neighbors that have received the identical
DNNS query should be removed in order to avoid the search
loops. Therefore, let theforwarding path of a DNNS query
be the sequence of nodes forwarding the query. we remove
any node on the forwarding path.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

E. Coordinate Maintenance for Targets

In order to reduce the delay measurement costs, we predict
delays from service nodes to the target, since each service node
has computed its network coordinate during the neighborhood
management process (Sec VII-C3). As a result, reusing the
coordinates for predicting delays can reduce the measurement
costs.

Unfortunately, we may not know the coordinate of the
target, as the target can be any machine on the Internet.
Therefore, we propose to compute the coordinate for the target
on-the-fly based on theTIV-Vivaldi.

First, when nodeP receives the DNNS query for a target
T , nodeP will initialize the network coordinatexT for target
T if T ’s coordinate is not stored in the DNNS query message.
To that end, nodeP asks a fixed number of neighbors (at
most 10) to directly probe the targetT . Then, nodeP updates
target T ’s coordinate byTIV-Vivaldi using the coordinates
and delay measurements from these neighbors to targetT ,
which updatesT ’s coordinatexT and coordinate erroreT as
the output ofTIV-Vivaldi. Finally, nodeP stores targetT ’s
coordinate into the DNNS query and forwards to the next-
hop node for recursive search. This completes the coordinate
initialization for the targetT .

Second, after initializingT ’s coordinate, each nodeQ that
forwards the DNNS query will update targetT ’s coordinate for
better convergence of targetT ’s coordinate. To that end, each
nodeQ appliesTIV-Vivaldi to update targetT ’s coordinatexT

and coordinate errorxT , using nodeQ’s coordinate and delay
dQT the targetT .

F. Determine Closest Neighbor

After we assign a network coordinate to the target in
Sec VII-E, we can use the network coordinate distances to
approximate the real-world delay and reduce the measurement
costs. Nevertheless, since the coordinate distances are only
approximations, closest neighbors selected according to the
network coordinates may be inconsistent with the real ones.

Therefore, we locate closest neighbors to the targetT from
the candidate neighbors found in Sec VII-D, by combining the
delay predictions with a small number of direct probes.

First, based on the coordinate distances from candidate
neighbors to targetT , we find top-m nearest neighborsSc

to the targetT from the candidate neighbors.
Second, since coordinate distances may be erroneous, we

also choose those candidate neighborsSe whose coordinates
are not reliable. Since each TIV-Vivaldi coordinatexi is ac-
companied by a coordinate error metricei [20], we choose un-
reliable neighbors whose coordinate errors exceed a threshold.
We found that setting the threshold to be 0.7 can significantly
reduce the negative impact due to the coordinate inaccuracies.

Third, to adapt to coordinate errors caused by TIV, since
high coordinate distance errors indicate violations of triangle
inequality [20], we simply include all candidate neighborsSt

whose coordinate distance and real delay towards the current
nodeP differs by more than 50 ms, which has good tradeoff
between accuracy and bandwidth costs.

Finally, using the union of selected candidate neighbors
S∗ = Sc∪Se∪St, the current nodeP asks neighbors inS∗ to
probe the delays to targetT , from which nodeP determines
the closest neighbor. Ties are broken by choosing the neighbor
with most accurate coordinate.

G. Termination Test

Recall from Sec VII-A, HybridNN set the delay reduction
thresholdβ to be 1, in order to reduce the number of selected
neighbors and obtain better approximation ratios for the found
nearest neighbors. Therefore, when the closest neighbor se-
lected from Sec VII-F has a larger delay to the target than that
of the current nodeP , nodeP terminates the DNNS query.
Then nodeP sends the currently closest node to the host that
issues the DNNS query.

VIII. E XTENSIONS TOHYBRIDNN

HybridNN can be readily extended to search more than just
one nearest node. Here we will just give two examples namely,
K closest neighbor search andK farthest neighbor search,
which are both utilized to oversample neighbors in the network
delay space in order to increase the diversity for neighborhood
management.

A. K Distributed Nearest Neighbor Search

TheK Distributed Nearest Neighbor Search (KDN2S) aims
to locate theK nearest neighbors to a targetT , whereK is
a system parameter. To store the found nearest neighbors, we
append a new fieldM .Ω that caches nearest neighbors to the
DNNS query messageM .

A naive KDN2S solution is based on thefinding and
removingapproach: first we find one closest neighbor towards
the target based on the HybridNN algorithm, then we delete
the found nearest neighbor from the system, and we restart
the HybridNN algorithm from the same query node until we
locateK nearest servers to the target. Nevertheless, deleting
the closest neighbors from the system is not practical for
a large-scale system due to the broadcasting communication
overhead, and repeated DNNS processes increase the query
overhead for the service nodes on the DNNS forwarding paths.

On the other hand, if we assume that the concentric ring
of each node does not append new neighbors, the network
coordinate of each node keeps unchanged and the network
delays keep stable during the period of a KDN2S query, we
find that there existstemporal correlationin the forwarding
paths of consecutive DNNS queries starting from the identical
node in the naive KDN2S solution:if we issue a new DNNS
query from the same starting node immediately after the
preceding DNNS query, then the forwarding path truncated
the last-hop node of the new DNNS process is a subpath of the
forwarding path of the preceding DNNS query, since we can
see that the intermediate nodes on these two forwarding paths
are identical in HybridNN.Our assumption generally holds
after the network coordinates converge and the concentric rings
contain enough neighbors. Furthermore, the constancy of end
to end network delays has been confirmed to be on the orders

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

	

� �

��

�

��

�

�

�

�

�

Fig. 9. KDN2S.

of hours by Zhang and Duffield [46] as well as the iPlane
project [33], [34].

Using the temporal correlation of consecutive forwarding
paths from the same starting node, we propose a backtracking
based KDN2S algorithm, as shown in Algorithm 1. After we
find one nearest neighbor and terminate at a service node
P1 by HybridNN, we resume the KDN2S query fromP1,
by backtracking fromP1 to its predecessor nodeP2 on the
DNNS forwarding path, and by recursively finding the nearest
neighbor atP2, until we locateK nearest neighbors. With
backtracking, the KDN2S resumes the query at service nodes
that are close to the target, therefore we can quickly locatenew
nearest neighbors with reduced forwarding overhead compared
to the naive KDN2S solution.

Fig 9 gives an example of KDN2S using Algorithm 1.
Suppose an end hostA needs two nearest neighbors to the
targetT . NodeA sends a KDN2S request to a service nodeB.
ThenB starts the KDN2S by forwarding a KDN2S queryM
to a neighborP2 closer toT . Similarly,P2 forwards the query
M to P1. Now nodeP1 finds that it cannot find a neighbor
closer to the targetT than itself, therefore,P1 is the first
nearest neighbor to the target. ThenP1 appends its address into
M .Ω as a found nearest neighbor. NextP1 triggers the KDN2S
backtracking step by forwardingM to P1’s predecessorP2 on
the KDN2S forwarding path. On receivingM , P2 excludes
P1 from the choice of candidate neighbors, and finds a new
neighborP3 closer to the targetT thanP2. ThenP2 forwards
M to P3. P3 decides that it is the closest node toT among
its neighbors. Therefore,P3 appends itself toM .Ω as a new
nearest neighbor. Finally,P3 sends the found nearest neighbors
in M .Ω, i.e.,P1 andP3, to the end hostA, which completes
the KDN2S.

B. K Distributed Farthest Neighbor Search

Similar as the KDN2S, K Distributed Farthest Neighbor
Search (KDFNS) is also based on the backtracking idea. First,
we locate one farthest neighbor and terminate at a service node
P , then we backtrack from nodeP to its predecessor node on
the forwarding path to recursively locate the restK−1 farthest
neighbors.

To locate one farthest neighbor, we recursively for-
ward the KDN2S query to a service nodeP1 that is
at least (1 + βfarthest) (βfarthest is 1.2 by default) times
farther to the targetT than the current service node
P . In other words, we need to locate a node that is
not covered by the ballBT ((1 + βfarthest) dPT). Since
BT ((1 + βfarthest) dPT) ⊆ BP (ρ (1 + βfarthest) dPT) by

Algorithm 1: The pseudo-code of KDN2S.

1: KDN2S(H , T , K, M)
2: {Input: current nodeH , the targetT , required number of

closest neighborsK, query messageM}
3: {Output: nearest neighbors toT}
4: if |M.Ω| == K then
5: ReturnM.Ω; {enough closest neighbors}
6: end if
7: S ← chooseCandidates(P , T , M);
8: S ← S −M.Ω {remove found nearest neighbors to avoid

search loops}
9: xT ← InitTargetCoord(P , T);

10: [u1, Sc, DT]← NearestDetector(P , S, xT , M);
11: [φ1, dφ1T , P1]← TerminateTest(P , u1,Sc, DT , M); {find one

closest neighbor, and terminate at nodeP1}
12: M.Ω←M.Ω ∪ {φ1}; {cacheφ1 into the query message}
13: Select the predecessor nodeP2 of nodeP1 on the forwarding

pathM .Path;{find the predecessor for backtracking}
14: KDN2S(P2, T , K, M); {recursive search}

the sandwich lemma in Lemma VI.2,P1 needs to be at least
ρ(1 + βfarthest)dPT from nodeP .

Accordingly, in each search step, we try to find such
node P1 from the concentric ring of the current service
node P , whose delay value toP is larger or equal the
ρ (1 + βfarthest) dPT . If there exists a such nodeP1, then
nodeP1 recursively runs the KDFNS as nodeP . Otherwise,
if we can not locate such nodeP1, the search is terminated,
and the currently farthest node to the target is cached as a
farthest neighbor to the target. Afterwards, we select the rest
K − 1 distant neighbors by the backtracking process similar
as that inK closest neighbor search.

Algorithm 2 shows the complete KDFNS process. First,
we choose candidate neighbors satisfying the delay constraint
to the current service nodeP . Then we find the farthest
neighbor to the target (FarthestDetector()) combining the
delay predictions with direct probes in order to reduce the
measurement overhead. Specifically, we choosem farthest
neighbors from the candidate neighbors; besides, we also add
neighbors with uncertain coordinates and erroneous predic-
tions similar as Sec VII-F. Next, we determine one farthest
neighbor recursively (FarthestTerminateTest). Finally,from the
terminating nodeP1, we backtrack to the predecessor node of
P1 on the forwarding path, and recursively run the KDFNS
until we locate enough farthest nodes to the target.

IX. SIMULATION

In this section, we report the results of simulation experi-
ments based on the real-world data sets in Sec IV.

A. Experimental Setup

We compare HybirdNN with several DNNS algorithms.
(1)Vivaldi . We compute the coordinate of each node based on
the Vivaldi algorithm [45], and find the nearest service nodes
for each requesting node using shortest coordinate distances.
The coordinate dimension for Vivaldi is 5. (2)CoordNN. To
quantify the usefulness of direct probes of HybirdNN, we
present a DNNS algorithm CoordNN, which is identical with

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Algorithm 2: The pseudo-code of KDFNS.
1: KDFNS(H , T , K, M)
2: {Input: current nodeH , the targetT , required number of

farthest neighborsK, query messageM}
3: {Output: farthest neighbors toT}
4: if |M.Ω| == K then
5: ReturnM.Ω; {complete the KDFNS}
6: end if
7: S ← chooseFarthestCandidates(P , T , M); {choose neighbors

whose delay values toP is larger than or equal to
ρ(1 + βfarthest)dPT }

8: S ← S −M.Ω {remove found farthest neighbors to avoid
search loops}

9: xT ← InitTargetCoord(P , T);
10: [u1, Sc, DT]← FarthestDetector(P , S, xT , M); {select the

farthest neighbor toT from S}
11: [φ1, dφ1T , P1]← FarthestTerminateTest(P , u1,Sc, DT , M);
{find one farthest neighbor, and terminate at nodeP1}

12: M.Ω←M.Ω ∪ {φ1}; {cacheφ1 into the query message}
13: Select the predecessor nodeP2 of nodeP1 on the forwarding

pathM .Path;{find the predecessor for backtracking}
14: KDFNS(P2, T , K, M); {recursive search}

TABLE I
PARAMETER VALUES OF HYBRIDNN FOR SIMULATION.

Parameter Meaning Value
∆ maximal size of the ring 8
∆+∆t threshold of the ring size for ring updates 10
β nearest search threshold 1
ρ inframetric parameter 3
|x| coordinate dimension 5
K size of sampled neighbors for neighbor discovery10
m number of neighbors for direct probes 4
τ number of non-empty rings 4

HybridNN except that it uses only and no direct probes when
determining the best next-hop neighbors. (3)DirectDN2S.
To evaluate HybridNN, we present a DNNS algorithm Di-
rectDN2S, which is identical with HybridNN except that it
only utilizes direct probes for finding next-hop best neighbors
without pruning neighbors based on coordinate distances as
HybridNN. (4) Meridian [13]. Meridian recursively forwards
the DNNS queries to a node that isβ times closer to the target
than the current node, and returns the found nearest neighbor
when no such node is selected. We configure the parameters
of Meridian algorithm identical with the original configuration
by Wong et al. [13], with the delay reduction thresholdβ as
0.5, the upper bound on the size of each ring as 10, and the
number of rings in the concentric ring is 20.

For HybridNN, the default configuration is summarized in
Table I. CoordNN and DirectDN2S share identical parameters
with HybridNN. We also evaluated the sensitivity of param-
eters for HybridNN, which is reasonably robust against the
parameter choices. The detailed sensitivity results of system
parameters for HybridNN can be found in the technique report
published online [36].

We have developed a discrete-time simulator for DNNS.
The simulator randomly chooses a set of nodes as service
nodes (by default 500) that can receive DNNS queries. Other
nodes in the system are clients that can issue DNNS queries
to these service nodes. For Host479, 200 nodes are the service

nodes. The DNNS queries are repeated 10,000 times. For each
DNNS query, we uniformly select one client as the target
machine, and a random service node receiving the query.
Besides, the simulation is repeated 5 times by shuffling the set
of service nodes to avoid biases in choosing service nodes. For
HybridNN, CoordNN, DirectDN2S and Meridian, the inter-
gossip events for neighborhood discovery are generated by an
exponential distribution with expected value of 1 second. The
inter-ring management events are generated by an exponential
distribution with expected value of 2 seconds. For HybridNN,
DirectDN2S and CoordNN, the time interval between two
oversampling events ofK closest neighbor search andK
farthest neighbor search are generated by an exponential
distribution with expected value of 60 seconds. The inter-
DNNS event generation follows an exponential distribution
with expected value of 60 seconds. For Vivaldi, the coordinate
of each node is updated for 1000 rounds, by uniformly
selecting a service node as the counterpart during each round.

The performance metrics for each DNNS query include: (1)
Absolute Error : defined as the absolute difference between
the estimated nearest neighborj and the real nearest neighbor
i to the targetT , i.e., djT − diT . (2) Relative Error : defined
as the ratio of the absolute error for the estimated nearest
neighborj to the delay between the real nearest neighbori
and the targetT , i.e., djT −diT

diT
. The absolute error quantifies

the increased delay values of the estimated nearest neighbors,
while the relative error measures the multiplicative ratios to the
optimal delay values for the estimated neighbors. Therefore,
large relative errors do not necessarily correspond to high
absolute errors. (3)Search Hop: defined as the number of
service nodes on the forwarding path minus one. Therefore,
if node A forwards a DNNS query to nodeB and nodeB
returns the nearest neighbor to the query host, the search hop
for the DNNS query is one.

B. Comparison

Absolute Error . Fig 10 shows the absolute errors of the
different algorithms. DirectDN2S achieves lowest absolute
errors except for the Host479 data sets. HybridNN is close
to DirectDN2S in terms of reducing absolute errors, however,
HybridNN is the most accurate on Host479 data sets. Next,
CoordNN is worse than both DirectDN2S and HybridNN.
The accuracy of DirectDN2S and HybridNN compared to Co-
ordNN indicates that utilizing direct probes greatly reduces the
inaccuracy of the estimation, while using coordinate distances
alone can lead to a bad local minima.

The inaccuracy of DirectDN2S compared to HybridNN on
the Host479 data set is rather counter-intuitive. The inaccuracy
of DirectDN2S may be caused by the asymmetry in the delay
data sets that misleads the greedy search into a local minima,
since DirectDN2S is more accurate than HybridNN on the
other three data sets that are all symmetric for pairwise delays.
On the other hand, HybridNN does not always choose the
neighbor closest to the target as the forwarding node, since
HybridNN also incorporates the approximated delay predic-
tions when choosing neighbors, which can help HybridNN
bypass the bad local minimum caused by the asymmetry in
the delay values.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

0 30 60 90 120 150
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Absolute Error (ms)

P
r(

X
>

x
)

Vivaldi
HybridNN
CoordNN
DirectDN2S
Meridian

DirectDN2S

(a) DNS1143.

0 30 60 90 120 150
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Absolute Error (ms)

P
r(

X
>

x
)

Vivaldi
HybridNN
CoordNN
DirectDN2S
Meridian

DirectDN2S

(b) DNS2500.

0 30 60 90 120 150
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Absolute Error (ms)

P
r(

X
 >

 x
)

 Vivaldi

HybridNN

CoordNN

DirectDN2S

Meridian

DirectDN2S,HybridNN

(c) DNS3997.

0 30 60 90 120 150
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Absolute Error (ms)

P
r(

X
 >

 x
)

Vivaldi

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

(d) Host479.

Fig. 10. The CCDFs of absolute errors.

Furthermore, Meridian shows greater absolute errors com-
pared to other algorithms including Vivaldi, which implies
that the coordinate distances are at least effective if usedit
in the centralized approach. We are aware that the superiority
of Vivaldi over Meridian in most cases are consistent with
the experiments independently performed by Choffnes and
Bustamante [42]. The main reasons for the less accuracy
of Meridian are the local minima caused by the TIV and
clustering in the delay space. On the other hand, Vivaldi can
adapt to TIV using adaptive coordinate movements.

Relative Error . Fig 11 shows the relative errors of DNNS
algorithms. The results are consistent with those of the ab-
solute errors. DirectDN2S achieves near-zero relative errors
for most DNNS queries on all data sets except Host479.
HybridNN and DirectDN2S have similar accuracy, while
HybridNN is more accurate than DirectDN2S on Host479.
Furthermore, CoordNN is less accurate than HybridNN, while
Meridian and Vivaldi are less accurate than DirectDN2S,
HybridNN and CoordNN.

Search hops. Next, we quantify the distributions of the
number of search hops for DNNS algorithms, as shown in
Fig 12. Recall that the search hops are equal to the lengths of
DNNS forwarding paths minus one.

We can see that the search hops of most DNNS queries
are rather modest for all DNNS algorithms. Meridian in about
80% of the cases has 2 search hops. While HybridNN and
DirectDN2S in over 80% of the cases have no more than 3.

Moreover, almost all searches for Meridian, HybridNN,
DirectDN2S are below 6 search hops. On the other hand,
CoordNN has longer search hops than Meridian, HybridNN
and the DirectDN2S; and a fraction of search hops even exceed
10 on all data sets.

C. Sensitivity of Parameters

In this section, we evaluate the robustness of HybirdNN to
the system size as well as the choices of system parameters.

0 5 10 15 20 25 30 35 40
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Relative Error

P
r(

X
>

x
)

Vivaldi
HybridNN
CoordNN
DirectDN2S
Meridian

DirectDN2S

(a) DNS1143.

0 5 10 15 20 25 30 35 40
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Relative Error

P
r(

X
>

x
)

Vivaldi
HybridNN
CoordNN
DirectDN2S
Meridian

DirectDN2S

(b) DNS2500.

0 5 10 15 20 25 30 35 40
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Relative Error

P
r(

X
 >

 x
)

Vivaldi
HybridNN
CoordNN
DirectDN2S
Meridian

DirectDN2S,HybridNN

(c) DNS3997.

0 5 10 15 20 25 30 35 40
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Relative Error

P
r(

X
 >

 x
)

Vivaldi

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

(d) Host479.

Fig. 11. The CCDFs of relative errors.

1 2 4 6 8 10 12 14 16 18 20
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Search Hops

P
r(

X
>

x
)

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

Meridian

CoordNN

DirectDN2S

(a) DNS1143.

1 2 4 6 8 10 12 14 16 18 20
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Search Hops

P
r(

X
>

x
)

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

Meridian

CoordNN

DirectDN2S

(b) DNS2500.

1 2 4 6 8 10 12 14 16 18 20
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Search Hops

P
r(

X
>

x
)

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

Meridian

CoordNN

DirectDN2S

(c) DNS3997.

1 2 4 6 8 10 12 14 16 18 20
 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

Search Hops

P
r(

X
>

x
)

HybridNN

CoordNN

DirectDN2S

Meridian

HybridNN

CoordNN

DirectDN2S

Meridian

(d) Host479.

Fig. 12. The CCDFs of search hops.

1) System SizeN : To evaluate the size of service machines
on the performance of HybridNN, we evaluate the performance
of HybridNN by increasing the size of service machines. We
select target machines randomly from all nodes, including
the clients and the service machines, as the size of clients
shrinks when increasing the percentage of service machines.
Fig. 13 shows the performance of HybridNN with increasing
the percentage of service nodes. HybridNN achieves similar
accuracy when the size of service nodes increase compared to
clients. Therefore, HybridNN is quite robust to the different
scales of systems. On the other hand, the query loads of
HybridNN increase slowly, for example, HybridNN nearly
double the loads when the percentage of service nodes reaches
1.

2) Inframetric ρ: Fig. 14 shows the accuracy and loads
as the increment of Inframetric parameterρ. The accuracy of
HybridNN is insensitive to choices ofρ. This is because for

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Percentage of Service Nodes

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Percentage of Service Nodes

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Percentage of Service Nodes

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Percentage of Service Nodes

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 13. Size of Service Nodes.

most delays, itsρ-edge metrics are quite lower. Therefore,
with lower ρ we can cover possible best next-hop neighbors
for DNNS queries. Furthermore, although largerρ increases
the size of possible next-hop candidate neighbors, the loads of
DNNS queries of HybridNN keep stable for differentρ, due
to that we use nearly constant-sized next-hop nodes. Besides,
we can see the standard deviations of errors are quite low for
most data sets.

2 2.5 3 3.5 4
0

2

4

6

8

10

 Inframetric rho

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

2 2.5 3 3.5 4
0

2

4

6

8

10

 Inframetric rho

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

2 2.5 3 3.5 4
0

2

4

6

8

10

 Inframetric rho

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

2 2.5 3 3.5 4
0

2

4

6

8

10

 Inframetric rho

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 14. Inframetricρ.

3) Non-Empty Thresholdτ : Fig. 15 shows the accuracy and
loads as the increment of Non-empty thresholds for pruning
candidate neighbors for next-hop nodes. As the increment of
non-empty thresholds for pruning candidate neighbors that
have too few rings containing nodes, the standard deviation
of HybridNN is reduced before the threshold reaches 4, then
increases after the threshold is over 4, and the median errors
are increased when the non-empty threshold exceed 8. Besides,
the loads are reduced when the non-empty thresholds increase.
Therefore, selecting modest-sized non-empty thresholds (e.g.,

4) can keep accuracy and reduce loads.

2 4 6 8 10
0

2

4

6

8

10

 Non−Empty Threshold

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS2500.

2 4 6 8 10
0

2

4

6

8

10

 Non−Empty Threshold

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS1143.

2 4 6 8 10
0

2

4

6

8

10

 Non−Empty Threshold

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

2 4 6 8 10
0

2

4

6

8

10

 Non−Empty Threshold

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 15. Non-Empty Threshold.

4) Coordinate Dimension|x|: Fig. 16 illustrates the ac-
curacy and loads when the coordinate dimension changes.
HybridNN achieves similar accuracy and loads as the accuracy
of coordinates keeps stably accurate as the dimension is over
3. Therefore, HybridNN can adapt to inaccuracy of different
dimensions of coordinates without increasing DNNS query
loads efficiently.

2 4 6 8 10 12
0

2

4

6

8

10

Dimension

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

2 4 6 8 10 12
0

2

4

6

8

10

Dimension

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

2 4 6 8 10 12
0

2

4

6

8

10

Dimension

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

2 4 6 8 10
0

2

4

6

8

10

Dimension

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 16. Coordinate Dimension.

5) Nodes Per Ring∆: Fig. 17 describes the performance
of HybridNN with increasing upper bounds of nodes per ring.
HybridNN achieves high accuracy event the size of one ring
is as small as 5. This is because HybridNN selects neighbors
from broader range[0, ρd], whered is the delay from current
node to targets. Besides, the loads of HybridNN grow slowly
as the size of ring increases. As HybridNN utilizes coordinate
distances to select limited number of candidate neighbor.

6) OverSampled nearest and farthest nodesK: Fig. 18
illustrates the performance of HybridNN as the variation

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

3 5 7 9 10 12 14 16
0

2

4

6

8

10

Nodes Per Ring

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

3 5 7 9 10 12 14 16
0

2

4

6

8

10

Nodes Per Ring

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

3 5 7 9 10 12 14 16
0

2

4

6

8

10

Nodes Per Ring

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

3 5 7 9 11
0

2

4

6

8

10

Nodes Per Ring

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 17. Nodes Per Ring.

of oversampled number of nearest and farthest nodesK.
HybridNN achieves similar accuracy and loads when the over-
sampled sizeK of nearest neighbors and farthest neighbors.
This is because we periodically start the oversampled process,
which can find many nearby or far-away nodes accumulatively.

2 6 10 14 30 34 38 42
0

2

4

6

8

10

Oversampled K

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

2 6 10 14 30 34 38 42
0

2

4

6

8

10

Oversampled K

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

2 6 10 14 30 34 38 42
0

2

4

6

8

10

Oversampled K

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

2 6 10 14 18
0

2

4

6

8

10

Oversampled K

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 18. Over-sampled number of neighbors.

7) Returned Nodes For Next-Hop Probem: Fig. 19 plots
the median errors and loads of HybridNN with increasing
returned nodes for next-hop probes for HybridNN. For all data
sets, HybridNN is accurate when the size of estimated nearest
candidate neighbors for direct probes exceeds 2. Moreover,
the loads of HybridNN increase slowly as the increment of
relaxed probes. This is because we also add neighbors with
higher uncertain coordinates, weakening the increased over-
head of relaxed probes. Besides, the search process typically
terminates at 3 to 5 hops as we found during experiments,
therefore the measurement overhead is mostly bounded below
3 KB.

2 4 6 8 10
0

2

4

6

8

10

Returned Nodes For Probe

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(a) DNS1143.

2 4 6 8 10
0

2

4

6

8

10

Returned Nodes For Probe

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(b) DNS2500.

2 4 6 8 10
0

2

4

6

8

10

Returned Nodes For Probe

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(c) DNS3997.

2 4 6 8 10
0

2

4

6

8

10

Returned Nodes For Probe

M
e

d
ia

n
 E

rr
o

r
(m

s
)

0

2

4

6

L
o

a
d

 (
K

B
)

Accuracy

Loads

(d) Host479.

Fig. 19. Returned Nodes For Next-Hop Probes.

X. PLANETLAB EXPERIMENTS

We have implemented a prototype DNNS query system
in Java using the asynchronous communication library. We
implemented both HybridNN and Meridian. The core DNNS
logic consists of around 5,000 lines of codes comprising three
main modules: (1) prober module, which uses the kernel-level
ping for delay measurements, to allievate application level
perturbations caused by high loads of PlanetLab nodes; (2)
neighborhood management module, which finds and maintains
neighbors on the concentric rings; (3) DNNS module, which
utilizes the HybridNN or Meridian algorithm.

Our objective is to compare the accuracy and efficiency of
DNNS queries with related nearest server location methods
using real-world deployments. To that end, we choose 173
servers distributed globally on the PlanetLab as the service
nodes. Then we select another 412 servers on the PlanetLab
as the target machines. Our experiments last one week from
05-05-2011 to 12-05-2011.

We compare HybridNN with Meridian and iPlane [33]. We
choose the same parameter configurations for HybridNN and
Meridian as in the Simulation section (Sec IX-A). For iPlane,
we query iPlane to obtain the delays between service nodes
and target machines, then we compute the nearest service node
for each target machine.

Besides, in order to compare the found nearest servers to
the ground-truth nearest servers, we compute the ground-truth
nearest servers using direct probes (denoted asDirect). Specif-
ically, since pairwise delays between PlanetLab machines keep
varying due to routing dynamics, we first use the median delay
of any node pairs to summarize the long-term delay trend.
Then we select the service node that has the lowest median
delay value to the target.

A. Accuracy

First we compare the accuracy of different methods with
the absolute error metric and the relative error metric defined
in Sec IX-A. The results are shown in Fig 20(a) and (b).

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

HybridNN has significantly lower absolute errors and relative
errors than Meridian. iPlane is similar with HybridNN, but
incurs higher errors. The inaccuracy of iPlane is caused by
the mismatch of the estimated routing paths and the real-world
ones. The inaccuracy of Meridian shows that Meridian is easily
trapped at local minimum far away from the optimal solutions.

On the other hand, HybridNN and iPlane are much accurate,
which implies that hybridNN can avoid bad local minima
in most cases. Nevertheless, HybridNN and iPlane also have
around 3% of DNNS queries with relative errors above 10.
we find that HybridNN incurs such high errors occur at the
early stage, where nodes do not have enough neighbors in their
concentric rings.

B. Completion Time

Next, we evaluate the completion time of individual DNNS
queries for HybridNN and Meridian. Empirically, we have
found that both HybridNN and Meridian complete DNNS
queries within three search hops, which is consistent with the
simulation results in Fig 12. However, the overall query time
for DNNS searches depends on not only the number of search
hops, but also the completion time of message exchanges and
delay probes.

Fig 20(d) plots the distributions of query time of HybridNN
and Meridian. Around 85% of the DNNS queries in HybridNN
are similar with those of Meridian. Therefore, query time for
HybridNN and Meridian are similar in most cases. However,
around 20% of the queries take much large time to answer in
Meridian, and 10% have query time larger than 15 seconds,
while the hybrid measurement approach of HybridNN can
avoid large query latencies.

C. Query Overhead

Next, to quantify the bandwidth overhead of the DNNS
queries of HybridNN and Meridian, we define the load of
a DNNS query as the total size of the transmitted packets
during the DNNS process. We plot the CDFs of the loads for
HybridNN and Meridian in Fig 20(d). The load of HybridNN
is significantly lower than that of Meridian. In more than 95%
of the cases the load of HybridNN is less than 2KBytes,
while in more than 50% of the cases the load of Meridian
is more than 10 KBytes, which is due to the large size
of the candidate neighbor set for DNNS queries. Therefore,
the delay estimation of HybridNN substantially reduces the
measurement overhead.

D. Control Overhead

To measure the efficiency of HybridNN and Meridian.
We collected the bandwidth overhead of the neighborhood
management in HybridNN and Meridian for each service node
every two minutes, as shown in Fig 20(e). The maintenance
overhead of Meridian includes both the gossip process and the
ring maintenance costs, while the maintenance of HybridNN
includes the gossip messages,K nearest neighbor search
messages and theK farthest neighbor search messages. The
average maintenance overhead of HybridNN is 2 KBytes per

minute, and for Meridian is over 20 KBytes per minute. Since
the time interval of ring maintenance for both HybridNN and
Meridian is identical, the all-pair probes between nodes in
the same ring is the main cause of the control overhead in
Meridian. On the other hand, as HybridNN uses the coordinate
distances to update the rings, it does not need to do all-pair
probes between nodes in a ring.

XI. CONCLUSION AND FUTURE WORK

We have addressed the problem of designing an accurate and
efficient DNNS algorithm in a comprehensive way. We first
formulate the DNNS problem to account for both symmetric
and asymmetric delay metrics for latency optimizations. Given
the generalized delay metrics, we proposed to use the relaxed
inframetric for modelling the delay space as a foundation
for designing new DNNS algorithms with strong theoretical
guarantees concerning search overhead and accuracy of the
search results.

Next we apply all the insights gained to design a new DNNS
algorithm called HybrirdNN. HybridNN locates nearest neigh-
bors for any target using low bandwidth costs. For locating
closer server to any target, HybridNN maximizes the diversity
in the neighbor set, by discovering neighbors within each
delay range through a light-weight neighbor sampling process.
Next, in order to reduce the measurement costs of locating
closer servers, HybridNN combines network coordinate based
delay estimation and direct probes for fast and efficient nearest
neighbor determination. Although the symmetric coordinate
distances may deviate from the asymmetric delays, HybridNN
is able to locate the nearest neighbor to the target at each
search step, since we use direct probes to replace erroneous
delay estimations. Finally, HybridNN terminates the search
process conservatively in order to obtain better approxima-
tions of nearest neighbors. We confirmed the efficiency and
effectiveness of HybridNN with extensive simulation and a
prototype deployment on the PlanetLab. HybridNN can locate
approximately closest neighbors quickly with low measure-
ment costs.

As future work, we plan to continue two lines of research.
First, currently we use the revised Vivaldi to estimate delays,
which mismatches the asymmetric delay metric due to the
symmetry of the coordinate distances. We plan to extend
Vivaldi to asymmetric delay metrics. Second, we plan to
study in-advance DNNS probing in order to hide the waiting
time of on-demand DNNS queries for more practical latency-
optimizations.

REFERENCES

[1] R. Rodrigues and P. Druschel, “Peer-to-Peer Systems,”Commun. ACM,
vol. 53, no. 10, pp. 72–82, 2010.

[2] Microsoft, “Office Live Workspace,”
http://workspace.officelive.com/zh-hk/, January 2011.

[3] Google, “Google Maps,” http://maps.google.com/, January 2011.
[4] F. Agboma and A. Liotta, “QoE-aware QoS Management,” inProc. of

MoMM ’08, 2008, pp. 111–116.
[5] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and P. Patel,“The Cost

of a Cloud: Research Problems in Data Center Networks,”Computer
Communication Review, vol. 39, no. 1, pp. 68–73, 2009.

[6] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A.Krishnamurthy,
T. E. Anderson, and J. Gao, “Moving Beyond End-to-End Path Informa-
tion to Optimize CDN performance,” inProc. of IMC’09, pp. 190–201.

http://workspace.officelive.com/zh-hk/
http://maps.google.com/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Error (ms)

P
r(

X
>

x
)

HybridNN

Meridian

iPlane

(a) Absolute Error.

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Relative Error

P
r(

X
>

x
)

HybridNN

Meridian

iPlane

(b) Relative Error.

0 5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Query Time (Sec)

C
D

F

Meridian

HybridNN

(c) Query time.

0 5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Load (KB)

C
D

F

Meridian

HybridNN

(d) Query load.

0 120 240 360 480 600
0

20

40

60

Time (Min)

C
o
s
ts

 (
K

B
)

Meridian

HybridNN

(e) Control overhead.

Fig. 20. Performance comparison on the PlanetLab.

[7] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind Akamai (travelocity-based detouring),”in Proc. of
SIGCOMM’06.

[8] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” inProc. of NSDI’04, pp. 18–18.

[9] M. J. Freedman, K. Lakshminarayanan, and D. Mazières, “OASIS:
Anycast for Any Service,” inProc. of NSDI’06.

[10] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “DONAR:
Decentralized Server Selection for Cloud Services,” inProc. of SIG-
COMM’10, pp. 231–242.

[11] J. D. Guyton, J. D. Guyton, and M. F. Schwartz, “LocatingNearby
Copies of Replicated Internet Servers,” inProc. of SIGCOMM ’95, pp.
288–298.

[12] M. Costa, M. Castro, A. I. T. Rowstron, and P. B. Key, “PIC: Practical
Internet Coordinates for Distance Estimation,” inProc. of ICDCS’04,
pp. 178–187.

[13] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a Lightweight
Network Location Service Without Virtual Coordinates,” inProc. of
SIGCOMM’05, pp. 85–96.

[14] V. Vishnumurthy and P. Francis, “On the Difficulty of Finding the
Nearest Peer in P2P Systems,” inProc. of IMC’08, pp. 9–14.

[15] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee,“Triangle
Inequality Variations in the Internet,” inProc. of IMC ’09, pp. 177–183.

[16] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao, “A
measurement study of internet delay asymmetry,” inProc. of PAM’08,
pp. 182–191.

[17] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and
M. Zekauskas, “A One-way Active Measurement Protocol
(OWAMP),” RFC 4656 (Proposed Standard), 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4656.txt

[18] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. van Wesep, T. E. Anderson, and A. Krishnamurthy, “Reversetracer-
oute,” in Proc. of NSDI’10, pp. 219–234.

[19] V. Paxson, “End-to-end internet packet dynamics,” inProc. of SIG-
COMM ’97, 1997, pp. 139–152.

[20] G. Wang, B. Zhang, and T. S. E. Ng, “Towards Network Triangle
Inequality Violation Aware Distributed Systems,” inProc. of IMC’07,
pp. 175–188.

[21] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris, “Vivaldi: a Decen-
tralized Network Coordinate System,” inProc. of SIGCOMM’04, pp.
15–26.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-
aware Overlay Construction and Server Selection,” inProc. of INFO-
COM’02, pp. 1190 – 1199 vol.3.

[23] M. Waldvogel and R. Rinaldi, “Efficient Topology-AwareOverlay
Network,” in Proc. of Hotnets-I, 2002.

[24] G. R. Hjaltason and H. Samet, “Index-driven SimilaritySearch in Metric
Spaces (Survey Article),”ACM Trans. Database Syst., vol. 28, pp. 517–
580, 2003.

[25] K. L. Clarkson, “Nearest-Neighbor Searching and Metric Space Dimen-
sions,” in Nearest-Neighbor Methods for Learning and Vision: Theory
and Practice, G. Shakhnarovich, T. Darrell, and P. Indyk, Eds. MIT
Press, 2006, pp. 15–59.

[26] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n, “Searching
in Metric Spaces,”ACM Comput. Surv., vol. 33, pp. 273–321, 2001.

[27] P. Indyk. (2004) Nearest Neighbors In
High-Dimensional Spaces. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.3826

[28] S. M. Hotz, “Routing information organization to support scalable
interdomain routing with heterogeneous path requirements,” PhD Thesis,
Computer Science Department, University of Southern California, Los
Angeles, California, 1994.

[29] R. L. Carter and M. E. Crovella, “Server selection usingdynamic path
characterization in wide-area networks,” inProc. of INFOCOM ’97, pp.
1014–.

[30] ——, “On the network impact of dynamic server selection,” Computer
Networks, vol. 31, no. 23-24, pp. 2529 – 2558, 1999.

[31] P. Sharma, Z. Xu, S. Banerjee, and S.-J. Lee, “Estimating network
proximity and latency,”Computer Communication Review, vol. 36, no. 3,
pp. 39–50, 2006.

[32] A.-J. Su, D. Choffnes, F. E. Bustamante, and A. Kuzmanovic, “Relative
network positioning via cdn redirections,” inProc. of ICDCS ’08, pp.
377–386.

[33] H. V. Madhyastha, E. Katz-Bassett, T. E. Anderson, A. Krishnamurthy,
and A. Venkataramani, “iPlane Nano: Path Prediction for Peer-to-Peer
Applications,” in Proc. of NSDI’09, pp. 137–152.

[34] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. E. Anderson,
A. Krishnamurthy, and A. Venkataramani, “iPlane: An Information Plane
for Distributed Services,” inProc. of OSDI’06, pp. 367–380.

[35] S. Banerjee, C. Kommareddy, and B. Bhattacharjee, “Scalable Peer
Finding on the Internet,” inProc. of Global Internet Symposium 2002.

[36] Y. Fu, Y. Wang, and E. Biersack, “HybridNN: Supporting Network
Location Service on Generalized Delay Metrics for Latency Sensitive
Applications,” Eurecom, Technical Report 1, January 2011.

[37] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel, and G. Wang,
“Measurement-based analysis, modeling, and synthesis of the internet
delay space,”IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 229–242,
2010.

[38] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating Latency
Between Arbitrary Internet End Hosts,” inProc. of IMW ’02, pp. 5–18.

[39] D. R. Choffnes, M. Sanchez, and F. E. Bustamante, “Network Position-
ing from the Edge - An Empirical Study of the Effectiveness ofNetwork
Positioning in P2P Systems,” inProc. of INFOCOM’10, pp. 291–295.

[40] P2PSim, “The P2PSim Project,” http:/pdos.csail.mit.edu/p2psim/kingdata/.,
October 2010.

[41] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker,“On routing
asymmetry in the internet,” inProc. of GLOBECOM ’05.

[42] D. R. Choffnes and F. E. Bustamante, “Pitfalls for testbed evaluations
of internet systems,”SIGCOMM Comput. Commun. Rev., vol. 40, pp.
43–50, April 2010.

[43] P. Fraigniaud, E. Lebhar, and L. Viennot, “The Inframetric Model for
the Internet,” inProc. of INFOCOM’08, pp. 1085–1093.

[44] D. R. Karger and M. Ruhl, “Finding Nearest Neighbors in Growth-
restricted Metrics,” inProc. of STOC ’02, 2002, pp. 741–750.

[45] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network Coordinates in the
Wild,” in Proc. of NSDI’07.

[46] Y. Zhang and N. G. Duffield, “On the Constancy of InternetPath
Properties,” inProc. of IMW’01, pp. 197–211.

APPENDIX

Lemma VI.1: Given aρ-inframetric with growthγg ≥ 1,
for any x ≥ ρ, r > 0 and any nodeP , the volume of a ball
BP (r) is at mostxα smaller than that of the ballBP (xr),
wherelogργg ≤ α ≤ 2logργg.

Proof: First, according to the definition of the growth, it
follows:

|BP (xr)| ≤ γg

∣

∣

∣

∣

BP

(

x

ρ
r

)∣

∣

∣

∣

http://www.ietf.org/rfc/rfc4656.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.3826
http:/pdos.csail.mit.edu/p2psim/kingdata/.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

Then, by recursively calling
⌈

logρx
⌉

times the growth defini-
tion, until x

ρ⌈logρx⌉ < 1, then

|BP (xr)| ≤ γg
⌈logρx⌉ |BP (r)| = xlogxγg

⌈logρx⌉
|BP (r)|

= xα |BP (r)| , α = logxγg ×
⌈

logρx
⌉

Therefore, by the definition of the ceiling function, we can
calculate the lower bound ofα as:

α ≥ logxγg × logρx = logργg

On the other hand, due tox ≥ ρ, γg > 1, we get

logργg =
log γg
log ρ

≥
log γg
log x

= logxγg

thus we can compute the upper bound ofα as:

α ≤ logxγg ×
(

logρx+ 1
)

= logργg + logxγg
≤ logργg + logργg
= 2logργg

this concludes the proof.
Lemma VI.2: (Sandwich lemma) For any pair of nodep and

q, anddpq ≤ r, then

Bq (r) ⊆ Bp (ρr) ⊆ Bq

(

ρ2r
)

Proof: (1)For any nodei satisfying dqi ≤ r, i.e.,
i ∈ Bq (r), by the definition of the inframetric model,
dpi ≤ ρmax {dpq, dqi} ≤ ρr,thusi ∈ Bp (ρr), that is,

Bq (r) ⊆ Bp (ρr)

(2) For any nodej satisfyingj ∈ Bp (ρr), by the definition
of the inframetric model, it follows

dqj ≤ ρ {dpq, dpj} ≤ ρ2r

Summing up (1) and (2) conclude the proof.
Theorem VI.3: (Sampling efficiency in the growth dimen-

sion) For aρ-inframetric model with growthγg ≥ 1, for a ser-
vice nodeP , and a DNNS targetT satisfyingdPT ≤ r, when

selecting3
(

ρ2

β

)α

nodes uniformly at random fromBP (ρr)

with replacement, with probability of at least 95%, one of
these nodes will lie inBT (βr), wherelogργg ≤ α ≤ 2logργg
and β < 1.

Proof: since BT (βr) ⊂ BT (r) ⊆ BP (ρr) by the
sandwich lemma VI.2, all nodes covered byBT (βr) are
also covered byBP (ρr). Therefore, we only need to sample
enough nodes inBP (ρr) in order to sample a node located
in BT (βr).

Furthermore, for the pair of nodesP and T satisfying
dPT ≤ r, it follows

|BP (ρr)| ≤
∣

∣BT

(

ρ2r
)∣

∣ =

∣

∣

∣

∣

BT

(

ρ2

β
βr

)∣

∣

∣

∣

Since we knowρ > 1, then ρ2

β
> ρ2 > ρ, therefore the

preconditions of lemma VI.1 hold, by lemma VI.1, we can

show the relation between the ballBP (ρr) and the ball
BT (βr) whereβ < 1,

|BP (ρr)| ≤

∣

∣

∣

∣

BT

(

ρ2

β
βr

)∣

∣

∣

∣

≤

(

ρ2

β

)α

|BT (βr)|

where logργg ≤ α ≤ 2logργg. Therefore, the probability of
uniformly sampling a node fromBP (ρr) which lies in the
ball BT (βr) is:

|BT (βr)|

|BP (ρr)|
≥

|BT (βr)|
(

ρ2

β

)α

|BT (βr)|
=

1
(

ρ2

β

)α

Consequently, the probability that3
(

ρ2

β

)α

samples are not in

the ballBT (βr) is at most



1−
1

(

ρ2

β

)α





3

(

ρ2

β

)α

≤

(

1

e

)3

≤ 0.05

Thus, with probability more than 95% we succeed in locating

a node lying in the ballBT (βr) with 3
(

ρ2

β

)α

samples.

Corollary A.1. For a relaxed inframetric model with growth
γg, according to the DNNS process in Definition VI.4, the
found nearest neighbor is a1

β
-approximation, and the number

of search steps is smaller thanlog 1
β
∆, where∆ is the ratio

of the maximum delay to the minimum delay of all pairwise
delays.

Proof: If a DNNS request is forwarded from nodeP to
nodeQ, the progress is said to bedPT

dQT
. According to the

DNNS search process, by Theorem VI.3, the progress is at
least 1

β
at every nodeP , therefore in at mostlog 1

β
∆ steps, we

reach some nodev satisfyingdvT < 1
β
d∗, which terminates

the DNNS query process as we can not find suitable next-
hop neighbors, whered∗ is the minimum delay to targetT .
Therefore, the found nearest neighborv is 1

β
-approximation.

	I Introduction
	II System Model
	II-A Problem Definition
	II-B Key DNNS Requirements
	II-C Discussion

	III Related Work
	III-A Centralized Approaches
	III-B Distributed Approaches

	IV Data Sets
	V A Generalized Delay Model for the Delay Space
	V-A Definition
	V-B Dimensions on the Relaxed Inframetric Model

	VI Efficient DNNS on the Relaxed Inframetric Model
	VI-A Sampling Conditions to Locate Closer Nodes To Targets
	VI-B DNNS on the Inframetric Model
	VI-C Limitations of Theoretical Results
	VI-D Comparison with Previous Inframetric Study

	VII Realizing a Practical DNNS
	VII-A Overcoming Limitations of the Simple DNNS Method
	VII-A1 Reduce Measurement Costs
	VII-A2 Sample Enough Neighbors For Continuing DNNS Query

	VII-B Our Design
	VII-C Neighbor Maintenance
	VII-C1 Organize Neighbors Into Rings for Proximity Selection
	VII-C2 Biased Sampling based Neighbor Discovery
	VII-C3 Replacing Suboptimal Neighbors Without Probes

	VII-D Select Candidate Neighbors
	VII-E Coordinate Maintenance for Targets
	VII-F Determine Closest Neighbor
	VII-G Termination Test

	VIII Extensions to HybridNN
	VIII-A K Distributed Nearest Neighbor Search
	VIII-B K Distributed Farthest Neighbor Search

	IX Simulation
	IX-A Experimental Setup
	IX-B Comparison
	IX-C Sensitivity of Parameters
	IX-C1 System Size N
	IX-C2 Inframetric
	IX-C3 Non-Empty Threshold
	IX-C4 Coordinate Dimension |x|
	IX-C5 Nodes Per Ring
	IX-C6 OverSampled nearest and farthest nodes K
	IX-C7 Returned Nodes For Next-Hop Probe m

	X PlanetLab Experiments
	X-A Accuracy
	X-B Completion Time
	X-C Query Overhead
	X-D Control Overhead

	XI Conclusion and Future Work
	References
	Appendix

