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HybridNN: Supporting Network Location Service
on Generalized Delay Metrics
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Abstract—Distributed Nearest Neighbor Search (DNNS) lo- :,E B
cates service nodes that have shortest interactive delaywards
requesting hosts. DNNS provides an important service for lae-
scale latency sensitive networked applications, such as My 100 ms
online network games, or interactive network services on th
cloud. Existing work assumes the delay to be symmetric, whit
does not generalize to applications that are sensitive to eaway 200ms
delays, such as the multimedia video delivery from the serve = 250ms
to the hosts. We propose a relaxed inframetric model for the A
network delay space that does not assume the triangle ineqlity , )
and delay symmetry to hold. We prove that the DNNS requests F9: 1. lllustrating the RTT and OWDs. Suppoeand C' are two servers
can be completed efficiently if the delay space exhibits mode that are able to supply short videos to hektIf we use the RTT metric to

inf ic di . hich b iricallv.Fi minimize the delay of video delivery, we may arbitrarily cse any of them
inframetric dimensions, which we can observe empirically.Fi-  , seng videos to host based on the RTT metric, since the RTT betwegn

nally, we propose a DNNS method named HybridNN Kiybrid g and that betweem, C' are all 300 ms. However, since the video files are
Nearest Neighbor search) based on the inframetric model for transmitted from servers to hosts, the OWDs from serversotishbecome
fast and accurate DNNS. For DNNS requests, HybridNN chooses more important[[16]. We can see that the OWD from sergeto host A
closest neighbors accurately via the inframetric modellig, and is four times less than that from servér to host A. Therefore, choosing
scalably by combining delay predictions with direct probesto a  serverC to serve hostA significantly minimizes the content transmission
pruned set of neighbors. Simulation results show that HybriiNN delay for_hqstA, which is feasible only when we use the OWD metric for
locates nearly optimally the nearest neighbor. Experimers on delay optimizations.

PlanetLab show that HybridNN can provide accurate nearest
neighbors that are close to optimal with modest query overhad
and maintenance traffic.

[ETI

50ms

First, selecting nearest servers must prove to be reliable,
since service providers need to ensure the QOoE fairly for all
|. INTRODUCTION hosts Selecting nearest servers using proximity coordinates
H,]] [12] or geographic distances [9] suffer from the misoha
IPTV [1], interactive network services on the cloud (e_g_,etween the estimated delays and real-world delays [6)chwhi

Office Live Workspace[2], Google Maps! [3]), online networl(n""kesh thz seliactlpn accuracty hard to pe p(;(_ac:|§:éectgmcr)$n the
games, need to transmit data from geo-distributed serv&tgir anM, s_(e;_ec |r[1]ggnear((a)sA§|ecrve9rs u5|r_1§1 IS rr]' Ut fh
(called a service node) in real-time to many hosts quickighH such as MeridianL13] or <19] avoid such mismatc

transmission delays reduce the Quality of Experience (Qog’(zjblent}? tjsmg d|reﬁt probe?,h buttr:nay term|tnate at §erV|<:terz]
of users|([4], which lead to significant business lossés [6t. phodes that are much worse than the nearest ones, since the

instance, Google reports that its revenue decreases by f]‘?ﬁmh ('jS_F?-S”yltl’al.pped "?':O LC/{CFIJ"tm'”'m_?_I(\j/ue”tg the clqnier
when the latency of showing search results increases by and Triangle Inequality Violations (TIVLI15] propee

U
ms; similarly, Amazon claims that its sales amount decreas

Latency-sensitive applications, such as P2P based \VoIP

the delay space.

by 1% if the page-response latency increases by 100 ms [5].Second,selecting nearest servers must be aware of uni-
Since there are hundreds or thousands of service nodes fHggctional delays whenever possibi8ince routing on the

provide identical services to hosts, there is an increagirgp Intérnet is asymmetric [16], the delays from servers to s10st
for service providers to route real-time data to a host freo-g My deviate those in the reverse direction in several times.
distributed servers that are nearest to that host. For deamfurthermore, One-Way Delay (OWD) measurements become
Google routes users’ search queries to geographical-medmre"’_‘s'”g'y practical due to the advance of measurement
servers[[6]; Akamai redirects hosts’ content requestsptice  techniques such as OWAMP [17] or Reverse Tracerqute [18].
servers mainly based on proximity conditions [7]; CoralCDIjlowever, delay optimizations using Round Trip Time (RTT)
[8] uses OASIS[[9] and DONAR[10] to select proxy serverignores such delay asymmetry. For multimedia streaming,
near to end hosts based on geographic distances. Howe@BPplication-level multicast, or more generalized appias

selecting nearest servers to hosts are still far from stand¥/here data flows in one directions, such agnostics of unidi-
due to several challenges. rectional delays degrades the effectiveness of selectedrse
as shown in Fig11.
Yongqu_an Fu and Yijie Wang are with National Key Lat_)oratquFPgrallel Third, selecting nearest servers must find gOOd tradeoff
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Defense Technology. between the response time and timelinddse response time
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probing such as Meridian_[13] or OASISI[9]. However, the  are only approximations of real-world delays, HybridNN
response time degrades the QOE of users in latency-sensitiv  also uses a small number of delay probes to avoid being
applications, such as online workspace, online music. GASI  misled by inaccurate delay predictions. Interestingly, al
caches nearest servers for each IP prefix using in-advance though the network coordinate distances are symmetric,
probes once a week, which has better response time. However, we empirically find that our hybrid delay measurement
the cached server selections tend be suboptimal, since the approach provides the accurate nearest next-hop neighbor
delays vary due to routing dynamics or server workloads,[19]  for both symmetric and asymmetric delay data sets. This
and service nodes may be added or removed dynamically. is because we replace inaccurate coordinate distances
Therefore, it is difficult to find good tradeoff between respe with direct probes using the error indicator of Vivaldi
time and the timeliness of server selections. coordinate, which relieves the mismatch between sym-
The goal of this paper is to provide new algorithms to ad- metric coordinate distances and asymmetric delays.

dress the first two challenges. To this end, we develop a gener Third, we validate our algorithm using real-world delayalat
enough delay model that captures the major statistics of thé&ts and PlanetLab deployments. Through simulation study,
delay space, including: TIV, delay dynamics and asymmetiye show that HybridNN finds servers close to optimal for
of delays. This papers makes three contributions. symmetric and asymmetric delay data sets. In fact, in more
First, we analytically demonstrate that we can find approtan 95% of cases, HybridNN locates the ground-truth neares
imately nearest servers quickly by iteratively searchiluger servers for the targets. Furthermore, most queries teteina
nodes to the host using sampled nodes from proximity regioaithin four search hops, which implies that HybridNN can
of each node. However, the analytical method requires @ laigturn the search results fast. Using PlanetLab deploysnent
number of samples, which does not scale well. we confirm that HybridNN can locate accurate nearest servers
Second, we introduce a novel distributed algorithm, namedth low query loads and control overhead, with moderate
HybridNN, that finds nearest service nodes for any machigeery time that improves Meridian in more than 15% of cases.
on the Internet (called a target). This algorithm derivesir
our analytical method, which preserves the accuracy and Il. SYSTEM MODEL
speediness of the analytical method. However, HybridNN hgs
better dynamic adaptation and reduced measurement costs.”
(i) Dynamic adaptation. A practical DNNS algorithm needs N this section, we formally define the nearest server locati
to proactively maintain moderate service nodes as sampRégblem. LetV’ denote a set of service nodes and hosts. Let a
for DNNS queries, irrespective of the system dynamics. Hglistance functioni denote the pairwise delays between node
bridNN dynamically maintains such neighbors using a coR&irs inV. Let N be the number of service nodes.
centric ring used in Meridiani [13] or OASI$|[9]. However, Our objective is to minimize the serving delays of latency-

HybridNN has two improvements: sensitive applications by finding a service node for a retijugs

. .. host with the minimum delay. As discussed in the previous
o The maximum number of nodes stored per ring is de- " . ] S .
. . . . Section, we expect a generalized delay optimization sg@nar
rived from the lower bounds of required samples in the . . :
where the delay may be symmetric or asymmetric according

analytical methqd, which implies that HybridNN reauir®®s the problem context and measurement tools. Furthermore,
the lowest possible number of samples that has the Sa{ﬂ% service nodes may be added or removed, which causes
accuracy guarantee as the analytical method. '

HvbridNN proboses a biased sampling based concents%Stem churns. As a result, we need to locate the service node
« Ty brop pling {Mat is closest to the target from dynamic service nodes.

ring maintenance scheme, in order to sample enoug o : L
) o . . e study a distributed approach to realize our objective,
nodes for each ring. Specifically, different from previous. ;
) ; . . ince the centralized approach has several well-known weak
neighbor discoveries based on a gossip protocol, we also . T .
2 ) nesses, including: it requires global delay measureméats t
periodically discover a small number of nearest nodes . : . S ;
. . IS hard to obtain for dynamic service nodes; it incurs thglsin
and farthest nodes to each node as neighbors in the

o - . . ._point of failures. On the other hand, the distributed apphoa
concentric ring. This is because given a concentric rin

. . . voids such weaknesses through collaborations of service
the innermost and outermost rings contain only a few o o

i . . odes. Specifically, we formulate thBistributed Nearest
neighbors compared to other rings, which are hard

to be sampled using a gossip based neighbor discover;e/Ighbor Search(DNNS) as:

Problem Definition

protocol. Definition 11.1. (Distributed Nearest Neighbor Search): For
(i) Reducing measurement costsHybridNN adopts scalable @ Set of dynamic service nodes, given any tarfjeon the

e%earch is to find one service node that has the smallest delay

¢ Hybru_jNN ma|nta|n§ the conce.n.tnc rings using est!mat.to T, based on the distributed collaboration of service nodes.
pairwise delays with the revision [20] of the Vivaldi

network coordinate [21], which significantly reduces the
maintenance overhead of HybridNN compared to Merid- The definition of DNNS is not novel, since existing research
ian. on closest server discovery [22], 123], [12], [13]] [9]. |1®as

« HybridNN selects candidate neighbors that are close fiormulated the similar problem. Intuitively, DNNS consisif
the target using delay predictions. Since delay predistiomultiple steps. At each step, a current service nBdeies to
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We do not study how to organize cache results in this paper;
instead, we assume that a DNNS caching service exists to map
hosts’ requests to nearest servers using cached DNNS guerie
Our focus is to realize an accurate, scalable and resilient
DNNS system with low DNNS query periods. Since if the
DNNS query last long periods, then crawling DNNS for every
IP prefix will be less efficient.

IIl. RELATED WORK

Network service

Online game Google Maps Volp IPTV First, for the theoretical computer science field, research
on the nearest neighbor search mainly focuses on designing
Fig. 2. A DNNS query service substrate for network services. efficient algorithms in the metric space [24], [25], [26].7]2

However, applying algorithms in the metric space into DNNS
) ) is inappropriate, since the delay space violates the tigang
locate a new service node that is closer to the talg#han inequality that is required by the metric space mofdel [20].
node P. The flowchart of a sample DNNS query is shown on the other hand, for the network system field, research
in Fig[2. When a hosfl" accesses a networked service, thgn nearest neighbor search can be classified into centialize

local service client module creates a DNNS query to locae thng distributed approaches according to the communication
nearest service machine to the cliéht The query message patterns of the search process.

is firstly forwarded to the bootstrap machine of the DNNS
service (Step 1). Then our DNNS query system will forwarﬂ_ Centralized Approaches

the query message recursively until locating a nearesicgerv ] , i
machine (Steg — 3). Finally, our system returns the contact The centralized scheme uses a centralized sorting process

addresses of the found service nodes to HogStep 4). to sele_ct nearest neighbors for target nodes._ Ho_vvever, _the
centralized approach does not scale well with increasing

system size, since collecting and transmitting the diganc

B. Key DNNS Requirements measurements easily cause performance bottlenecks, which
To be useful for latency-sensitive applications, we idgnti degrades the service availability. o
key goals for the DNNS: Guyton et al.[[11] pioneer the research on finding the closest

. Accurate, we need to find a service node with hServer replica in a centralized manner. They use the Hotz's

lowest interactive time in order to increase the QualitmetrIC (28] to represent pairwise hop distances usingv)
. easurements to landmark nodes, whrelenotes the num-
of Experience of users.

. . .H1er of server replicas. However, smaller hop distances do no
« Fast we need to obtain the nearest service node wi )
mean the shorter delays, because one hop may pass continents

low query periods. _OtherW|se, long query tlme_makes thoer a data center. Later Carter and Crovella [29]] [30] corabin
DNNS less attractive for server redirections in latency; . ! N .
o o he RTT and available bandwidth measurements to dynami-
sensitive applications. . . . - .
cally select optimal server replica with minimal resporisest

« Scalable the DNNS process should incur low bandwidth : .
o ) . However, the dynamic server selection approach does niet sca
costs with increasing system size.

. Resilient to chums the DNNS process should f|ndwe" due to the quadric measurement costs. Netwga_tor [31]
. collects RTT values from hosts to landmarks and milestone
accurate results when the service nodes crash or néw .
. nodes based on the Traceroute measurements, and estimates
service nodes are added. . .
nearest servers based on local clustering. However, Nattvig
does not guarantee the estimation accuracy, and may get

C. Discussion obsolete results since Netvigator does not perform actiga-m

Since the DNNS process may last several seconds dueSgiements. Different from Netvigator, CRP [32] leverage th
on-demand probing, performing DNNS for each query frorqynamic association of nodes with replica servers from CDNs

hosts may even hurt the Quality of Experience of users, whih determine the prOX|m|.ty.|between end hosts. CRP incurs
is significant for small Web objects. For example, Googlé’w maintenance costs similar as Netvigator. However, CRP

typically returns responses in less than 0.4 seconds; rmwe\9loes n(_)t guarantee the accuracy. iPlané [331’_ [34] corts_teuc
such low response periods are difficult to be realized whéynthetic topology structure for the Internet. iPlanemates
applying the DNNS process before returning the responsed’® nearest servers using the approximated delays on the
Therefore, in order to realize a practical nearest serv'@fmheuc topology. queyer, in order tq provide services f
redirection service, we need to proactively run DNNS fdfOStS spanning geo-distributed places, iPlane consunzey he

each host and redirect hosts’ requests using cached DNR@dW'dth costs to perform active measurements.

results, in order to achieve millisecond-level responsseti o

For example, OASIS[[9] shows that it is feasible to cach@- Distributed Approaches

DNNS queries of IP prefixes for server redirections without The DNNS approach iteratively selects closer nodes using
reducing the DNNS accuracy. distributed nearest neighbor search by local measurements
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towards a small set of neighbors, which reduces the netwdré&ps becomes insufficient when the service nodes spread over
measurement overhead and is more scalable than the centrakrby subnets, which may still mislead the DNNS queries
ized approach. Existing DNNS methods fall into four fansliedue to no forwarding nodes closer enough to the target.
based on their search rules: (i) Bin based DNNS; (ii) Topglog-urthermore, finding all neighbors that are affected by the
based DNNS; (iii) Greedy search based DNNS; (iv) RinglVs is challenging since calculating the TIVs for decehtra
search based DNNS. ized service nodes is very difficult; besides, adding adiéti
Bin based DNNS Ratnasamy et all_[22] assign nodes intaeighbors for DNNS also increases the query overhead. Due
"bins” based on the ordered sequence of RTT measuremeotghe limitations of modifications for Meridian, signifidan
to landmarks, and declare nodes are close to each other indhallenges remain in DNNS. We focus on tackling these
same bin. However, the bin approach does not guarantee ¢hallenges in this paper.
accuracy, and fails when the landmarks crashes.
Topology based DNNSTiers [35] locates the nearest nodes IV. DATA SETS
by a top-down approach with a hierarchical clustering tbe¢,  Our empirical data sets include four publicly available
may cause load imbalance for nodes near the root of the tregal-world RTT data sets, covering the delay measurements
Besides, Tiers do not guarantee the search accuracy siecepiétween wide-area DNS servers and those between end hosts
tree does not strictly preserve the pairwise proximity. [36]. () DNS3997 A RTT matrix collected between 3997
Greedy search based DNNSMithos [23] iteratively lo- DNS servers by Zhang et al. [37] using the King metHod [38].
cates proximate neighbors with(N) hops by a gradient de- The matrix is symmetric in thatl;; = d;;, for any pair of
scent based protocol in the overlay construction, but teates itemsi andj, whered denotes the delay matrix. (iflost479
earlier before locating the real nearest nodes due to thitetim A RTT delay matrix based on RTT measurements that last 15-
diversity in the neighbor set. PIC_[12] iteratively locateglay periods between the Vuze BitTorrent cliefits [39]. H88t4
nearest neighbors at each search step in terms of the cat#difs asymmetric, where in over 40% of the cases delay paifs
distance. However, PIC is prone to be trapped into the locghdd 4 in Host479 differ more than 4 times. This is because
minima since the coordinate distance only approximates tRET measurements between node pairs are not synchronized
delays. DONARI[10] redirects host requests to optimal Servend delay results are affected by varying queueing delays
relicas by considering the network proximity, the routin@fioe at end hosts[[39]. (ii)DNS1143 A RTT matrix between
mization and server loads. DONAR uses geographic distanagsi3 DNS servers collected by the MIT P2PSim project [40]
as the proximity metric in order to reduce measurement cosiging the King method [38]. The matrix is symmetric in that
However, DONAR may find suboptimal server replicas fo&ij = dj;, for any pair of itemsi and j, whered denotes
delay minimizations since the delay values are not comtistghe delay matrix. (ivDNS2500 A RTT matrix between 2500
with the geographic distances. DNS servers by the Meridian projedt |13] using the King
Ring search based DNNSOur work is closely related method. The matrix is also symmetric.
to Meridian [13], which seeks approximately nearest nodesSince obtaining the one-way delays between large-scale
in log (N) steps. Meridian[[13] maintains a loosely connodes is extremely difficult, we use Host479 as an asymmetric
nected overlay using a gossip based peer finding scheme. bty data set. However, we do not claim that our experiments
neighbors are organized in concentric rings with expoaéinti on Host479 are the same as those on the one-way delay metric.
increasing radii. For a DNNS request, Meridian iteratively
locates one next-hop node that 5 (8 < 1) times closer V. A GENERALIZED DELAY MODEL FOR THEDELAY
to the targetl” than the current Meridian node. Compared to SPACE

other families of DNNS, Meridian is more accurate by using |n this section, we present a simple and general enough
rings of neighbors that promote the diversity of neighbds sejelay model for the delay space. Our model captures the im-
[13]. However, several studies have identified that Meridigyortant characteristics of the delays, including TIV, dyies
may fail to find the closest service node due to the last-h@pd asymmetry of RTTs and OWDs. In the next section, we
clustering of servers [14], and TIV of the network delay spaGyj|| analyze the DNNS problem on our model.

[20]. Similar as Meridian, OASIS_[9] organize neighbors as aAssuming that we select a node in V as the center of
concentric rings for each service node, and iterativelyctea g pall, and choose a positive real numbeas the radius of
nearest service node for the request host in terms of i pall, then we call @losed ball Bp(r) as the set of nodes
geographic distances. OASIS reduces the delay measuremgise delays to nod® are not larger tham, i.e., Bp(r) =
costs in Meridian through the static geographic coordsatgy|q(P,v) < r, P,v € V}. Furthermore, theolume of a ball

and has low response time using in-advance probes. Howey&the number of nodes covered by the ball. Besides, we define

OASIS does not guarantee the accuracy of the search resy{g, cover relation of different set of nodes as follows:
since selecting the geographically closest servers mayrinc

high delays|[B]. Definition V.1 (Cover)_ LetS and (2 be two sets of nodes, if
To address these problems, two adjustments are proposéd: ©: then the sets'is said to cover the se.

(i) explicitly finding the clustering subsets based on thacst o

ture of IP addresses [14] or, (i) adding additional neigisboA- Definition

for DNNS that may not be chosen due to the TIVs|[20]. We first state the requirements for a delay model suitable

However, finding the clusters of nodes sharing identical lafor RTTs and OWDs used for delay minimizations. (i) The
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delay model should relax the symmetry requirements, sinBe Dimensions on the Relaxed Inframetric Model

the OWDs are asymmetric due to routing asymmetry [41]. Having introduced the definition of the relaxed inframetric
Besides, although RTT is symmetric by only accounting fofodel, now we analyze the growth dimension of the relaxed
the delays on the routing paths, real-world RTT measuresnefiframetric model, which is the ratio of the number of nodes
may be asymmetric due to variations of queueing delays @vered by two closed balls with the identical center and
end hosts or un-synchronized measurements [42]. (ii) TbSrying radii [43], [44].
delay modeld should allow TIV to exist, since the RTT The growth dimension is important for efficient DNNS. As
metric exhibits TIV [15]. (iii) The delay model should allow shown by Karger and Ruh[[44], assuming that the growth
dynamic delays, since the delay varies from time to time.[1%imension is low, each nod@ can uniformly sample a modest
Therefore, inspired by the inframetric model[43] that@e#o number of nodes to locate a node that is closer to any other
the TIVs, we extend the inframetric model to a relaxed infravode inV. Therefore, we can recursively find nodes closer to
metric model that relaxes the symmetry requirement, whettge target based on the above sampling procedure, whick help
the distance functiod satisfies: the design of the DNNS algorithms. However, since Karger
and Ruhl assumes the triangle inequality to hold| [44], we
functiond : V x V — R+ be a relaxed p-inframetric f:annot immediately apply_their DNNS results into the re!hxe
(o > 1), if d satisfies the following conditions for anymframetnc model. Accordingly, we need new proof techrgu

. . for DNNS analysis.
pair of nodesu and v: (1) if d(u,v)=0, then u=v; (2) ) . . . . .
d(u,v) < pmax {d(u,w),d(v,w)}, for any arbitrary node The growth dimension for the inframetric spacel[43] is

w satisfyingw ¢ {u, v}. defined as follows:

. iy Definition V.3 (Growth [43]). Fo -inf tri del, f
Pros of the Relaxed Inframetric Model The condition (2) etinition (Gro 143D 8 prinframetwic mode, for

: . ; ) _anyr € Rt and P € V, if |Bp (pr)| < v |Bp (1)|, where
in Def[V.2 states a generahzgo! relation O.f any dlrecteddrlp% € R*, the p-inframetric model is said to have a growth
from V, which has two beneficial properties: '

vg = 1.
o TIV-adaptive. Intuitively, smallerp implies that three
edges are closer to each other; while largeimplies
that one edge is significantly larger than any of the oth

Definition V.2 (Relaxed Inframetric Model)Let a distance

The growth dimension, on the inframetric model general-
jizes the growth definition in the metric space which assumes
two edges, which may introduce a TIV. Therefore, simila e_triangle ineqyalit_y_ to hold [4.4]’ [37]. Therefore, th@vyth
as the inframetric model, the relaxed inframetric model inherits the intuitive meanings of the growth definition
naturally allows the occu,rrence of TIVs in the metric space. Specifically, low growtj means that
. Dynamics-adaptive The inframetric model allows the € number of nodes covered by the closed tal(pr) is
delay variations by varying the inframetric parametéo comparable to the number of nodes covered by the closed

describe the relations of updated triples. Therefore, b?—%ﬁ” ?;P(T)' Thereforteh, v:hen we ;Xp‘?#,d a baI_I ?I'Ol,!nd”a r:ode
inframetric model and the relaxed inframetric model are < ¥+ W€ can See that new nodesin-come into view: a

L : o tant rate [44].
able to model variations of triples due to delay variation& ¢°NS : i
o Asymmetry-aware. The relaxed inframetric model al- Finally, based on Def M3, the infimum of the growth

. . ._dimensiony, equals the ratio of the volume betweB® (pr)
lows the asymmetry in the delay space, which generahz%gg By(r) for any node P and radiusr. Since we are

to RTTs and OWDs. As a result, we are able to analyi’;'é'I

DNNS on symmetric and asymmetric delays through thEter.efsted T.the infimum, Whenthwe. rfgfer to the gronth of
relaxed inframetric model. e inframetric space, we mean the infimum accordingly.

Next, we empirically evaluate the growth dimension of the

Having shown the advantages of the relaxed inframetiig|ay space with respect to the radiusind the inframetric
model, next we discuss the statistical property of the infrgarameterp. Our evaluation complements the seminal work
metric parametep. on the growth in the inframetric model [43] using symmetric

First, the seminal work states that if the delay space obeysd asymmetric data sets. Recall that computing the growth
the triangle inequality, thep must be smaller or equal than 2is trivial by comparing the volumes of the balls with ideatfic
[43]. However, wherp is smaller than 2, there may exist TIVs.centers and varying radii.
For example, given a triple with pairwise RTBs1, 1.8, we Fig[@ shows the median and 90th percentile growth values
can see that the inframeter parametes approximately 1.67 for varying radii. The median growth of most data sets is
but there also exists a TIV in the triple. Therefore, we cam seelatively small, and declines quickly with increasing irad
that p < 2 is only anecessanbut not asufficientcondition for most data sets except for Host479. For Host479, the
for no TIVs. median growth may increase as the radii increase. On the othe

Second, we find that the inframetric parametés quite low hand, the 90th percentile growth shows divergent dynaroics f
for most triples. First, the 95th percentiles of all datss#tp different data sets, revealingv”-shape dynamics, indicating
are below2.5. Low inframetric parametes means the largest that a small fraction of growth values may increase or deerea
edges in triples are not too much larger than the other edgesth increasing radii.
the triples. Second, among the triples whpsare bigger than  Furthermore, by selecting different percentages of nodes
2, theirp values are around 3 on average. Therefore, selectifog the statistics, Fi§l3 shows that the median growth is less
p=3 is reasonable to model most of the triples. sensitive to the sample size compared to the magnitudes of



JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

14 14 Y‘,‘
10}
g 3
S = A
(G} (5} N A
4 p(-\
2 \Nﬁ"\-i
G0 40 80 120 160 200 CO 40 80 120 160 200
Radius (ms) Radius (ms)
(a) DNS1143. (b) DNS2500.

Fig. 4. Sampling closer nodes to a tar@etrom Bp (pr) in the p-inframetric
model with growth-y,.

Growth
Growth

A. Sampling Conditions to Locate Closer Nodes To Targets

. y In this section, We analyze samples required to locate a node
% 20 80 120 160 200 % 40 80 120 160 200 closer to a target than the current node based on the growth
Radius (ms) Radius (ms) . . . . L.
dimension in SeE V-B. The sampling conditions serves as the
basis for the efficient DNNS algorithmic design.
Fig. 3. The statistics of the median and 90-th percentilevgroy, for Our results show that we can sample a server closer to the
P =d3: —t<>— der&mes nlﬂedlan Valutesd ?Ompmd Ifr(c)ingoi/amplffedsdm%t nod¢grget using bounded samples at each node. In order to obtain
—xX— aenotes meaian values computed rrom sampie 0 Ne enotes . .
median values computed from sampled 75% nodes; - represeaisin values a node that is3 (ﬁ € (O’ 1]) t'mes closer to the target tha.n the
computed from all nodes; current node, we need to uniformly sample enough neighbors
---{--- denotes 90-percentile values computed from sampled 20%snodfrom the proximity region of each current node.
---x- -+ denotes 90-percentile values computed from sampled 50%snod Without | N lit that e ds t
—.o—-. denotes 90-percentile values computed from sampled 75%sned- ithout loss o ge_nera| Ys aSSl_"me at a nadeeeds 1o
represents 90-percentile values computed from all nodes. locate a nodé&) that is5 (5 < 1) times closer to a targéf,
which implies thatdgr < 8 % dpr. Let dpr = r. We can
see that nodé&) must be covered by the baBp (pr), since
radii; while the 90th percentile growth becomes relativel§p@ < pmax {dpr,dqr} = pr. Figl4 shows an example
more sensitive to the sample size. of samp!lng a node clo_ser to_the tardeétin the closed ball
Bp (pr) in the growth dimension.
We first quantify the volume differences of balls with
i[ﬂ%ntical centers but different radii.

(c) DNS3997. (d) Host479.

In summary, the growth metrig, of the delay space is
quite low. Furthermore, with increasing radius, the growgh
decreases to 2 quickly on average. However, sometimes
growth values increase for increasing radius, which meaats tLemma VI.1. Given ap-inframetric with growthy, > 1, for
there are many nodes that have similar distances to each othay = > p, r > 0 and any nodeP, the volume of a ball
This usually corresponds to cases where the center of the g} (r) is at mostz® smaller than that of the balBp(ar),
is a node on the edge of a cluster, where nodes in the safteerelog,v, < a < 2log,7,.
cluster have smaller distances compared to those to otldeisno

not in the same cluster. Lemmal[VI.] states that the volume differences of the balls

with identical centers and different radii are boundedasy
wherez is the multiplicative ratio between different radii, and
the parametew lies in a bounded interval.
VI. EFFICIENT DNNS ON THE RELAXED INFRAMETRIC We calculatex by varying the radius and the multiplicative
MODEL ratio z as shown in Fig]5. We can see thats mostly below
1, and decreases close to 0 quickly with increasing radius
In this section, using the relaxed inframetric model presr multiplicative ratioz. Therefore, the volume difference*
sented in SecV, we analyze how to design an efficient DNNsBalessub-linearly in most cases. On the other hand, for small
using localized operations suitable for distributed syste radiusr or low multiplicative ratiox, the volume difference
Proofs are omitted due to space limits, which can be found:if¥ may scaleultra-linearly .
the full report [36]. Furthermore, we also characterize the inclusion relation o
Our major result is that it is feasible to design an accural@lls with different centers, which generalizes the inidos of
and fast DNNS algorithm for the relaxed inframetric moddalls around a node pair in the metric space [44]. Leinma V1.2
at the expense of sampling enough candidate servers from g the foundation for uniform sampling nodes to perform
proximity region of each node. We construct a simple DNNBNNS on the inframetric model.
process satisfyi_ng our ma_\jor re_sult. However, the simpl_eemma VI.2. (Sandwich lemma) For any pair of nogeand
DNNS process incurs relatively high measurement costs dc}’eandd < r then
to the sampling conditions, which will be improved in the hex'’ pe ="
section. By (r) € By (pr) € B, (p°r)
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simple DNNS procedure in Definitidn V1.4.

Definition VI.4 (A S|mple DNNS method in the inframetric
model) sampling 3( ) neighbors from the closed ball
Bp (pdpr) at each intermediate nodé, forwarding the
DNNS request to a next-hop noddimes closer to the target
than the nodeP, and stopping at a local minima when we
can not find such a next-hop node.

Median o
Median o

=40

60
80
200 1000
r(ms)

(a) DNS1143.
; Furthermore, we can quantify the efficiency of found neigh-

bors based on the above DNNS procedure by Corollary VI.6.
As a result, we can locate an approximately optimal nearest
neighbor for a targel” when 8 approaches one. Furthermore,
the number of required search steps is a logarithm function o
the ratioA of the maximum delay to the minimum delay in the
delay space, indicating that the DNNS queries can complete

Median o
Median o

0
70
100
130169

0
70
10030165 200 100%° 200 100°° :
 ime) x r(ms) * quickly.

(c) DNS3997. (d) Host479.

Definition VI.5 (w-approximation) For a DNNS request with
Fig. 5. Mediana as function of the radius and the multiplicative ratiee. ~ target 7", a found nearest neighbod is a w-approximation,
if the delay betweer to T' is smaller thanvd,, whered, is
the delay between the real nearest neighbofto

Corollary VI.6. For a relaxed inframetric model with growth
Using Lemm& VL1 and VIi2, we can quantify the size of, = according to the DNNS process in Definitibn V1.4, the
sampled neighbors, to assure that at least one nelghbonllespound nearest neighbor is g—apprommatmn and the number
the closed balBr (8r). of search steps is smaller thdag. A, whereA is the ratio

Theorem VI1.3. (Sampling efficiency in the growth dimension§f the maximum delay to the minimum delay of all pairwise
For a p-inframetric model with growthy, > 1, for a service delays.
node P, and a DNNS targefl’ satisfyingdpr < r, when

selecting?,(%) nodes uniformly at random fronBp (pr)  C. Limitations of Theoretical Results
with replacement, with probability of at least 95%, one of
these nodes will lie ilBr (Br), wherelog,v, < a < 2log,,7,
and g < 1.

To find a better next-hop neighbor without missing any
closer nodes, based on the DNNS analysis in the inframetric

model in Se¢ VI-B, we should sample approximat& y&

Sincea and p are determined by the delay space, we caibdes whose delays to current noffeare not Iarger than
see that the number of samples decreases with increasig dgl; ... However, the number of the candidate neighbors may
reduction threshold3. As 3 approaches 1, the number ofhe quite high, as shown in Fig 6. We can see that the number
required samples becomes approxmam(y&) ~ 3p** € of required samples exceeds 100 accordinglydrelow 0.4
[372,372] based on Lemma V1. or a above 1. Such high number of samples implies that we

need extremely large nhumber of samples for continuing the
. DNNS query.
B. DNNS on the Inframetric Model On the other hand, the number of samples decreases with

In this section, we present the analysis of DNNS on th&creasingy or with increasing3. When« is below 1, the
Inframetric model. We will show the search accuracy, searglymber of samples is below 33 if the delay reduction threshol
periods and search costs related to a DNNS process. We prgvg above 0.8. As a result, we can see that we need to choose
that, by recursively following such sampling conditionse Wa larges in order to reduce the number of samples, since the

can locate a server that i/ 3-approximation to the optimal: median values of are mostly no more than 1 from Fig 5.
the delay from the found server to the target is not biggam tha

1/ times that from the nearest server to the target.
First, we review the goal of each DNNS step using thg- Comparison with Previous Inframetric Study
sampling conditions in Séc VIIA. Assume that a nddeants  Our relaxed inframetric model is inspired by the seminal
to locate a node that i§ times closer to a targdf. The goal study on the inframetric modél[43] that assumes the symymetr
of the current DNNS step is to locate a nggiéimes closer to of the distance function. We extend the inframetric model
the target than the current node To that end, Theorei V1.3 study for the Internet delays in four aspects:
shows that we need to sample Umtég) nodes uniformly  , We extend the inframetric model to allow both symmetric
at random fromBp (pr) with replacement. and asymmetric distance functions, which generalizes the
Based on the sampling condition in Theolem V1.3, perform- RTTs and OWDs that are important for latency-sensitive
ing DNNS in the growth dimension can be formulated into a  applications.
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the sample that is closest to the target. To that end, we use
delay estimations based on network coordinatesreduce

the delay measurement costs. However, since the delay es-
timations incur errors due to the embedding distortions of
network coordinates, simply using delay estimations to find
the nearest neighbors becomes less reliable. Instead sue is
delay measurements when the delay estimations are inaecura
so as to avoid the inaccurate delay estimations.

2) Sample Enough Neighbors For Continuing DNNS
Query: Based on the simple DNNS method, each DNNS
service has to maintain enough neighbors covering difteren
Fig. 6. The number of sampled neighb&p 2 by varying the volume delay ranges in the delay space, in order to find the nearest
difference parameter from the interval[0, 2 based on the analysis in Secne'ghbor to any target. Therefore, each node has to maximize
[VI-Aland the delay reduction threshoffl. We set the inframetric parameter its diversity in the neighbor set.

p to be 3 to represent most triples. Gossip based neighbor management is frequently used for
existing DNNS methods. For example, Meridign |[13] and
OASIS [9] use an anti-entropy gossip protocol to discover
neighbors, and store neighbors using rings of neighbotsctal
concentric rings. However, during our experiments, thesinn
most and outermost rings in the concentric ring often find no
only few neighbors compared to the capacity of the ring,
ile the rest of rings with radii lying in the middle portion
the delay distributions are filled with too many neighhors
admg to frequent ring management events, incurring yreav
computation and communication overhead.

We explain the insufficiency of the gossip process in details
Assuming that we know the complete delay matrix, for each
) o ) node, we compute the percent of mapped nodes for each ring,
A. Overcoming Limitations of the Simple DNNS Method  \\hich serves as an upper bound of sampled neighbors for

Recall that the measurement costs limits the usefulnahat ring. Then we can analyze whether the distributions of
of the simple DNNS method defined in Def MI.4 from Seenapped nodes in concentric rings affect the gossip process.
[VII-A] Besides, in the distributed system context, sincehea As shown in Fig¥, we can see that most nodes are mapped
service node does not have the global view of the delay spaggo a few number of rings, whose delay ranges lie in the
sampling enough neighbors from the closed ball centerednaiddle portion of the delay distributions. However, onlyitqu
each service node is difficult. We discuss design princifdlesa few nodes are mapped into the innermost and outermost
tackle these two difficulties in this section. rings, which result in a skewed distribution of mapped nodes

1) Reduce Measurement Costé/e reduce the measure-for the concentric rings. As a result, since the gossip @E®ce
ment costs in two complementary approaches: (i) Given thadopts the uniform sampling approach, the gossip proceks wi
the number of required samples of the simple DNNS methdgkvitably sample insufficient neighbors from those ringatt
depend on varying parameters, we seek to modify the p@ave too few mapped nodes.
rameters to obtain the lower bound of the required numberAccordingly, to improve the concentric ring maintenance,
of samples. (i) Given that network coordinates can be useg need to sample enough neighbors that lie in differentydela
for delay estimations, we avoid complete measurements freanhges. To that end, we propose to find nearest neighbors and
selected samples to the target using delay estimations.  farthest neighbors for each service node, in order to fill the

First, recall that the number of samples for the simpi@nermost and outermost rings in the concentric ring.

DNNS method increases quickly with decreasing delay reduc-

tion thresholds. Therefore, to reduce the number of samples, )

we should set the delay reduction threshgltb be close to 1. B. Our Design

On the other hand, since the approximation ratio of the #mpl Based on the design principles in Jec VII-A, we design
DNNS method isl/j3, we can see that large also leads to a novel DNNS method nameHybridNN (Hybrid Nearest
better approximations of nearest neighbors. As a resulsetie Neighbor Search). We present an overview of HybridNN.
B to 1 in order to reduce the number of samples and obtaip sample enough candidate neighbors from the proximity
the best approximation accuracy. region of the current node, each node must first maintain

Second, although we reduce the number of samples usageighbor set that contains enough neighbors within each
modified 5, we still need delay measurements between sgroximity region. Then using the neighbor set, we select can
lected samples to the targets, which consume the bandwidttiate neighbors using the sampling conditions of the sémpl
costs and CPU loads of service nodes. Therefore, we hdpeNS method, in order to cover the neighbors closer to the
to reduce the required delay measurements while obtainiagget with high probability. Next, we determine the camdéd

Number of Samples (log scale)

« We clearly show the relation between inframetric param
eterp and the TIV. The inframetric parameter< 2 is a
necessary but not sufficient condition for no TIVs.

« We formulate the DNNS problem on the relaxed infral
metric model and propose a simple DNNS method tha[h
finds approximately nearest neighbor for any target usin
at most logarithmic search hops. Interestingly, our slmpfga
DNNS method works on both symmetric and asymmetn
delay metrics.

VIlI. REALIZING A PRACTICAL DNNS
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@ ®) the neighbor nearest to the target (Sec VlI-F). Each node com
2 09 ' oo . putes the candidate neighbor closest to the target usiray del

* [ . . . .
o8 : 808 _ i estimations and direct probes, in order to balance betwesn t
3 |
306 N E 306 i 3 measurement costs and measurement accuracy.
- 0.5 T M B . . . .
So4 P Soa. ‘ 1 e Termination Test: This component determines to continue
503 . H‘E R soal .| c ol or stop a DNNS query (Sdc VIHG). Recall that in previous
Y Rkl T “olli ORI T section we set the delay reduction threshgldo be 1 on
123 g Numper 0111218 2 oNGmbe ° 10111218 order to reduce the number of samples and obtain better
(c) DNS3997. (d) Host479. approximation ratios to the optimal results. Therefore- Hy

bridNN conservatively terminate the DNNS query only when

Fig. 7.  The percent of mapped nodes into different ringsyragsy that ; ; ;
we obtain the complete delay matrix. Th¢h rinT contains neighbors whose ?I(I)dC:ndldate neighbors having larger delays than the orre

delays to a nodé lie in the interval (as’“% as®|, with i > 0, a a constant, _ ) )
s a multiplicative increase factor(= 1, s = 2 mis as configured by Wong et~ Finally, HybridNN uses an extensible delay measurement

al. [13]). I_3esides, since our ot_)jective is to det(_errr_line ﬂsaidgtion of nodes interface. For instance, by default HybridNN simply use
mapped into the concentric ring, we do not limit the maximuapacity of - . . L
each ring. the system-built-in Ping command to obtain pairwise RTT
measurements. When there exist an on-demand OWD probe
service such as Reverse Traceroute [18], HybridNN confggure
neighbor closest to the target, using delay estimations aadRPC interface to request the pairwise OWD results.
direct probes, in order to obtain a better tradeoff between
sampling baqdwidth gnd accuracy. Finally, using thg culyen~ Neighbor Maintenance
nearest candidate neighbor to the target, we determineheihet N ] ]
to terminate the DNNS query. As shown in g 8, Hybridh [0 order to facilitate the neighbor sampling for DNNS
is composed of five components: forwarding, each service r)ode_mamtalns neighbors thgt are
Neighbor Maintenance This component maintains the neighS@mpled from different regions in the delay space. We intro-
bor set for DNNS queries. Since nodes are mapped into ffiac€ the neighbor discovery and update in this section.
rings at the middle portion of the concentric ring, which 1) Organize Neighbors Into Rings for Proximity Selection:
implies that neighbors mapped into the head portion and t&iNCe the proximity region for neighbor sampling in the sienp
portion of the concentric ring are difficult to be samplechgsi PNNS method is a closed ball, we choose the concentric ring
the uniform sampling based approach. As a result, we need@Prganize nelghbors for each node. For instance, if we need
increase the sampling probability of such neighbors, ireordt© locate all neighbors that are at mastms away, we select
to fulfill the sampling conditions for DNNS queries. To tha@ll neighbors from those rings whose ring numbers are at most
end, we over-sampling neighbors in the head portions aHG’g2d?]- S
tail portions of the concentric rings, besides we uniformly An important parameter for the concentric ring is its ring
sampling neighbors located in the middle portions of delay€4, which determines the maximum number of neighbors
and. per ring. Since we need to sample enough neighbors using
Selecting Candidate Neighbor This component selects can-th€ concentric ring to guarantee to locate a neighbor claser
didate neighbors to satisfy the sampling conditions of tB€ target with a high probability, we analytically detenei
simple DNNS method. When a node receives a DNNS the 2ch8|ce ofA as follows. First, the total number of samples
query, nodeP determines its delay towards the targetthen 3(% is within the interval [377,3+,], since we set the
selects neighbors from its diversity-optimized neighbetss delay reduction threshold to 1. Therefore, if we set the
(Sed VII-Q) by covering possible closer neighbors towalds tnumber of neighbors\ at each ring to be at leagd(y?),
targetT (Sec[VII-D). Furthermore, we prune those neighborse can ensure that with a high probability, we can find a
that could mislead the DNNS query into poor local minimaneighbor that is closer to the target than the current node
Coordinate Maintenance This component updates the coor. Furthermore, sincey, is low on average from previous
dinate of the target in order to estimate delays to targets fr sections, we can set the number of neighkbit® be a modest
candidate neighbors, since the target machine may not havieger (8 by default).
the coordinate for delay estimation (Sec VII-E). Additidpa Furthermore, to adapt to the dynamics of delays, we use a
each service machine maintains a network coordinate usedrwoving median as a latency filter for extracting stable delay
delay estimations. measurements to each neighhor [45], which allows to have up-
Determining Closest Neighbor This component determinesto-date delay estimates resilient to the measurementsoise
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2) Biased Sampling based Neighbor DiscoveBased on management, we remov®; neighbors from those rings that
the distribution of neighbors for each ring in the previousave at least\ + A; neighbors.
section, we have seen that we need to over-sample neighboi/hen we need to removA; neighbors from some rings,
mapped into the head portion and the tail portion of thge follow the removing philosophy of Meridian: preserve
concentric rings. To that end, we adopt both uniform sangplinhose that maximize the diversity of neighbors in a ring gsin
and over-sampling approaches. the maximal hypervolume polytope algorithm _([13]). This is

Uniform sampling. We reuse the gossip process in Meridbecause the higher diversity in the neighbor set transtates
ian. Briefly, each nodé” periodically starts the gossip procesgetter chances of locating a nearby nodes for any target- How
by uniformly selecting a neighbof from P’s concentric ever, the maximal hypervolume polytope algorithm requires
ring as communication partner, and sends a gossip requaspair delay measurements of nodes in a ring, which needs
message to nod@ containing randomly sampled neighborsQ (A?) probes. In order to avoid such measurements, we turn
one neighbor per non-empty ring. Whénreceives the gossip to adopt network coordinates for delay predictions.
request( will send a gossip ACK ta” immediately; besides,  For delay predictions, we use the revised Vivaldi algorithm
Q iteratively sends gossip requests towards the sampletneipT] that is robust to TIVs[20]. We denote the revised Vivald
bors in the gossip request message-of [20] as TIV-Vivaldi(z;, e;, dij, =, ¢;), where the input;,

Finally, if we use the RTT metric, then node insertsQ  ;; denote the coordinate of nodeand j, respectively; the
into the corresponding ring according to the round trip yielainput e;, e; denote the averaged error of node and j's
measured as the period between the gossip request andc#i§tdinates, respectively. The output BIV-Vivaldi are the
gossip ACK. Alternatively, if nodeP is able to measure the ypdated coordinate; and coordinate erros; of node.
one-way delay fromP to ), then node is inserted into the  Each service node passively maintains a coordinate, and
corresponding ring according to the one-way delay fiBrto  estimates delays using coordinate distances. Besidegsfor

Q. _ ) _ timating delays with neighbors in the concentric ring, each
Over-sampling. Our goal is to sample enough neighborgeyyice node also stores its neighbors’ coordinates.

from those mapped neighbors lying in the head and tail gjnce delay varies, each node updates its own and cached
portions of the concentric rings. For this purpose, we iSe .o dinates periodically. Rather than introduce addétiate-
closest neighbor seargh arfd farthest_ neighbor search._ Th_e|ay probes, we update coordinates by reusing the delay mea-
returned nodes are directly stored into the concentric, ngrements to other service nodes during the biased sampling
as the delay values between the current service node 10 f6:qqure. Therefore, we significantly reduce the maimteaa
returned nodes are obtained during the closest neighbor ¢,qs compared to Meridian. First, each node receiving the
search andy’ farthest neighbor search processes. gossip message piggybacks its coordinate to the sendeg alon
« K closest neighbor searctEach nodelP periodically jith the acknowledged gossip message. After receiving the
finds nearby nodes by issuirg closest neighbor search¢qordinate from the gossip receiver node, the gossip sender
with itself as target. Herd is a system parameter. Firstly,noge stores the new coordinate of the gossip receiver node,
nodeP randomly selects a neighb@rfrom its concentric gpq updates its own coordinate by triggerifiy-Vivaldiusing

ring, and sends t@) a K nearby neighbor search mesyne delays obtained during the gossiping process.
sage. Then nodé€) starts aK closest neighbor search

process. After the closest neighbor search process is
completed, found nearby nodes and the correspondipg Select Candidate Neighbors

delays toP are returned to nod®, and P saves these A h 4@ . DNNS h
returned nearby nodes into its concentric ring. ssume that no receives a query 1o the target

o K farthest neighbor searchSimilar as the K closest T. Based on the sampling conditions of the simple DNNS

2\ &
neighbor search process, each nétiperiodically issues Method, nodeP needs to 59@03(%&) neighbors whose
K farthest neighbor search. Later, thefarthest neighbor delays to nodeP are in the delay rang®, pdpr]. Since each

search results include found distant neighbors and ttieg containsO(~?) neighbors, we simply select all neighbors

corresponding delay values to node P stores the of rings numbered in the randg, [log, (pdpr)]] as candidate

returned distant neighbors into its concentric ring by theeighbors.

corresponding delay values. Furthermore, we also prune several neighbors that mislead
Due to space limits, the details féf closest neighbor searchthe DNNS process. First, candidate neighbors that contain
and K farthest neighbor search are omitted here, which cépo few non-empty rings are more likely to provide no hints
be found in the full technical repori [36]. on continuing the DNNS queries, thus the DNNS queries

3) Replacing Suboptimal Neighbors Without Probda: can be trapped into local minima, due to the neighbors’

order to bound the memory overhead of the concentric ringparse diversity of the delay space. Therefore, we remove
we need to manage the size of the concentric rings when soatleneighbors with fewer tham non-empty rings{ = 4 by
rings reach their maximum capacity. To reduce CPU costs default). Second, all neighbors that have received thetichdn
due to frequent ring managements, we lower the frequency@RNNS query should be removed in order to avoid the search
ring managements: we first set up another tolerance thmtshiolops. Therefore, let théorwarding path of a DNNS query
A, for each ring; then we begin the ring management whdére the sequence of nodes forwarding the query. we remove
some rings having at leagt + A; neighbors; during the ring any node on the forwarding path.
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E. Coordinate Maintenance for Targets Finally, using the union of selected candidate neighbors

In order to reduce the delay measurement costs, we pred?ét: ScUScU Sy, the current node? "f‘SkS neighbors 'S*_ to
delays from service nodes to the target, since each servbe nprobe the delz.:\ys to ta_rgét, from which nodeP.determme.)s
has computed its network coordinate during the neighbcﬂho@.e closest neighbor. Tles_are broken by choosing the neghb
management process (9ec VIIIC3). As a result, reusing tWéth most accurate coordinate.
coordinates for predicting delays can reduce the measunteme

costs. G. Termination Test

Unfortunately, we may not know the coordinate of the Recall from Se€ VI-A, HybridNN set the delay reduction
target, as the target can be any machine on the Interifitesholds to be 1, in order to reduce the number of selected
Therefore, we propose to compute the coordinate for thetargejghbors and obtain better approximation ratios for thaéb
on-the-fly based on th&lV-Vivaldi nearest neighbors. Therefore, when the closest neighbor se

First, when node” receives the DNNS query for a targetected from SeEVII-F has a larger delay to the target thah tha
T', nodeP will initialize the network coordinate for target of the current nodeP, node P terminates the DNNS query.

T if T's coordinate is not stored in the DNNS query messagehen nodeP sends the currently closest node to the host that
To that end, node” asks a fixed number of neighbors (aissues the DNNS query.

most 10) to directly probe the targét Then, node” updates
target T's coordinate byTIV-Vivaldi using the coordinates
and delay measurements from these neighbors to tafget _ _ )
which updates™s coordinater and coordinate erratr as HybridNN can be readily egte_nded_to search more than just
the output of TIV-Vivaldi. Finally, node P stores targef’s ©On€ nearest npde. Here we will just give two gxamples namely,
coordinate into the DNNS query and forwards to the nex{S closest neighbor search arid farthest neighbor search,
hop node for recursive search. This completes the coordin§hich are both utilized to oversample neighbors in the netwo
initialization for the targef". delay space in order to increase the diversity for neightadh
Second, after initializing™s coordinate, each nod@ that Management.
forwards the DNNS query will update targés coordinate for
better convergence of targéts coordinate. To that end, eachA. K Distributed Nearest Neighbor Search
node appliesTIV—VivaIdi'Fo update t’argef’s_coordinaterT The K Distributed Nearest Neighbor Search (KE®) aims
and coordinate erraty, using nodel’s coordinate and delay to locate thek’ nearest neighbors to a targgt where K is
dgr the targetl. a system parameter. To store the found nearest neighbors, we
append a new field/.Q2 that caches nearest neighbors to the
DNNS query messag#a/.
A naive KDN?S solution is based on thénding and
After we assign a network coordinate to the target ifsmovingapproach: first we find one closest neighbor towards
Sec[VI-B, we can use the network coordinate distances i target based on the HybridNN algorithm, then we delete
approximate the real-world delay and reduce the measutemgje found nearest neighbor from the system, and we restart
costs. Nevertheless, since the coordinate distances dye qRe HybridNN algorithm from the same query node until we
approximations, closest neighbors selected accordindi¢o {ocate K nearest servers to the target. Nevertheless, deleting
network coordinates may be inconsistent with the real oneshe closest neighbors from the system is not practical for
Therefore, we locate closest neighbors to the tafgébm g |arge-scale system due to the broadcasting communication
the candidate neighbors found in $ec VII-D, by combining thgverhead, and repeated DNNS processes increase the query
delay predictions with a small number of direct probes.  overhead for the service nodes on the DNNS forwarding paths.
First, based on the coordinate distances from candidateOn the other hand, if we assume that the concentric ring
neighbors to targef’, we find topm nearest neighbor§. of each node does not append new neighbors, the network
to the targetl’ from the candidate neighbors. coordinate of each node keeps unchanged and the network
Second, since coordinate distances may be erroneous, detays keep stable during the period of a KisNquery, we
also choose those candidate neighbgirsvhose coordinates find that there existéemporal correlationin the forwarding
are not reliable. Since each TIV-Vivaldi coordinate is ac- paths of consecutive DNNS queries starting from the idahtic
companied by a coordinate error metid20], we choose un- node in the naive KDKS solution:if we issue a new DNNS
reliable neighbors whose coordinate errors exceed a thiceshquery from the same starting node immediately after the
We found that setting the threshold to be 0.7 can signifigantireceding DNNS query, then the forwarding path truncated
reduce the negative impact due to the coordinate inac@sacthe last-hop node of the new DNNS process is a subpath of the
Third, to adapt to coordinate errors caused by TIV, sinderwarding path of the preceding DNNS query, since we can
high coordinate distance errors indicate violations adrtgle see that the intermediate nodes on these two forwardingspath
inequality [20], we simply include all candidate neighbds are identical in HybridNN.Our assumption generally holds
whose coordinate distance and real delay towards the ¢urrafter the network coordinates converge and the conceirge r
node P differs by more than 50 ms, which has good tradeo€fontain enough neighbors. Furthermore, the constancyaf en
between accuracy and bandwidth costs. to end network delays has been confirmed to be on the orders

VIIl. EXTENSIONS TOHYBRIDNN

F. Determine Closest Neighbor
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Algorithm 1: The pseudo-code of KD¥.

1: KDN’SH, T, K, M)
2. {Input: current nodeH, the targetl’, required number of
closest neighborg(, query messag@/ }
{Output: nearest neighbors B}
if |[M.QQ] == K then
Return M.Q2; {enough closest neighbgdrs
end if
S <« chooseCandidateB( T', M);
S« S — M.Q {remove found nearest neighbors to avoid
search loopp

. . 9: InitTargetCoordP, T');
of hours by Zhang and Duffield [46] as well as the iPlane ;. FuTl ; Dr] g Neareqs(;Det)ectoR S, wr, M);

project [33], [34]. 11: [¢1,dg, T, P1] < TerminateTest®, u1,S., Dr, M); {find one
Using the temporal correlation of consecutive forwarding closest neighbor, and terminate at naée

paths from the same starting node, we propose a backtracking2: .© < M.Q U {¢1}; {cache¢, into the query message

based KDNS algorithm, as shown in Algorithd 1. After we 13: Select the predecessor nofe of node P on the forwarding

. . . . path A .Path;{find the predecessor for backtrackjng

find one ne_arest neighbor and terminate at a service node,,. KDN?S(P,, T, K, M); {recursive search

P, by HybridNN, we resume the KD® query from Py,

by backtracking fromP; to its predecessor nodB, on the

DNNS forwarding path, and by recursively finding the nearest

neighbor atP, until we locate K nearest neighbors. With the sandwich lemma in Lemnia V].Z; needs to be at least

backtracking, the KDRS resumes the query at service node¥1 + Bfartnest)dpr from nodep.

that are close to the target, therefore we can quickly locete ~ Accordingly, in each search step, we try to find such

nearest neighbors with reduced forwarding overhead coedpafode P1 from the concentric ring of the current service

to the naive KDNS solution. node P, whose delay value taP is larger or equal the
Fig [@ gives an example of KD using Algorithm[dL. £ (1 + Brarthest) dpr. If there exists a such nod#y, then

Suppose an end host needs two nearest neighbors to th8ode Py recursively runs the KDFNS as node Otherwise,

target?. Node A sends a KDRS request to a service node if we can not locate such nodeg,, the search is terminated,

Then B starts the KDNS by forwarding a KDNS queryM and the currently farthest node to the target is cached as a

to a neighbot?, closer toT'. Similarly, P, forwards the query farthest neighbor to the target. Afterwards, we select &s¢ r

M to P;. Now nodeP; finds that it cannot find a neighborX — 1 distant neighbors by the backtracking process similar

closer to the targef” than itself, thereforeP; is the first as thatink closest neighbor search.

nearest neighbor to the target. TRBpappends its address into  Algorithm [2 shows the complete KDFNS process. First,

M .Q as a found nearest neighbor. Néxttriggers the KDNS ~ We choose candidate neighbors satisfying the delay camistra

backtracking step by forwardiny to P;’s predecessaP, on to the current service nod®. Then we find the farthest

the KDN2S forwarding path. On receiving/, P, excludes neighbor to the targetFarthestDetectqf)) combining the

P, from the choice of candidate neighbors, and finds a néi¢lay predictions with direct probes in order to reduce the

neighborP; closer to the targef’ than P». Then P, forwards measurement overhead. Specifically, we chopsdarthest

M to P;. Py decides that it is the closest node foamong neighbors from the candidate neighbors; besides, we aldo ad

its neighbors. Therefore?; appends itself tal/.Q2 as a new neighbors with uncertain coordinates and erroneous predic

nearest neighbor. Finally?; sends the found nearest neighboréons similar as Sef VIIHF. Next, we determine one farthest

in M.Q, i.e., P, and Ps, to the end hostl, which completes Nneighbor recursively (FarthestTerminateTest). Finalgm the
the KDN2S. terminating nodeP;, we backtrack to the predecessor node of

P, on the forwarding path, and recursively run the KDFNS
until we locate enough farthest nodes to the target.

Fig. 9. KDNZS.

NI A®

B. K Distributed Farthest Neighbor Search

Similar as the KDNS, K Distributed Farthest Neighbor IX. SIMULATION
\/Sviall(r)f:gt(gc?:e’\lfi)rtIhsezltsr?e[i);rfggr21?1ctih'czr?nai?]lgtr:(;lfggsle(:\e/;;Fr:rStln this section, we report the results of simulation experi-
P, then we backtrack from node to its predecessor node On?nents based on the real-world data sets in[Sgc IV.
the forwarding path to recursively locate the r&st 1 farthest _
neighbors. A. Experimental Setup

To locate one farthest neighbor, we recursively for- We compare HybirdNN with several DNNS algorithms.
ward the KDNS query to a service node?; that is (1)Vivaldi. We compute the coordinate of each node based on
at least (1 + Brarthest) (Bfarthest iS 1.2 by default) times the Vivaldi algorithm [45], and find the nearest service rode
farther to the target?7 than the current service nodefor each requesting node using shortest coordinate dissanc
P. In other words, we need to locate a node that iBhe coordinate dimension for Vivaldi is 5. (2)oordNN. To
not covered by the ballBr ((1 + Bfartnest) dpr). Since quantify the usefulness of direct probes of HybirdNN, we
Br (1 + Brarthest) dpr) € Bp (p (14 Brarthest) dpr) by  present a DNNS algorithm CoordNN, which is identical with
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Algorithm 2: The pseudo-code of KDFNS. nodes. The DNNS queries are repeated 10,000 times. For each
1. KDFNS@H, T, K, M) DNNS query, we uniformly select one client as the target
2: {Input: current noded, the targetl’, required number of  machine, and a random service node receiving the query.

farthest neighbors(, query messagé/} Besides, the simulation is repeated 5 times by shuffling ¢he s
if ﬁ;’\;pgt' ia;”}?stthgi'ghbors o} of service nodes to avoid biases in choosing service nodes. F
5 Return M.2; {complete the KDFN$ Hybr!dNN, CoordNN_, D|rectDN28_ and Meridian, the inter-
6: end if gossip events for neighborhood discovery are generated by a
7: S « chooseFarthestCandidat®s(T", M); {choose neighborsexponential distribution with expected value of 1 seconte T

whose delay values t& is larger than or equal to inter-ring management events are generated by an expahenti

p(L+ Brarthest)dpr} . ., distribution with expected value of 2 seconds. For HybrigNN
8: S« S — M.Q {remove found farthest neighbors to avoid _. . )

search loops D|rectDN2_S and CoordNN, the time interval between two
9: 7 « InitTargetCoordP, T); oversampling events of{ closest neighbor search and
10: [u1, Se, Dr] < FarthestDetectoR, S, zr, M); {select the farthest neighbor search are generated by an exponential

farthest neighbor td@" from S} distribution with expected value of 60 seconds. The inter-

11: [¢1,dg, T, P1] < FarthestTerminateTe$¥( u1,S., Dr, M); : : s otrilg 1
{find o farthest neighbor, and terminate at naté DNNS event generation follows an exponential distribution

12: M.Q « M.QU {$1}; {caches, into the query message with expected value of 60 seconds. For Vivaldi, the coorigina
13: Select the predecessor noffe of node P, on the forwarding Of each node is updated for 1000 rounds, by uniformly

path M .Path;{find the predecessor for backtrackjng selecting a service node as the counterpart during eactdroun
14: KDFENS@, T', K, M); {recursive search The performance metrics for each DNNS query include: (1)
Absolute Error: defined as the absolute difference between
TABLE | the estimated nearest neighljoand the real nearest neighbor
PARAMETER VALUES OF HYBRIDNN FOR SIMULATION. i to the targetl’, i.e., d;jr — di7. (2) Relative Error: defined
- 7 " as the ratio of the absolute error for the estimated nearest
arameter eaning alue . . . 4
A maximal size of the Ting 5 neighbor; to the_ deI%yTPSit;Neen the real nearest nelghpor
A+ A; | threshold of the ring size for ring updates 10 and the targef’, i.e., D The absolute error quantifies
B nearest search threshold 1 the increased delay values of the estimated nearest neghbo
inframetric parameter 3 while the relative error measures the multiplicative mtimthe
[z coordinate dimension 5 imal del | f h . d iahb Th f
K size of sampled neighbors for neighbor discoverylO optima e_ay values for the estimate ) neignbors. eee O_r
m number of neighbors for direct probes 4 large relative errors do not necessarily correspond to high
T number of non-empty rings 4 absolute errors. (3pearch Hop defined as the number of

service nodes on the forwarding path minus one. Therefore,
if node A forwards a DNNS query to nod® and nodeB
HybridNN except that it uses only and no direct probes whesturns the nearest neighbor to the query host, the seagh ho
determining the best next-hop neighbors. @yectDN2S. for the DNNS query is one.
To evaluate HybridNN, we present a DNNS algorithm Di-
rectDN2S, which is identical with HybridNN except that itB. Comparison

only utilizes direct probes for finding next-hop best neigtsh  Absolute Error. Fig [I0 shows the absolute errors of the
without pruning neighbors based on coordinate distancesdifferent algorithms. DirectDN2S achieves lowest absslut
HybridNN. (4) Meridian [13]. Meridian recursively forwards errors except for the Host479 data sets. HybridNN is close
the DNNS queries to a node thatdgimes closer to the targetto DirectDN2S in terms of reducing absolute errors, however
than the current node, and returns the found nearest naighlggbridNN is the most accurate on Host479 data sets. Next,
when no such node is selected. We configure the parametegdrdNN is worse than both DirectDN2S and HybridNN.
of Meridian algorithm identical with the original configdi@n  The accuracy of DirectDN2S and HybridNN compared to Co-
by Wong et al.[[13], with the delay reduction threshgicas ordNN indicates that utilizing direct probes greatly regsithe
0.5, the upper bound on the size of each ring as 10, and {hgccuracy of the estimation, while using coordinate distes
number of rings in the concentric ring is 20. alone can lead to a bad local minima.

For HybridNN, the default configuration is summarized in The inaccuracy of DirectDN2S compared to HybridNN on
Tablell. CoordNN and DirectDN2S share identical parametetse Host479 data set is rather counter-intuitive. The ineazy
with HybridNN. We also evaluated the sensitivity of paramef DirectDN2S may be caused by the asymmetry in the delay
eters for HybridNN, which is reasonably robust against th#ata sets that misleads the greedy search into a local minima
parameter choices. The detailed sensitivity results ofesys since DirectDN2S is more accurate than HybridNN on the
parameters for HybridNN can be found in the technique reparther three data sets that are all symmetric for pairwisaydel
published online([36]. On the other hand, HybridNN does not always choose the

We have developed a discrete-time simulator for DNN®eighbor closest to the target as the forwarding node, since
The simulator randomly chooses a set of nodes as serviggbridNN also incorporates the approximated delay predic-
nodes (by default 500) that can receive DNNS queries. Othteans when choosing neighbors, which can help HybridNN
nodes in the system are clients that can issue DNNS quetgpass the bad local minimum caused by the asymmetry in
to these service nodes. For Host479, 200 nodes are theeserthe delay values.
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Fig. 10. The CCDFs of absolute errors. Fig. 11. The CCDFs of relative errors.
idi 0gf : |«HYPrIANN” — pyoriaNn 09 F [ HYBIdNN——FybriN
Furthermore, Meridian shows greater absolute errors com- og| : | Meridian -~ .Goorann 081 { | oridian 000NN
. . . - L. . ——Di : — —DirectDN2
pared to other algorithms including Vivaldi, which implies o7 DrectNas) 0l e DNZS
that the coordinate distances are at least effective if used ;gg : | Z=DirectoNas ggj ; | 14CoordNN
in the centralized approach. We are aware that the supsgriori S +CoordNN S .
of Vivaldi over Meridian in most cases are consistent with o1 o1 "+ | “Directdivzs
the experiments independently performed by Choffnes and 12 4 6 8 101214161820 12 4 6 8 101214 16 18 20

Search Hops Search Hops

Bustamante[[42]. The main reasons for the less accuracy (a) DNS1143 (b) DNS2500

of Meridian are the local minima caused by the TIV and
clustering in the delay space. On the other hand, Vivaldi can 1

1 _ —
adapt to TIV using adaptive coordinate movements. 08 b}”Hyb”dNN e o8 ] P oo

Relative Error. Fig[L1 shows the relative errors of DNNS 07 qMerdan  —_pirecones| - 071 | v ]
algorithms. The results are consistent with those of the ab-bos |  ~Merdan 2 0.5 1 000rdNN

& 0.4} : | ~DirectDN2S & 0.4} } j-Meridian

solute errors. DirectDN2S achieves near-zero relativergrr g3} : 0.3 5_EkDiredDst
for most DNNS queries on all data sets except Host479. 2] L' <CoordNN ol Al
HybrldNN and DirectDN2S have similar accuracy, while G1 2 "4 6 8 10 12 14 16 18 20 01 2 4 Qé 8 10 12 14 16 18 20
HybridNN is more accurate than DirectDN2S on Host479. Search Hops Search Hops
Furthermore, CoordNN is less accurate than HybridNN, while (c) DNS3997. (d) Host479.

Meridian and Vivaldi are less accurate than DirectDN2ig 12. The CCDFs of search hops.
HybridNN and CoordNN.

Search hops Next, we quantify the distributions of the

number of search hops for DNNS algorithms, as shown in1) System Siz&': To evaluate the size of service machines
Fig[12. Recall that the search hops are equal to the lengthsoafthe performance of HybridNN, we evaluate the performance
DNNS forwarding paths minus one. of HybridNN by increasing the size of service machines. We
We can see that the search hops of most DNNS querisdect target machines randomly from all nodes, including
are rather modest for all DNNS algorithms. Meridian in abouhe clients and the service machines, as the size of clients
80% of the cases has 2 search hops. While HybridNN asHrinks when increasing the percentage of service machines
DirectDN2S in over 80% of the cases have no more than JFig.[I3 shows the performance of HybridNN with increasing
Moreover, almost all searches for Meridian, HybridNNthe percentage of service nodes. HybridNN achieves similar
DirectDN2S are below 6 search hops. On the other haratcuracy when the size of service nodes increase compared to
CoordNN has longer search hops than Meridian, HybridN®&lients. Therefore, HybridNN is quite robust to the differe
and the DirectDN2S; and a fraction of search hops even excesedles of systems. On the other hand, the query loads of
10 on all data sets. HybridNN increase slowly, for example, HybridNN nearly
double the loads when the percentage of service nodes ache
1.
2) Inframetric p: Fig. [I4 shows the accuracy and loads
In this section, we evaluate the robustness of HybirdNN &5 the increment of Inframetric paramegerThe accuracy of
the system size as well as the choices of system parametdigbridNN is insensitive to choices of. This is because for

C. Sensitivity of Parameters
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Fig. 15. Non-Empty Threshold.
most delays, itsp-edge metrics are quite lower. Therefore,
with lower p we can cover possible best next-hop neighbors 4) Coordinate Dimensionz|: Fig. [I6 illustrates the ac-
for DNNS queries. Furthermore, although largeincreases cyracy and loads when the coordinate dimension changes.
the size of possible next-hop candidate neighbors, theslofd HybridNN achieves similar accuracy and loads as the acgurac
DNNS queries of HybridNN keep stable for differemtdue of coordinates keeps stably accurate as the dimension s ove
to that we use nearly constant-sized next-hop nodes. Beside Therefore, HybridNN can adapt to inaccuracy of different
we can see the standard deviations of errors are quite low fifensions of coordinates without increasing DNNS query

most data sets. loads efficiently.
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Fig. 14.  Inframetricp. Fig. 16. Coordinate Dimension.

3) Non-Empty Thresholg: Fig.[I5 shows the accuracy and 5) Nodes Per Ring\: Fig.[I7 describes the performance
loads as the increment of Non-empty thresholds for prunied HybridNN with increasing upper bounds of nodes per ring.
candidate neighbors for next-hop nodes. As the incrementtdybridNN achieves high accuracy event the size of one ring
non-empty thresholds for pruning candidate neighbors thatas small as 5. This is because HybridNN selects neighbors
have too few rings containing nodes, the standard deviatistom broader rang§, pd], whered is the delay from current
of HybridNN is reduced before the threshold reaches 4, thende to targets. Besides, the loads of HybridNN grow slowly
increases after the threshold is over 4, and the medianserras the size of ring increases. As HybridNN utilizes coortiina
are increased when the non-empty threshold exceed 8. Besidiistances to select limited number of candidate neighbor.
the loads are reduced when the non-empty thresholds icreas6) OverSampled nearest and farthest nodé€s Fig. [18
Therefore, selecting modest-sized non-empty threshelds, ( illustrates the performance of HybridNN as the variation
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Fig. 17. Nodes Per Ring. Fig. 19. Returned Nodes For Next-Hop Probes.

of oversampled number of nearest and farthest nolles X. PLANETLAB EXPERIMENTS

HybridNN achieves similar accuracy and loads when the over-We have implemented a prototype DNNS query system
sampled size of nearest neighbors and farthest neighbors Java using the asynchronous communication library. We
This is because we periodically start the oversampled pgycemplemented both HybridNN and Meridian. The core DNNS
which can find many nearby or far-away nodes accumulativelggic consists of around 5,000 lines of codes comprisingehr
main modules: (1) prober module, which uses the kernel-leve

: i 10 ping for delay measurements, to allievate application lleve
. o \ Loas perturbations caused by high loads of PlanetLab nodes; (2)
4 " neighborhood management module, which finds and maintains

neighbors on the concentric rings; (3) DNNS module, which

' 7 2 utilizes the HybridNN or Meridian algorithm.

‘ J 1111 : \ ] 1 \ J J J Our objective is to compare the accuracy and efficiency of
& 0 14 5 a4 38 4 " LS S 34 38 DNNS queries with related nearest server location methods

14
Oversampled K Oversampled K

(a) DNS1143. (b) DNS2500.

—— Accuracy
Loads

Load (KB)

Median Error (ms)
Load (KB)
Median Error (ms)

4

o

using real-world deployments. To that end, we choose 173
servers distributed globally on the PlanetLab as the servic
= Aoy nodes. Then we select another 412 servers on the PlanetLab
as the target machines. Our experiments last one week from
05-05-2011 to 12-05-2011.

We compare HybridNN with Meridian and iPlarie [33]. We

Median Error (ms)
Load (KB)
Median Error (ms)
Load (KB)

gl | ] L 2 choose the same parameter configurations for HybridNN and
oy Ll i S Meridian as in the Simulation section (9ec TX-A). For iPlane

Oversampled Kk Oversampled K we query iPlane to obtain the delays between service nodes

(c) DNS3997. (d) Host479. and target machines, then we compute the nearest serviee nod

for each target machine.

Besides, in order to compare the found nearest servers to
the ground-truth nearest servers, we compute the growlal-tr

7) Returned Nodes For Next-Hop Probe Fig.[19 plots nearest servers using direct probes (denotedir@st). Specif-
the median errors and loads of HybridNN with increasingally, since pairwise delays between PlanetLab machieep k
returned nodes for next-hop probes for HybridNN. For albdatarying due to routing dynamics, we first use the median delay
sets, HybridNN is accurate when the size of estimated neargs any node pairs to summarize the long-term delay trend.
candidate neighbors for direct probes exceeds 2. Moreovefien we select the service node that has the lowest median
the loads of HybridNN increase slowly as the increment efelay value to the target.
relaxed probes. This is because we also add neighbors with
higher uncertain coordinates, weakening the increased ove
head of relaxed probes. Besides, the search process typicér
terminates at 3 to 5 hops as we found during experimentsfFirst we compare the accuracy of different methods with
therefore the measurement overhead is mostly bounded betbe absolute error metric and the relative error metric eefin
3 KB. in Sec[IX=A. The results are shown in Fig]20(a) and (b).

Fig. 18. Over-sampled number of neighbors.

Accuracy



JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

HybridNN has significantly lower absolute errors and rgkati minute, and for Meridian is over 20 KBytes per minute. Since

errors than Meridian. iPlane is similar with HybridNN, buthe time interval of ring maintenance for both HybridNN and

incurs higher errors. The inaccuracy of iPlane is caused Meridian is identical, the all-pair probes between nodes in

the mismatch of the estimated routing paths and the reddwothe same ring is the main cause of the control overhead in

ones. The inaccuracy of Meridian shows that Meridian islgasiMeridian. On the other hand, as HybridNN uses the coordinate

trapped at local minimum far away from the optimal solutionslistances to update the rings, it does not need to do all-pair
On the other hand, HybridNN and iPlane are much accurapgpbes between nodes in a ring.

which implies that hybridNN can avoid bad local minima

in most cases. Nevertheless, HybridNN and iPlane also have XI. CONCLUSION AND FUTURE WORK

around 3% of DNNS queries with relative errors above 10. We have addressed the problem of designing an accurate and

we find that HybridNN incurs such high errors occur at thefficient DNNS algorithm in a comprehensive way. We first

early stage, where nodes do not have enough neighborsin tfieimulate the DNNS problem to account for both symmetric

concentric rings. and asymmetric delay metrics for latency optimizationse@i
the generalized delay metrics, we proposed to use the celaxe
B. Completion Time inframetric for modelling the delay space as a foundation

for designing new DNNS algorithms with strong theoretical

Next, we evaluate the completion time of individual DNNS, . antees concerning search overhead and accuracy of the
queries for HybridNN and Meridian. Empirically, we havesearch results.

found that both HybridNN and Meridian complete DNNS oyt e apply all the insights gained to design a new DNNS

queries within thre_e sgarch hops, which is consistent me talgorithm called HybrirdNN. HybridNN locates nearest rreig
simulation results in Fig 12. However, the overall queryeiimy g for any target using low bandwidth costs. For locating
for DNNS searches depends on not only the number of seagghiser server to any target, HybridNN maximizes the divgrsi
hops, but also the completion time of message exchanges gNghe neighbor set, by discovering neighbors within each

dela}y probes. L ) , delay range through a light-weight neighbor sampling pssce
Fig[20(d) plots the distributions of query time of |_Wbr'd'\”\‘Next, in order to reduce the measurement costs of locating

and Meridian. Around 85% of the DNNS queries in HybridNN,|oser servers, HybridNN combines network coordinate thase
are similar with those of Meridian. Therefore, query time f0yg|5y estimation and direct probes for fast and efficientesta
HybridNN and Meridian are similar in most cases. HOwWeVefgjghhor determination. Although the symmetric coordinat
around 20% of the queries take much large time t0 answerditances may deviate from the asymmetric delays, HybridNN
Meridian, and 10% have query time larger than 15 S‘ecomfiss'able to locate the nearest neighbor to the target at each

while the hybrid measurement approach of HybridNN cagharch step, since we use direct probes to replace erroneous

avoid large query latencies. delay estimations. Finally, HybridNN terminates the sharc
process conservatively in order to obtain better approxima

C. Query Overhead tions of nearest neighbors. We confirmed the efficiency and

Next, to quantify the bandwidth overhead of the pnngffectiveness of HybridNN with extensive simulation and a
queries of HybridNN and Meridian, we define the load O@rototy_pe deployment on 'Fhe PIanetL.ab. Hyl_)ridNN can locate
a DNNS query as the total size of the transmitted packealgproxmately closest neighbors quickly with low measure-
during the DNNS process. We plot the CDFs of the loads f@f€nt Costs. _ _

HybridNN and Meridian in Fig-20(d). The load of HybridNN _As future work, we plan to gontlnu_e tw_o Ilnes_of research.
is significantly lower than that of Meridian. In more than 9591rst, currently we use the revised Vivaldi to estimate ysla
of the cases the load of HybridNN is less than 2KByte¥‘,’h'Ch mismatches the asymmetric delay metric due to the

while in more than 50% of the cases the load of MeridiafymMmetry of the coordinate distances. We plan to extend

is more than 10 KBytes, which is due to the large siz¥valdi to asymmetric delay metrics. Second, we plan to

of the candidate neighbor set for DNNS queries. Thereforgudy in-advance DNNS probing in order to hide the waiting

the delay estimation of HybridNN substantially reduces tH&n€ of on-demand DNNS queries for more practical latency-
measurement overhead. optimizations.
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APPENDIX

Lemma[VLIL: Given g-inframetric with growth~, > 1,
E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. MairgdSearching for any z > p, r > 0 and any nodeP, the volume of a ball
Bp(r) is at mostz® smaller than that of the balBp(xr),

wherelog,y, < a < 2log,v,.

Proof: First, according to the definition of the growth, it

S. M. Hotz, “Routing information organization to suppcscalable follows:

interdomain routing with heterogeneous path requirenjeRtsD Thesis,
Computer Science Department, University of Southern Qali, Los

Angeles, California, 1994.

|Bp (2r)] < 74

(3)


http://www.ietf.org/rfc/rfc4656.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.3826
http:/pdos.csail.mit.edu/p2psim/kingdata/.
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Then, by recursively callinjlogp:ﬂ times the growth defini- show the relation between the baBlp (pr) and the ball

tion, until ,,ﬁoﬁ < 1, then Br (Br) wheres < 1,
2 2\ ¢
ogpa p p
Bp (21)] < 7,57 | Bp (r)] = 21085 | B (1) [Bp (pr)| < ’BT (gﬂr)‘ < (E) |Br (Br)]

=z%|Bp (r)|,a =log,vs X |log,z -
1Br (r)] 829 { S ] wherelog,v, < a < 2log,v,. Therefore, the probability of

Therefore, by the definition of the ceiling function, we camniformly sampling a node fronBp (pr) which lies in the

calculate the lower bound af as: ball Br (pr) is:
a > log,vg X log,x = log 7, |Br (Br)| > |Br (Br))| _ 1
1Bp (pr)] — (22)* o
On the other hand, due to> p, v, > 1, we get (5 ) | Br (Br)l ([5)
lo lo ili 2\ i
log, 7y = g9 > g% _ log, 7, Consequently, the probability tha( 5 ) samples are not in
logp — logx the ball Br (Br) is at most
thus we can compute the upper boundoés: 3(ﬁ)‘*
3
a < log, 7y x (log,z +1) 1- % < (1) <0.05
= log,vy + 10g,7g (%) e
< log,vy +1og,7g . . : ,
= 2log, 7, Thus, with probability more than 95% we %ucceed in locating
a node lying in the balB with 3( &) samples. ®
this concludes the proof. [] ying r (Br) (ﬂ ) P
Lemmd VLP: (Sandwich lemma) For any pair of ngdand Corollary A.1. For a relaxed inframetric model with growth
¢, andd,, <r, then 74, according to the DNNS process in Definitibn V1.4, the
) found nearest neighbor is g—approximation, and the number
By (r) € By (pr) € By (P 7‘) of search steps is smaller thdog. A, where A is the ratio
of the maximum delay to the minimum delay of all pairwise
Proof: (1)For any node: satisfying d,; < r, ie., delays.
i € Bg(r), by the definition of the inframetric model, Proof: If a DNNS request is forwarded from node to
dpi < pmax{dpg,dq} < prithusi € B, (pr), that is, node @, the progressis said to begﬂ. According to the

DNNS search process, by Theorﬁ/l.& the progress is at
Ieast% at every nodeP, therefore in at moﬂbg%A steps, we

(2) For any nodg satisfying;j € B, (pr), by the definition reach some node satisfyingd,s < d., which terminates

By (r) C By (pr)

of the inframetric model, it follows the DNNS query process as we can not find suitable next-
hop neighbors, wheré, is the minimum delay to targef.
dgj < pldpg, dpi} < p?r Therefore, the found nearest neighhois %—approximation.
]
Summing up (1) and (2) conclude the proof. ]

TheoremVI.B: (Sampling efficiency in the growth dimen-
sion) For ap-inframetric model with growth,, > 1, for a ser-
vice nodeP, ang a DNNS targef” satisfyingdpr < r, when
selecting3 % nodes uniformly at random from®p (pr)
with replacement, with probability of at least 95%, one of
these nodes will lie i3z (5r), wherelog,,y, < o < 2log,v,
and g < 1.

Proof: since By (Br) € Br(r) € Bp(pr) by the
sandwich lemmd_VI]2, all nodes covered B (5r) are
also covered byBp (pr). Therefore, we only need to sample
enough nodes iBp (pr) in order to sample a node located
in By (57‘)

Furthermore, for the pair of nodeB and T satisfying
dpr < r, it follows

B (or)| < [Br (s%7)| = |Br (%BN

Since we knowp > 1, then £ s p* > p, therefore the
preconditions of lemma _VIl1 hold, by lemnia MI.1, we can
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