
Computer Networks 64 (2014) 369–389
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
CommonFinder: A decentralized and privacy-preserving
common-friend measurement method for the distributed
online social networks
http://dx.doi.org/10.1016/j.comnet.2014.02.020
1389-1286/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 13308491230 (Y. Wang).
E-mail addresses: yongquanf@nudt.edu.cn (Y. Fu), wangyijie@nudt.

edu.cn (Y. Wang), wpeng@nudt.edu.cn (W. Peng).
Yongquan Fu a, Yijie Wang a,⇑, Wei Peng b

a Science and Technology on Parallel and Distributed Processing Laboratory, College of Computer, National University of Defense Technology,
Hunan Province 410073, China
b College of Computer, National University of Defense Technology, Hunan Province 410073, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 November 2012
Received in revised form 9 October 2013
Accepted 3 February 2014
Available online 7 March 2014

Keywords:
Distributed online social network
Privacy
Common friends
Friend recommendation
Coordinate
Bloom filter
Distributed social networks have been proposed as alternatives for offering scalable and
privacy-preserving online social communication. Recommending friends in the distributed
social networks is an important topic. We propose CommonFinder, a distributed common-
friend estimation scheme that estimates the numbers of common-friends between any
pairs of users without disclosing the friends’ information. CommonFinder uses privacy-
preserving Bloom filters to collect a small number of common-friend samples, and
proposes low-dimensional coordinates to estimate the numbers of common friends from
each user to any other users. Simulation results on real-world social networks confirm that
CommonFinder scales well, converges quickly and is resilient to incomplete measurements
and measurement noises.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Online social networks such as Facebook, YouTube,
Flickr have become quite popular these days. However,
there are also hot debates over the privacy protection of
these centralized social services. For example, the service
providers can peek at users’ profiles at will for targeted
advertisements or even sell these sensitive information to
third parties for profits. As a result, improving the privacy
protection of social networks becomes increasingly
important.

Fortunately, borrowing the success of the P2P systems,
the distributed online social networks (DOSN for short),
e.g., Safebook [1], LotusNet [2], Cuckoo [3], diaspora [4],
Peerson [5], Vis-a-Vis [6] have been proposed to better
protect users’ privacy by hosting the DOSN infrastructures
based on decentralized end hosts. The key idea is to store
personal data on decentralized nodes and to enforce strict
access rules on who can visit a user’s profile.

To increase the popularity of distributed online social
networks, an open question is how to find potential friends
for users, which is known as the friend recommendation
problem. The centralized online social networks are able to
compute possible friends by using the complete knowl-
edge of users’ profiles. Unfortunately, for DOSNs, it is com-
monly believed that end hosts are unwilling to publish
their profiles to unknown entities because of the privacy
leakage. As a result, it is highly desirable to develop scal-
able and privacy-preserving methods to quantify the possi-
bility of being friends for DOSN users.

One of the most popular metric for friend recommenda-
tion is based on the Number of Common Friends (NCF for
short), which has been shown to be very effective to rec-
ommend new friends or find old friends [7]. Measuring
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Table 1
Notations and their meanings.

kI The number of hash functions in a Bloom filter

mI The length of a Bloom filter
N The number of users on the DOSNbX The coordinate distance matrix

Y The pairwise NCF matrix between a set of users
L The maximal NCF value
d The coordinate dimension
h The NCF-mapping thresholds
k The number of recommended users
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NCF values in the distributed online social networks is
however, a difficult task. First, disclosing friend lists to
non-friend users could severely leak users’ privacy infor-
mation [8,9]. Second, the NCF computation has to scale
well since most end hosts have limited bandwidth
capacity.

Talash [10] computes the common friends based on
exchanging friend lists between pairs of users, which not
only leaks personal information, but also does not scale
well. The PSI approach [11–14] represents a list of friends
with coefficients of a polynomial. It then exchanges Homo-
morphic encrypted coefficients via the communication
links, and finally computes the sums of coefficients, which
correspond to the set of common items in two friend lists.
The PSI approach works well for semi-honest users, but in-
creases the transmission bandwidth and the computation
costs.

We propose a scalable and privacy-preserving distrib-
uted NCF estimation method called CommonFinder that
estimates the NCF values between any pairs of users and
is able to select top-k users that have the largest NCF
values.

CommonFinder represents a user’s friend list with the
well-known Bloom filter. Our privacy analysis (Section 8)
proves that the Bloom filter provides the differential pri-
vacy [15,16] for the friend list: Given a user i’s Bloom filter,
a curious entity is unable to determine who are user i’s
friends.

Unfortunately, exchanging the Bloom filters may need
several KBytes bandwidth costs in order to control the false
positives of the Bloom filter. To further increase the scala-
bility of estimating the NCF values, we propose a distrib-
uted maximum margin matrix factorization method to
estimate the NCF values by low-dimensional coordinates.
As a result, the transmission size is fixed to be the length of
the coordinate that is independent of the length of the friend
lists or Bloom filters.

We model the NCF completion problem with the maxi-
mum margin matrix factorization method and provide a
systematical design of a distributed NCF prediction method
that significantly extends our prior work [17,18]. The
MMMF method maps contiguous matrix factorization re-
sults to discrete NCF values with adaptive thresholds.
These thresholds are learnt during the process of optimiz-
ing the matrix-factorization model. To adapt to the decen-
tralization of users, we reformulate the MMMF method in
separable objective functions that involve each user’s coor-
dinate and a small number of neighbors. For each user, we
design a fully decentralized conjugate gradient optimiza-
tion method to adjust the coordinates of each user that
converges quickly.

Finally, we present extensive privacy analysis and sim-
ulation results over the real-world social network topolo-
gies. Our results show that CommonFinder not only
protects users’ friend lists, but also significantly improves
the prediction accuracy and is more robust against incom-
plete or incorrect NCF measurements than previous
methods.

The rest of the paper is organized as follows. Section 2
introduces the background information. Section 3 next
defines the problem of predicting NCF values with
preservation of users’ privacy. Section 4 then analyzes typ-
ical characteristics of social-network data sets. Section 5
next presents an overview of our proposed NCF prediction
methods. Section 6 presents the coordinate computation
process. Section 7 next applies the decentralized coordi-
nates to select top-k users for recommending friends.
Section 8 then measures the degree of the privacy protec-
tion offered by CommonFinder. Section 9 next compares
CommonFinder’s performance with extensive simulation
results. Section 10 next confirms CommonFinder is robust
to Sybil accounts. Section 11 then summarizes related
work. Section 12 concludes the paper. Table 1 shows key
parameters.

2. Background

2.1. Distributed online social networks

We introduce the basic characteristics for existing
DOSNs.

2.1.1. Social graph
Let a user be an online entity that participates in the

DOSN. Each user A has a friend list SA, where a friend B
of a user A is a user B that establishes the social link or
friendship link with user A on the DOSN. The common
friends of two users A and B are represented by the subset
of users that are both friends of user A and B at the same
time.

Users and social links form a social graph. Each user
and his/her friends are adjacent on the social graph, which
correspond to one-hop neighbors to each other. The de-
gree of each user amounts to the size of its neighbors on
the social graph. The number of hops between two users
amounts to the length of the shortest path for these two
users on the social graph.

2.1.2. Privacy-preserving message routing
Users’ data are usually stored into his/her own com-

puter. For improving the availability of users’ data when
they are offline, some DOSNs like Safebook replicate each
user’s data on his/her friends’ computers. These friends’
replication will be used for offline users.

The social graph is maintained via some kind of Peer-to-
Peer substrates. When a user joins the DOSN, each user’s
computer needs to be registered in the Peer-to-Peer
substrate consisting of decentralized computers. Users’
real names are decoupled with randomized keys called
identifiers that are generated by cryptographic hash
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functions like SHA-1. The identifier is originally used for
routing messages among users, but for the DOSN context,
these identifiers also hide persons real-world names, since
each identifier can be assumed as a perfectly random
variable.

The identifiers are robust against dictionary attacks by
curious users. Since the space of the identifiers is huge en-
ough to prohibit the enumeration because of the over-
whelming computational overhead. For example, there
are 2160 kind of possible strings for 160-bit identifiers.

Existing DOSNs usually route messages among users’
along the social connections in a hop by hop manner, in or-
der to protect the privacy of the end-to-end communica-
tion. Since each logical link corresponds to the real-lift
friendship, otherwise, sending a request message from a
user to another non-friend user may be eavesdropped by
curious or malicious users.
2.2. Establishing friendship on the DOSNs

We introduce how users locate real-life friends on the
DOSNs.
2.2.1. Searching friends
A user that logs into an OSN usually searches real-life

friends with their names and filters out non-friend users
by checking their profiles. The search procedure differs
for centralized and distributed OSNs:

� When centralized OSNs receive users’ requests, the
back-end servers query the OSN’s databases to select
matched users’ profiles.
� For most DOSNs, since users’ profiles are stored on

decentralized nodes, users’ requests are routed among
the Peer-to-Peer substrate. The response either locates
exactly matched users or fails when timeout events
occur.

Unfortunately, searching real-life friends is time-con-
suming for users, since users have to manually look up
every friend he/she has remembered. Therefore, comple-
ment to the search process, most OSNs also recommend
friends based on users’ profiles and friend lists.
2.2.2. Recommending friends
To recommend friends, the OSNs have to locate the set

of users that are likely to be future friends for a user. The
Number of Common Friends (NCF) is frequently used to
quantify the probabilities of being friends between users.
Then recommending friends for each user A is realized by
selecting the top-k users having the largest NCF values
with user A. These top-k users will serve as the recom-
mended future friends. Afterwards, users are prompted
with these top-k users in the OSN’s web pages. Each user
later can send invitations to those people in the list. The
NCF values may be appended as a proof of the friendship.
Upon receiving the acknowledge of accepting the invita-
tion of being friends, a new friendship link is then
established on the DOSNs.
2.3. Maximum margin matrix factorization based
collaborative filtering

We next introduce the Maximum Margin Matrix Factor-
ization (MMMF) method [19] for the collaborative filtering
problem, which seeks to predict rating scores from users to
goods, given a partially available set of rating histories.

2.3.1. Predicting rating scores with matrix factorization
Given Nc customers and Ng kinds of items, we can orga-

nize the set of rating scores as a Nc-by-Ng rating matrix Y,
where Yij denotes the rating score from user i to the item
corresponding to the jth column. The objective of the col-
laborative filtering problem is to complete the missing
items in the matrix Y. One of the most popular collabora-
tive filtering approach is the matrix factorization, which
trains a low rank matrix bX to approximate the rating ma-
trix Y.

To obtain the matrix bX, the matrix factorization has to
minimize a loss function that quantifies the differences
between Y (training set) and bX. For a complete matrix Y,
the Singular Value Decomposition (SVD) method yields
the optimal low-rank approximation [20]. But when Y
has some missing items, SVD becomes less accurate with
increasing missing items, since it treats all missing items
as the same constant values.

Worse still, finding the optimal matrix bX for an incom-
plete matrix Y is likely to fail due to the overfitting phe-
nomenon: although items in the training set are predicted
perfectly, the items out of the training set however receive
large prediction errors. Fortunately, in order to mitigate
the overfitting issue, it is well known that we can control
the capacity of the loss function by combining the loss
function with a regularization model.

Further, the matrix bX are generally contiguous values,
while the rating scores in Y are usually discrete integers,
e.g., from one star to five stars. As a result, we have to
map the contiguous outputs to discrete rating values,
which is generally a classification problem. Unfortunately,
SVD simply rounds the contiguous values to nearby inte-
gers, which may degrade classification errors.

2.3.2. Overview of MMMF
Suppose there are a total number of L rating scores, in

order to optimize the classification of rating scores, MMMF
introduces a N-by-ðL� 1Þ threshold matrix h. The threshold
matrix h is unknown a prior and must be learnt from the
training process. The ith row vector ~hi of the matrix h is
used for mapping the ith row vector of the matrix bX to dis-
crete rating scores.

MMMF classifies rating scores according to the Support
Vector Machine (SVM). Suppose that we need to group bX to
a binary matrix Y, the SVM groups bX to two separate clas-
ses by locating a hyperplane that separates the items from
one group with items in the other group. In MMMF, the
threshold matrix is analogous to the hyperplane that sepa-
rates items in bX to discrete rating scores. The optimal
hyperplane of a SVM is defined as the one with the largest
margin between pairs of items from two groups, where the
margin amounts to the maximum distance of the slab that
is orthogonal with the hyperplane.
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2.3.3. Mapping bX to rating scores
MMMF maps the ith row vector in matrix bX by the

threshold vector~hi, the ith row vector of the threshold ma-
trix h. Let hi

!¼ hi1; . . . ; hiðL�1Þ
� �

be a vector of thresholds
sorted in the ascending order. We create N adjacent
intervals:

�1; hi1ð �; hi1; hi2ð �; . . . ; hiðL�1Þ;þ1
� �

with ~hi as ðL� 1Þ separating points.
For each item bXij, its rating score is calculated as the in-

dex of the interval that contains the item bXij. For example,
suppose there are two thresholds ð�0:2;0:3Þ that separate
the whole range of real values into three intervals:

�1;�0:2ð �; �0:2;0:3ð �; 0:3;þ1ð Þ

An item bXij ¼ 0:2 is then mapped to 2, since bXij is within
the second interval �0:2;0:3ð �.

2.3.4. Soft margin loss function
An optimal classification of the estimated matrix bX to

the rating score matrix Y means that, each item bXij should
be contained in the interval hiðYij�1Þ; hiYij

� i
, otherwise, we

have a misclassification.
The hard margin matrix factorization seeks a matrix bX

matching observed rating scores by classifying each itembXij with immediate thresholds hiðYij�1Þ and hiYij
of the Yijth

interval:

hiðYij�1Þ þ 1 < bXij < hiYij
� 1 ð1Þ

for all ij 2 S. Unfortunately, the hard margin is sensitive to
noises. Noises are common in bX, since bX consists of inher-
ent uncertainty. Further, Eq (1) is non-differentiable, caus-
ing the nontrivial difficulty for the optimization process.

For improving the robustness against noises, the soft
margin matrix factorization relaxes the hard constraint of
Eq. (1) by adding slack variables nij P 0

� �
for all ij 2 S:

hiðYij�1Þ þ 1� nij < bXij < hiYij
� 1þ nij ð2Þ

As the optimal solution for Eq. (2) amounts to that by opti-
mizing the hinge loss function h zð Þ ¼max 0;1� zð Þ [19]
(the distance from the classification margin), we transform
Eq. (2) to:

L Yij; bXij

� �
¼ h bXij � hiðYij�1Þ

� �
þ h hiYij

� bXij

� �
ð3Þ

Enforcing the hinge loss function makes Eq. (3) become dif-
ferentiable, therefore, Eq. (3) can be solved via the convex
optimization.

Further, MMMF also penalizes the errors of classifica-
tion with all thresholds in each threshold vector in order
to further improve the robustness of Eq. (3):

L Yij; bXij

� �
¼
XL�1

r¼1

ðLðr; bXijÞÞ ¼
XYij�1

r¼1

h bXij � hir

� �
þ
XL�1

r¼Yij

h hir � bXij

� �

¼
XL�1

r¼1

h Tr
ij r;Yij
� 	

� hir � bXij

� �� �
ð4Þ

where the indicator function Tr
ij determines whether a

threshold item r in hi
!

is larger than the rating score Yij:
Tr
ij r;Yij
� 	

¼
þ1 r P Yij

�1 r < Yij



ð5Þ
2.3.5. Formulating objective function
MMMF seeks to optimize Eq. (4) with robustness

against the overfitting phenomenon. To that end, MMMF
finds a matrix bX and a classification matrix h by minimiz-
ing the loss function in Eq. (4) plus two regularized items
ð Uk k2

F þ Vk k2
F Þ, where �k kF denotes the Frobenius norm that

amounts to the squared root of the sum of squared items in
the matrix U or V. The regularized item is used for the
capacity control in order to mitigate the overfitting prob-
lem of Eq. (4).

The objective function of MMMF can be written as:

JðU;V ; hÞ ¼
XR�1

r¼1

X
i;j2X;Yij>0

hðTr
ijðhir � Ui�V�jÞÞ þ

a
2
ð Uk k2

F þ Vk k2
F Þ

ð6Þ

where a is a trade-off constant.
MMMF solves Eq. (6) based on the Polak–Ribière variant

of the nonlinear conjugate gradient methods (PR-CG) in a
centralized manner. PR-CG incurs a linear computation
complexity, converges quickly and is robust to missing or
erroneous inputs [21].
2.4. Differential privacy

The differential privacy [15,16] represents one of the
state-of-art privacy-protection techniques. A database
stores a set of items. Users interact with the database
through statistical queries and the database responds
query results on stored items. The differential-privacy
method provides very strong protection of the privacy:
For any two databases D1 and D2 that differ only one
items x, i.e., D1 � D2 ¼ x. An adversary is unable to dis-
tinguish whether the entity x is in the database D1 or
D2.

A random function j provides �-differential privacy if
for any two databases D1 and D2 having one different item,
i.e., where jD1 � D2j ¼ 1 and all / # Range jð Þ

PrðjðD1Þ 2 /Þ 6 expð�Þ � PrðjðD2Þ 2 /Þ ð7Þ

where Range denotes the output of the random function j
[15]. The random function j adds some random noises to
the query results. The parameter � is public to all users.
Setting � is up to the users’ decisions.

The degree of the privacy protection of the random
function j depends on the scale of the added noise and
the sensitivity of the query result. The sensitivity states
the maximum difference of the query results due to adding
or removing an entity from the database:

Definition 1. For a function f : D! Rd over a certain
domain D, the sensitivity of a function f is
Dðf Þ ¼ max
A;B;A�B¼1

f Að Þ � f Bð Þk k1 ð8Þ

[15]
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For real-valued functions, the most popular differential
privacy approach [15] is to add independently identical
distributed (i.i.d) noises from the Laplace distribution to
the query result, which provides �-differential privacy:

Theorem 1. For a function f : D! Rd over a certain domain
D, a random function

MðxÞ ¼ f ðxÞ þ Laplace
Dðf Þ
�

� �� �d

ð9Þ

provides �-differential privacy [15].
3. Problem definition

We first introduce how we model the behaviors of
users. We next present the requirements of recommending
friends based on the numbers of common friends.
3.1. Adversary model

Users Trust Friends. We assume that users trust their
friends and allow their friends to visit their profiles includ-
ing their friend lists, since online friends correspond to the
real-world friendships. In the social graph, it means that
each user trusts his one-hop neighbors. This model allows
for the anonymous communication process on the DOSN,
since each user can recursively sends messages to his or
her friends.

Users Are Semi-honest. We further assume that users
are semi-honest [22]: users may be curious to learn the
friend lists of non-friend, but they follow the common-
friend measurement protocol and do not claim fake friends
about his/her friend list. Particularly, each user is able to
eavesdrop on the logical communication links connecting
that user.

Although the semi-honest model is simple, designing
algorithms for DOSNs turns out to be nontrivial due to
the large scale and the decentralization of nodes. Further,
we will extend our model to tolerate Sybil users that could
inject fake friend-list information into the system (see
Section 10).

3.2. Disclosing friend lists leaks privacy

To recommend each user a set of candidate friends
based on the NCF metric, the OSN needs to know the sizes
of the intersections of the friend lists among two-hop
users.

Unfortunately, directly disclosing the friend lists to
non-friend causes severe privacy leakage. This is because
the friendship links on the social graph can serve as the fin-
gerprints to locate users’ activities [23]. For example, users’
personal profiles could be accurately inferred from their
friends even they hide their profiles [8]. Therefore, to bet-
ter protect users’ privacy, centralized OSNs allow for users
to hide friend lists from non-friend.

Further, disclosing friend lists to non-friend is also vul-
nerable to the Identity Cloning Attack (ICA) [9]. Suppose
that a user T obtains a large number of friend lists of users
on the OSNs. To establish the friend link with each user A,
user T creates an account with a friend list by copying from
friend lists of user A and some other users for randomiza-
tion. Then user T will have many common friends with
user A, therefore, user T will be likely to be listed in the
top-k recommended users of user A according to the NCF
metric.
3.3. Problem requirements

We next summarize key requirements for computing
pairwise NCFs in DOSN settings:

� Privacy-preserving. Friend lists should be treated as
privacy information since disclosing them may leak
users’ privacy and suffer from the ICA attack in Sec-
tion 3.2. However, hiding the friend lists from non-
friend significantly increases the difficulty of computing
the NCF values.
� Decentralized. As there exist no centralized entities

that are able to collect the friend lists of all users
on the DOSN, users have to compute the NCF values
with their two-hop neighbors on the social graph in
a distributed manner. Further, the NCF-computing
process among two-hop online users should still work
despite some users may join or leave the DOSN at
will.
� Scalable. Computing the NCF values should require low

bandwidth overhead and scale well with increasing
friends, since each user only has limited computing
and bandwidth resources.

3.4. A naive privacy-preserving NCF-computation solution

One simple decentralized approach is to let each friend
B of a user A be the broker of computing the NCF values for
user A [?]. User B computes the NCF values between A and
those in B’s friend list. To that end, user B requests the
friend lists from user A and one friend C, and then calcu-
lates the intersection of two friend lists of A and C. We
can see that the friend lists are always kept at one-hop
neighbors. Since each user trusts one-hop neighbors on
the social graph, the privacy of the friend list is preserved.

For calculating the common friends between any pair of
two-hop users, each broker j needs O

P
p2List jð ÞList pð Þ

� �
com-

munication overhead, where ListðÞ denotes the list of
friends of a user. The computation overhead is.

O
P

p2List jð Þ
P

q2List jð Þ;p–qjList pð ÞjjList qð Þj
� �

for querying the
existence of each item over the friend lists. Due to the
skewed distributions of friend lists shown in Fig. 1(a), the
DOSN faces severely imbalanced computation and trans-
mission costs.
4. Analyzing the NCF metric of the online social
networks

To better understand the characteristics of pairwise NCF
values, we next analyze the NCF metric with OSN data sets.
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Fig. 1. The CCDF plots of key statistical metrics.
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4.1. Data sets

We choose three representative social graphs that are
all collected by the online social networks research group
in the Max Planck Institute for Software Systems [24–26].
Table 2 summarizes the basic information for each of the
networks.

4.2. Distributions of numbers of friends

We first plot the Complementary Cumulative Distribu-
tion Function (CCDF) of the number of friends for all users.
Fig. 1(a) shows that the sizes of friend lists are quite non-
uniform. Most friend lists have modest sizes, but a small
number of friend lists could have thousands of friends.
For Facebook and YouTube data sets, only 5% of users have
more than 100 friends, while for the Flickr data set, over
30% of users have over 100 friends.

4.3. Distributions of numbers of common friends

We then plot the NCF values between online users in
Fig. 1(b). The NCF values are non-uniformly distributed.
For the Facebook and YouTube data sets, most one-hop
or two-hop users have only one common friends, but there
exists 10% of pairs having a large number of common
friends. For the Flickr data set, there are much more com-
mon friends than the other two data sets, where around
30% of pairs have more than 500 common friends.

4.4. Triangle inequality violations of numbers of common
friends

We next test whether the pairwise NCF values meet the
triangle-inequality assumption required by the metric
space model. The triangle inequality states that the sum
of two NCF values is always not smaller the third NCF value
for a triple ði; j; qÞ: Yij þ Yjq P Yiq. We define the triangle
Table 2
Dataset summary.

Network Date # Users

Facebook 12/29/2008, 1/3/2009 60,29
Flickr 11/2/2006, 104 days 2,570,53
YouTube 1/15/2007 1,157,82
inequality violation (TIV) as TIVijq ¼
Yiq

YijþYjq
. When TIVijq > 1,

this triple ði; j; qÞ has a TIV.
From Fig. 1(c), most triples follow the triangle inequal-

ity, but there exist about 5% of triples violating the triangle
inequalities. Further, for the YouTube and Flickr data sets,
some triples may have large degrees of the triangle
inequality violation. Since the pairwise NCF values do not
fulfill the metric-space requirements, there exist inherent
distortions for predicting NCF values with the metric space
based methods such as LandmarkMDS.

5. Designing a privacy-preserving NCF computation
method for DOSNs

We next present a scalable and privacy-preserving NCF
prediction method that measures NCF values with con-
stant bandwidth overhead.

5.1. Intuitions

Since our major objective is to recommend friends
based on top-k NCF values, we do not necessarily know
the exact list of common friends. Further, the recommen-
dation also tolerates a low degree of prediction errors, as
different people have varying subjective views on friends.
We can obtain a more efficient NCF computation method
with sketches of friend lists that have compact storage
structures. For obtaining the pairwise NCF values scalably
with the protection of users’ privacy, our work applies
the well-studied Bloom filters and the collaborative filter-
ing methods to measure NCF values the decentralized
OSN settings.

5.2. Architecture

We present the main components in the CommonFind-
er method. For ease of presentation, assume that a user Bob
# Links Authors

0 1,545,686 Viswanath et al. [24]
5 33,140,018 Cha et al. [25]
7 4,945,382 Mislove et al. [26]
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logs into the DOSN. As plotted in Fig. 2, at the top level,
CommonFinder provides two interfaces for the upper-layer
friend recommendation application:

� Top-k ranking: Selects at most k two-hop users having
the largest numbers of common friends with Bob. These
users will serve as the recommended friends for Bob.
The number of common friends for a pair of users is
computed via the NCF-prediction component.
� NCF prediction: Computes the NCF value between Bob

and any other DOSN user based on their decentralized
coordinates. Each user’s coordinates is freely exchanged
among DOSN links.

The coordinate-maintenance component manages a
user’s coordinate in a fully distributed manner. Each user
is assigned a random coordinate when he/she logs into
the system; afterwards, a daemon incrementally maintains
each user’s coordinate.

For maintaining the coordinates, the neighbor-manage-
ment component selects neighbors from online users hav-
ing non-zero NCF values. This neighbor-management
component sends heart-beat messages to these users and
pulls back online users’ coordinates via the piggyback
messages.

The Bloom-filter component represents each user’s
friend list with a Bloom filter. It uses a bit array to repre-
sent a list of items. Each item is hashed to a number of bits
according to a set of hash functions. The storage and trans-
mission overhead are reduced by a constant factor com-
pared to the friend lists. To test whether an element is in
the friend list, we compute the bits in the bit array using
the same set of hash functions, and test whether these bits
are all set to ones. If yes, then the Bloom filter returns that
the element is in the friend list.
5.3. Exchanging bloom filters for privacy protection

We select the Bloom filter as the sketch structure. Each
Bloom filter has a certain probability of false positives, i.e.,
Top-k Ranking NCF prediction

Bloom-filter
 maintenance

Coordinate
 maintenance

Neighbor
management

Fig. 2. The main components of the NCF computation method.
it may claim a user that is not in the friend list to be in the
list. The false positives are often treated as one drawback of
the Bloom filter. However, each user can state that he/she
is not represented by the Bloom filter because of the uncer-
tainty caused by false positives. Therefore, we can use the
false positives to protect the privacy of users’ friend lists,
since a curious user cannot exactly infer who is in the
friend list by querying the sketch.

Suppose that we represent each friend list with a Bloom
filter, two users can exchange their Bloom filters to each
other without worrying about the loss of privacy of the
friend lists. In Section 8.2, we prove that the Bloom filter
provides differential privacy for the friend lists.

5.4. Scale the NCF computation with decentralized prediction

The transmission and computation overhead of the
Bloom filter are still linear with the sizes of friend lists.
For controlling these overhead, we predict NCF values with
decentralized coordinates.

5.4.1. Overview
We compute the NCF values with the Bloom filters for a

small fraction of users, then we predict the NCF values for
the rest of pairs of two-hop users with low-dimensional
coordinates. Accordingly, each user has a low-dimensional
coordinate, the NCF value between a pair of users amounts
to the coordinate distance between these two users. Esti-
mating NCF values with decentralized coordinates has at
least two desirable advantages:

� Scalability: The coordinates incur fixed computation
and communication costs, which are independent of
the sizes of the friend lists.
� Privacy-protection: Since coordinates are low-dimen-

sional real-valued vectors, exchanging coordinates only
reveals the NCF values without the information of the
friend lists.

Let Y denote a N-by-N matrix that denotes the pairwise
NCF values for pairs of users. For correctly predicting NCF
values, the coordinates must be optimized with respect
to an objective function. Selecting an appropriate objec-
tive functions is nontrivial:

� Sparse: The NCF matrix Y may be quite sparse, because
Yij amounts to zero for any pair ði; jÞ of users that are
more than two hops away on the social graph.
� Distributed: Since users are decentralized in DOSN,

optimizing the coordinates has to be performed in a dis-
tributed manner, where each user adjusts his/her own
coordinate adaptively with respect to a number of
neighbors.

Predicting NCF values is analogous to completing the
rating scores by users in the collaborative filtering field,
since both are discrete integers. We thus propose to predict
NCF values for decentralized pairs of users by borrowing
the success of the collaborative filtering field [27]. The
MMMF method (see Section 2.3) is robust to missing items,
but we have to transform the centralized MMMF
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method to a decentralized MMMF method since users are
decentralized in the DOSN context. We solve the distrib-
uted MMMF method with a novel decentralized conjugate
optimization method that converges quickly to stable
positions.

5.4.2. Coordinate structure
We next introduce the structure of the coordinates.

Let S denote a set of DOSN users. Let N be the size of
set S. Let d be a constant parameter (d	 N). Recall that
the MMMF method computes a N-by-N matrix bX and a
N-by-ðL� 1Þ threshold matrix h for predicting discrete
rating scores. The ith row vector of matrix h is used to
separate real values of the ith row vector in matrix bX
to discrete values.

� The matrix bX is represented by a linear combination of
two low-rank matrices: bX ¼ U � V , where U is a N � d
matrix, V is a d� N matrix, and d	 N. Each row vector
of the matrix bX is represented by the inner product of
vectors from U and V , i.e., bXij ¼

Pd
m¼1uimvmj.

� The threshold matrix h ¼ hilf g, where i 2 S; l 2 1; L� 1½ �,
is learnt from MMMF’s optimization process.

For predicting NCF values with the MMMF method, we
assign row vectors of the matrices bX and h to decentralized
users. For each user i, we set its coordinate as two low-
dimensional vectors ð~ui;~v iÞ and a vector of threshold val-
ues ð~hiÞ, where ~ui denotes ith row vector of U, ~v i denotes
the ith column vector of V, and ~hi represents the ith row
vector of h. Accordingly, the coordinate distance bXij be-
tween two users i and j amounts to the dot productbXij ¼ uiv j.
5.4.3. NCF prediction
To predict NCF values to another user j, each user i maps

the coordinate distance bXij to a discrete NCF value with his/
her own threshold vector ð~hiÞ. Algorithm 1 summarizes key
steps to compute the NCF values with coordinates. Step 2
computes the distance bXij. Steps 3–7 determine the index
of the interval that contains bXij. We can see that user i does
not need user j’s threshold vector. Fig. 3 shows an example
of computing NCF values by users.
Algorithm 1. Mapping the coordinate distance to the NCF
value.

1 MapXtoY (~ui, ~v j, ~hi)
input: ~ui: user i’s coordinate component, ~v j: user j’s

coordinate component,~hi: User i’s threshold vector.
output: y

2 bXij ¼ ~ui �~v j;
3 y = 1;
4 for l ¼ 1! ðL� 1Þ do

5 yþ ¼ bXij P hiðlÞ?1 : 0;
6 end
7 return y;
5.4.4. Coordinate dissemination
Fig. 3. Mapping the coordinate distance to NCF values.
In order to predict pairwise NCF values, users need to
exchange the low-dimensional vectors corresponding to
the matrix factorization model, but hides each user’s
threshold vector from other users. For example, each user
i can request any other user j’s coordinate components
ð~uj;~v jÞ. However, we do not allow each user to request
other user’s threshold vector. As a result, each user is only
able to predict NCF values from himself/herself to other
users, but cannot determine the NCF values of an arbitrary
pair of users.

Sending the threshold vectors could leak users’ friend-
ship information. Since knowing the nonzero NCF values
of a user pair indicates that two users are either friends
or friends of friends, thus the social contacts of users can
be easily derived. Consequently, users’ privacy setting
could be violated and even worse, users’ otherwise secret
information could be inferred as discussed in Section 3.2.

5.5. Benefits of decentralized NCF prediction

We next summarize the benefits of the decentralized
NCF prediction process.

First, CommonFinder protects users’ privacy via two
complement data structures. Bloom filters anonymize
users’ identifiers and hide the existence of any specific
users with a degree of false positives. Coordinates do not
contain any information about who is in a friend list, there-
fore exchanging coordinates among non-friend users does
not disclose users’ friend lists.

Second, CommonFinder fully utilizes the low-dimen-
sional coordinates for calculating pairwise NCF values that
have constant transmission bandwidth costs and computa-
tion overhead. Therefore, CommonFinder scales well with
decentralized users on the DOSNs.

Finally, as NCF has been a very popular metric for rec-
ommending friends on centralized OSNs, CommonFinder
can serve as a replacement for existing NCF computation
in centralized OSNs, which can improve the scalability
and increase the responsiveness to users’ requests.

6. NCF Prediction with decentralized coordinates

We next present how to estimate the NCF between any
pair of users combining the Bloom filters and the
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decentralized coordinates. We first measure a small num-
ber of NCF values with the Bloom filters as inputs to main-
tain the coordinates. We next present the neighborhood
management process with respect to which the coordi-
nates are optimized. We then present a distributed algo-
rithm to adjust each user’s coordinate adaptively and
scalably.
6.1. Measuring NCF values based on bloom filters

We represent each friend with an identifier created by
cryptographic hash functions like SHA-1 for data routing
in the DOSN. Then each friend list is represented by a
Bloom filter. We use the Dynamic Bloom filter (DBF) [28]
to represent a dynamic set of friends because of its simplic-
ity and low computational complexity. The DBF [28] in-
cludes multiple standard Bloom filters where each
standard Bloom filter stores only c items.

Each user then obtains other nodes’ Bloom filters and
queries them to estimate the set of common friends with
his/her own friend list:

� Alice and Bob exchange their Bloom filters.
� Alice queries Bob’s Bloom filter with her friend list, and

vice versa. The subset of friends represented in the
Bloom filter is returned as the estimated common
friends.

Assume that an attacker maintains a dictionary of iden-
tifiers crawled over the DOSN. The attackers cannot exactly
know whether an identifier is indeed in the set, since the
Bloom filter is a probabilistic data structure with a false po-
sitive probability for a query. The false positives are statis-
tical valid for any query, therefore a user is always able to
deny that he/she is a friend of another user due to the false
positives.
6.2. Neighbor management

Each user i maintains a set Si of neighbors with a max-
imal capacity Sm (Sm ¼ 20 by default). Each neighbor is rep-
resented with three fields: the identifier, the Bloom filter
and the coordinate.

The neighbor set Si covers user i’s friends. If a user has
too few friends, we also include a randomized set of two-
hop users as neighbors. But we deliberately set users’
friends to have a higher priority than two-hop users since
friends are trusted. The two-hop users help if there are too
few friends. Since we probe NCF values with Bloom filters,
users’ privacy is still preserved.

When a user i joins the DOSN system, he/she first finds
real-life friends that have already registered in the DOSN.
After establishing several links with friends on the social
graph, user i puts these friends into his/her neighbor set
Si, otherwise, this user will restart the search process
later.1
1 For bootstrapping users’ online friends, the DOSN may also advertise
popular users’ profiles to each users.
Each online user has a daemon process that triggers a
periodical procedure to sample two-hop users on the social
graph for user i. The daemon process randomly selects
one of user i’s friends, say user j, as the counterpart for
communication. Then user i’s daemon requests the dae-
mon process at user j to send the contact address of a
friend of user j. The daemon process at user j then selects
a user q uniformly at random from his own friend list
and piggybacks user q’s data to the daemon process at user
i. Finally, the daemon process at user i puts user q’s
data into set Si. If user j does not respond within 20 s,
the daemon process at user i removes user j from his/her
neighbor set.
6.3. Decentralized MMMF optimization

We next formulate the objective function of optimizing
users’ coordinates for accurate NCF prediction. We formu-
late the problem of the NCF prediction with the MMMF
method. Readers are referred to Section 2.3 for the back-
ground of the MMMF method.

We formulate the objective of predicting NCFs with
MMMF’s optimization function in Eq. (6) as:

J u;v ; hð Þ ¼
XL�1

r¼1

X
i;jð Þ2X

h Tr
ij r;Yij
� 	

� hir � ~ui~v j
� �� �

þ k
2

XN

i¼1

~uik k
2
F þ ~v ik k

2
F

� � !
ð10Þ

where X denotes the set of pairs of users with observed
NCF values and k is a regularized constant. We can see that
Eq. (10) requires all users’ information, as a result, solving
Eq. (10) belongs to the centralized optimization problem
where an entity collects the NCF matrix Y and computes
the coordinates for all users. Unfortunately, such a central-
ized formulation not only leaks the friendship information
of all users, but also does not adapt to the decentralization
of DOSN users where users may leave the system
dynamically.

As a result, we need a decentralized optimization pro-
cess that is able to adapt the dynamics of DOSN users. To
that end, we decompose Eq. (10) to a set of distributed
optimization problems that are solved by decentralized
users. The key idea is to let each user iteratively optimize
his/her own coordinate with a set of neighbors’ coordi-
nates in a fully decentralized manner. We decompose
(10) into N sub-objective consisting of coordinates and
NCF measurements among each user i and his/her neigh-
bors Si:

JY ~ui; ~v i; ~hi

� �
¼
XL�1

r¼1

X
j2Si

h Tr
ij r;Yij
� 	

� hir � ~ui~v j
� �� �

þ k
2

~uik k
2
F þ ~v ik k

2
F

� �
ð11Þ

The objective JY ~ui; ~v i; ~hi

� �
seeks to optimize user i’s

coordinates. Since Eq. (11) is defined for each user i
separately, each user i is able to optimize Eq. (11) in a
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distributed manner based on the local information of its
neighbors.

6.4. Distributed coordinate maintenance

We adjust each user’s coordinate in a fully distributed
manner via a novel implementation of the PR-CG meth-
od. We first present how we transform the centralized
PR-CG method to a distributed algorithm for adjusting
users’ coordinates. We next adapt the coordinate mainte-
nance process to the dynamics of decentralized
coordinates.

6.4.1. Decentralized conjugate gradient optimization
PR-CG is an iterative optimization algorithm. To mini-

mize a nonlinear function f ðxÞ, it iteratively updates the
vector ~x according to the conjugate direction of ~x until
reaching a local minima.

Transforming the iterative PR-CG process to a distrib-
uted PR-CG method (D-PR-CG) algorithm is straightfor-
ward. Each user i optimizes Eq. (11) in separate rounds.
For each round, user i adjusts the vector ~xi once by one
round of the PR-CG method. Further, every two adjacent
rounds is separated by s seconds.

(i) Setting Parameters.
We define the vector ~xi for user i with the concatenation

of coordinate components of i, i.e.,

xi ¼ ~ui; ~v i;~hi

h i
We next derive the gradient of the vector ~xi as

rxJY xið Þ !
@JY

@ui
;
@JY

@v i
;
@JY

@hi


 �
ð12Þ

where @JY
@ui

, @JY
@v i

and @JY
@hi

are partial derivatives with respect to
the coordinate components ~ui, ~v i and ~hi:
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for r 2 1; L� 1½ �.
(ii) Bootstrapping.
First, we initialize necessary parameters for bootstrap-

ping the optimization process. Each user i’s coordinate is
initialized as a randomized vector, where each dimension
is selected from the interval ½�10;10�. Then, user i adjusts
his coordinate periodically, separated by s second.

We set the steepest direction and the conjugate direc-
tion for each user i:
� Compute the steepest direction Dx as the reverse direc-
tion of the gradient rxJY xið Þ:
Dx ¼ �rxJY xið Þ
since the reverse of rxJY xið Þ indicates the direction of the
maximum decrease for f ðxÞ.
� Set the conjugate direction Kx1 with the steepest

direction Dx in the first round.

(iii) Incremental Adjustment.
Using the steepest direction to adjust the coordinate is

sensitive to input noises such as the coordinate oscillation
or erroneous NCF values. We therefore use the conjugate
direction to adjust the coordinates. At each round l > 1,
we updates the conjugate direction Kx of vector ~x as the
weighed sum of the steepest direction and the conjugate
direction of the last round:

Kxl ¼ Dxl þ bl �Kxl�1 ð13Þ

where bl > 0 controls the capacity of the conjugate direc-
tion in the current round. We use a revised Polak–Ribière
scalar:

bi !max 0;
DxiðlÞT DxiðlÞ � Dxi�1ðl� 1Þð Þ

Dxiðl� 1ÞTDxiðl� 1Þ

( )
ð14Þ

that automatically resets the conjugate direction. The
parameter bl trades off the robustness and the convergence
speed: Decreasing bl favors the steepest direction, but be-
comes more sensitive to noises, while increasing bl reduces
the effect of the steepest direction, but slows down the conver-
gence speed of the optimization process.

We determines the step al of moving the vector ~x. We
use the well-studied line-search method [21] to be aware
of the convergence status of the vector ~x. the line search
method minimizes the objective function (11). The more
accurate the vector~x is, the smaller the movement step be-
comes. Therefore, the coordinates become more stable
with increasing rounds of adjustments.

We then adjust the vector~x at a small distance with the
conjugate direction KlðxÞ and the movement step al:

~x ¼~xþ al �KlðxÞ ð15Þ

Algorithm 2 summarizes the above process for adjust-
ing the coordinates. Step 2 calculates the concatenation~xi

of the coordinate components of user i. Then step 3 com-
putes the new steepest direction D as the reverse direction
of the current gradient of~xi. Step 4 then computes the Po-
lak-Ribière scalar b that trades off well between the
robustness of the optimization process and the conver-
gence speed. Step 5 next updates the conjugate direction
with the steepest direction D and the conjugate gradient
of the last round. Then step 6 calculates the moving step.
Step 7 next adds the vector ~xi with ai times of conjugate
gradient direction. Finally, steps 8–12 cache the steepest
direction and the conjugate direction and then reconstruct
user i’s coordinate components based on the updated
vector ~xi.
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Algorithm 2. Distributed Polak–Ribière nonlinear conju-
gate gradient optimization algorithm.
1 Update~ui;~v i;~hi;Dxi;Kxi; Si;Y
input: a user i’s current coordinate~ui, ~v i,~hi, a user i’s
steepest direction Dxi, a user i’s conjugate direction
Kxi, the set of neighbors Si, the NCF values from a
user i to its neighbors in Si, the coordinates of
neighbors in Si.

2 xi  ~ui;~v i;~hi

h i
;

3 D �rxJY xið Þ;
4 b DT D�Dxið Þ

DxT
i
Dxi

;

5 K Dþ bKxi;
6 ai  arg min

ai

JY xi þ aiKð Þ;

7 xi  xi þ aiK;
8 Dxi  D;
9 Kxi  K;

10 ~ui  xi½1 : d�;
11 ~v i  xi½ dþ 1ð Þ : 2d�;
12 ~hi  xi½ 2dþ 1ð Þ : 2dþ Lð Þ�;
From Algorithm 2, the lengths of steepest direction
and the conjugate direction amount to the twice size
of the coordinate. The overall space overhead for
Algorithm 2 is O jSij � 2dþ Lð Þð Þ. The communication
complexity is linear with the number of neighbors. In
practice, we limit the number jSij of friends, the length
d of coordinate vector to be around 20, the communica-
tion complexity and the storage overhead of Algorithm 2
is quite modest.
6.4.2. Minibatch based coordinate update
As users’ coordinates are modified at each round by

Algorithm 2, we have to adapt to the dynamics of users’
coordinates. One simple approach is to let each user i
probe the NCF values to neighbors in set Si and to re-
quest these users’ coordinates at each round. However,
frequently measuring NCF values or requesting coordi-
nates to all neighbors incurs heavy traffics at nodes with
large friend lists. Therefore, we have to adapt to the
coordinate modifications of neighbors and control the
measurement traffics.

We follow the well-studied minibatch approach [29–31]
proposed in the network-coordinate field. The minibatch
approach reuses historical positions of most neighbors’
coordinates, since historical coordinates become closer to
the current positions as coordinates converge to stable
positions.

Each user caches the NCF values and coordinates of all
neighbors in the memory; at each round, each user refreshes
this cache by probing the NCF value to one neighbor and re-
quests this neighbor’s coordinate, and then updates his coor-
dinate with respect to all cached neighbors according to
recorded historical records. The minibatch approach works
quite well in practice. For instance, CommonFinder’s
coordinates converge within twenty rounds.
7. Top-k ranking

Having presented the decentralized coordinates, we
next show how to use coordinates to select top-k users
having the highest NCF values as recommended friends
on the DOSN.

A naive approach is to aggregate all coordinates of two-
hop users and to compute the descending order of coordi-
nate distances. Unfortunately, since we only care about the
top-k users, most of the communication is wasteful.

We present a divide-and-conquer based method to re-
duce the transmission bandwidth costs.

Spreading: A user (called the initiator) spreads the
ranking task to all of his/her friends. Upon receiving the
ranking task, each user j filters out those who have already
been the initiator’s friends and selects k users from the rest
of friends having the largest NCF values with the initiator.
The NCF values are computed with the decentralized coor-
dinates. Finally, user j piggybacks the initiator with the
top-k users.

Merging: The initiator then aggressively merges the
lists of top-k users from his/her friends. The top k users
in the merged list will be returned as the top-k recom-
mended friends. The initiator initializes an empty list �List
and then merges each newly received list dListk

j sent from
his/her friend j. Both �Listi and dListk

j are represented with
the linked-list data structure for flexible expansion.

Theorem 2 confirms that merging the local top-k users
yields the correct results. Extending to cases where some
NCF values are identical is straightforward, since users
having the same NCF values with the initiator are
exchangeable with each other.

Theorem 2. For ease of presentation, we assume that
pairwise NCF values are different. Suppose that an initiator i
seeks the top-k ranking list of users. By merging local ranking
lists from friends of the initiator i, user i has the correct top-k
ranking list.
Proof. Let ði; jÞ and ðj; qÞ be two pairs of friends in the
social graph. Assume that user q is among the top-k rank-
ing list for i, but is pruned from the local merging step by
user j. We will prove by contradiction.

Since user q is pruned by user j, user j’s top-k ranking
list for i must exclude user q. In other words, user j has at
least k friends having larger NCF values with i than user q.
As a result, user q must not be among the top-k ranking list
for user i. Thus, a contradiction happens. Therefore, user q
must be included in the top-k ranking list of the initiator i,
the correct top-k list is preserved. h
8. Privacy analysis

8.1. Coordinates hide users’ friend lists

Recall that in CommonFinder, each user i can send his
coordinate component ð~ui;~v iÞ to any other user. The
ð~ui;~v iÞ components help other users compute the number
of common friends with user i (see Algorithm 1).
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Intuitively, since ð~ui;~v iÞ are two low-dimensional real-
valued vectors, which do not encode any information
about user i’s friend list. Therefore, disclosing the ð~ui;~v iÞ
components of user i to his non-friend does not leak user
i’s friend list.

CommonFinder requires to hide each user’s threshold
vector ~h. This is because for each user i, his/her threshold
vector~h is only useful for computing the numbers of com-
mon friends between i and other users. Further, disclosing
~h leaks users’ friend links. This is because for each user i, a
malicious user can compute the set of users having some
common friends with user i, indicating that these users
are at most two-hop away from user i on the social graph.
Therefore, these users are either user i’s friends or friends
of user i’s friends. Consequently, the friendship links are
disclosed to malicious users.

Suppose a malicious user collects user i’s coordinate
components ð~ui;~v iÞ, but does not known user i’s threshold
vector. We can see that this malicious user cannot deter-
mine the number of common friends from i to other users,
since only the threshold vector uniquely determines the
NCF values.
8.2. Bloom filters yield differential privacy

We next show that the Bloom filters also protect the
privacy of users’ friend lists. Intuitively, since Bloom filter
may introduce false positives, i.e., the estimation may not
coincide with the ground-truth common friends. For
around 99% of all cases, the Bloom filter is able to predict
correct common friends. Moreover, we can turn the false
positives into a way of protecting the privacy: a user can
deny that a user is his (or her) friend, since the Bloom filter
could fail due to the false positives. Increasing the size of
the Bloom filter may increase the accuracy of estimation,
but still fail to distinguish whether a user is in the Bloom
filter with 100% certainty.
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Fig. 4. Expected number of different bits with increasing items n.
8.2.1. Sensitivity of a Bloom filter
Let mI and kI be the length of the bit array I and the

number of hash functions for a Bloom filter. Let
f : S! BFðSÞ be a function that maps a set of identifers S
to a Bloom filter BFðSÞ. Given two sets S1 ¼ x1; . . . ; xnf g,
S2 ¼ x1; . . . ; xn; xnþ1f g that differ in only one identifier xnþ1.

We compute the L1 difference of the bit arrays of two
Bloom filters BFðS1Þ and BFðS2Þ:

g S1; S2ð Þ ¼
XmI

i¼1

jIBF S1ð Þ ið Þ � IBF S2ð Þ ið Þj ð16Þ

in order to reveal the difference of the bit arrays by hashing
S1 and S2 into two Bloom filters. Theorem 3 states the ex-
pected number of different bits for two Bloom filters repre-
senting two sets S1 and S2 that differ in one item.

Theorem 3. Given two sets S1 and S2 satisfying that
S2 ¼ S1 [ xnþ1f g. The expected number of different bits
between the Bloom filter BFðS1Þ and BFðS2Þ amounts to
E g S1; S2ð Þ½ � ¼ kIe

�nkI
mI .
Proof. Let I1 and I2 denote the bit arrays for the Bloom fil-
ters BFðS1Þ and BFðS2Þ, respectively.

We first compute the probability PðiÞ that two ith bits in
the bit arrays I1 and I2 are different, i.e., I1½i� ¼ 0 and
I2½i� ¼ 1. In other words, PðiÞ is the probability that the ith
bit in BFðS2Þ does not change after inserting the item
xnþ1f g, which amounts to the probability that I1½i� is still

zero after inserting n keys:
pðiÞ ¼ e�
nkI
mI ð17Þ

Since after inserting n keys into a sized-mI Bloom filter
with kI hash functions, the probability that a bit is still zero

amounts to 1� 1
mI

� �nkI

 e�

nkI
mI .

We next show the expected L1 difference between the
Bloom filters BFðS1Þ and BFðS2Þ. Let kI hashed positions for
the item xnþ1 be a1; . . . ; akI

� �
.

Let Zl be the indicator function denoting whether two
alth bits in BFðS1Þ and BFðS2Þ are identical:

Zl ¼
1 I1 alð Þ ¼ I2 alð Þ
0 else



;

where al 2 1;mI½ �. Let Z be the sum of kI indicator
functions:

Z ¼
XkI

l¼1

Zl ð18Þ

We compute the expected number E Z½ � of different bits
for BFðS1Þ and BFðS2Þ as:

E Z½ �¼E
XkI

l¼1

Zal

" #
¼
XkI

l¼1

E Zal

� 	
¼
XkI

l¼1

1�PðalÞð Þ¼kIe
�nkI

mI �

ð19Þ
We next plot the expected number E Z½ � of different bits

as the number of items n increases. From Fig. 4, the num-
ber of different bits is mostly lower than four. Further,
the expected number of different bits drops quickly as
the number of item increases.
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8.2.2. Differential privacy of bloom filters
Having shown that the Bloom filters are slightly modi-

fied by adding or removing an item, we next derive the
capability of the differential privacy for the Bloom filter
(see Section 2.4 for brief introduction).

Theorem 4. Given a sized-mI Bloom filter with ki hash func-
tions. Let n be the number of items inserted into this Bloom

filter. This Bloom filter provides kI ln 1� exp � nkI
mI

� �� �� �
-

differential privacy.
Table 3
CommonFinder parameters.

Parameter Value

Coordinate dimension d 5
Number of neighbors for adjusting coordinates 20
Regularized parameter k 0.3
Neighbor-selection method Random
Rounds of coordinate updates 60
Proof. For two sets S2 and S02 that differ in one item, we
compute the ratio of the probabilities that two Bloom fil-
ters representing sets S2 and S02 having the same bit array:

Pr IS2 ¼ I
� �

Pr IS02
¼ IjS02 ¼ S2 [ yf g

� �¼ Pr y does not change the bit array of IS2

� �

¼
YkI

i¼1

Pr IS2 hi yð Þ½ � ¼1
� �� �

¼ 1�exp �nkI

mI

� �� �� �kI

¼ exp kI ln 1�exp �nkI

mI

� �� �� �

We see that

Pr IS2 ¼ I
� �

6 Pr IS02
¼ IjS02 ¼ S2 [ yf g

� �
� exp kI ln 1� exp �nkI

mI

� �� �� �
Therefore, representing two sets that differ in one item

with the Bloom filters provides kI ln 1� exp � nkI
mI

� �� �� �
-

differential privacy. h

Theorem 4 confirms that using the Bloom filter repre-
senting a friend list provides differential privacy for users
in this friend list. As a result, a malicious user cannot be
certain about who is a user’s friends.

9. Evaluation

We next test CommonFinder’s performance with exten-
sive simulations.

9.1. Experimental setup

9.1.1. Evaluation process
Our evaluation tries to ask whether CommonFinder can

estimate the number of common friends accurately and
scalably: (1) How does the Bloom filter based NCF estima-
tion method scale for real-world social networks? (2) Is the
decentralized coordinate more accurate than existing NCF
estimation methods? (3) How does CommonFinder scale
for real-world social networks.

The simulation seeks to be general enough for any
existing DOSN proposals. Therefore, rather than integrat-
ing with specific DOSNs, the simulation focuses on predict-
ing NCF values for pairs of users. The simulation takes the
social graph among users as the input and then predicts
NCF values among two-hop users with CommonFinder
and related methods.

Unfortunately, since most DOSNs are still under devel-
opments, no DOSN data sets are publicly available yet.
Since DOSNs have consistent social functionalities with
the centralized OSNs, we use the wide-adopted data sets
of centralized OSNs introduced in Section 4. These data
sets correspond to static social graphs, which do not reveal
when each user adds friends. As a result, our simulation as-
sumes that each user has all friends that are available on
the social graph.
9.1.2. Comparison methods
We compare CommonFinder with two representative

NCF prediction methods, LandmarkMDS, a geometric
coordinate based method [32], and ProximityEmbed, a
matrix-factorization based method [33]. We configure the
parameters of LandmarkMDS and ProximityEmbed accord-
ing to the recommended parameters.

We represent each user with a 160-bit randomized
string generated with a SHA-1 cryptographic hash func-
tion. We set CommonFinder’s default parameters in
Table 3. We choose the coordinate dimension to be five,
since further increasing the dimension does not improve
the accuracy. We set the default number of neighbors for
adjusting the coordinate to 20, which is modest com-
pared to the sizes of most users’ friend lists. We config-
ure the regularized parameter k to 0.3, which yields
stable accuracy for optimizing the decentralized coordi-
nates. We select neighbors randomly for each user from
the whole set of candidate users due to its robustness.
Finally, we evaluate CommonFinder’s accuracy after each
user’s coordinate is updated in 60 rounds. In fact, all
users’ coordinates have converged to stable positions
within 20 rounds.
9.1.3. Performance metrics
To quantify the accuracy of estimations, we use the

popular metric Normalized Mean Average Error (NMAE),
which is defined asP
ði;jÞ:Yij>0jYij � bY ijjP

ði;jÞ:Yij>0Yij
ð20Þ

where Yij is the ground-truth value, bY ij is the estimated va-
lue. Smaller NMAE values correspond to higher prediction
accuracy.

All experiments are performed on a laptop with
2.13 GHz CPU and a 2 GB RAM. We have implemented all
related methods with Matlab 7.0. The experiments are
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repeated in ten times and we report the average results
and the corresponding standard deviations.
9.2. Baseline performance of measuring pairwise NCF values

To tune the coordinate positions, CommonFinder uses
the DBF to probe the NCF values from a user to his friends.
Moreover, DBF also lists the set of common friends that are
not used in the coordinate computation process. The ob-
tained NCF values to a set of neighbors are then treated
as the inputs to adjust each user’s coordinates. Suppose
the NCF measurements by the DBF is inaccurate, the coor-
dinate adjustment will be impaired accordingly. In other
words, DBF sets up the upper bound for the prediction
accuracy of the NCF values.

We therefore first characterize the baseline perfor-
mance of measuring the NCF values for the CommonFind-
er. We focus on DBF’s performance with n 6 1000, since
most of the number of online users’s friends is below
1000 as shown in Section 4.1. To scale well with dynamic
items, Dynamic Bloom Filter (DBF) [28] includes multiple
CBF where each CBF stores only c items. After having c in-
serted items, a new CBF is added to store subsequent inser-
tions. The false positive probability of a DBF is:

fm;k;c;n¼1� 1� 1�e�kc=m
� �k

� �bn=cc
1� 1�eð�kðn�cbn=cÞcÞ=m

� �k
� �

ð21Þ
9.2.1. Sensitivity to Bloom-filter parameters
To investigate DBF’s sensitivity to parameter settings,

we compute DBF’s false positive probability and calculate
its storage size with increasing SBF size m and the number
c of items inserted into each SBF.

First, from Fig. 5(a), increasing the SBF size m from 0 to
1000 bits significantly decreases the false positive proba-
bility of DBF, compared to DBFs with SBF size m > 1000.
As a result, we need to select a SBF size m bigger than
1000 bits in order to control the false positive probability.
Besides, decreasing the upper bound c of the number of
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Fig. 5. Variation of the performance of DBF as we vary the upper bound c and
number k of hash functions is selected to optimize the false positive probability
items per SBF also decreases the degradation of the false
positive probability of DBF.

Second, from Fig. 5(b), the storage size of the DBF in-
creases with decreasing number c of items inserted into a
SBF or the SBF size m. For c 6 50, the storage size increases
quickly with increasing SBF size m. As a result, we need to
choose the number c of items to be bigger than 50 in order
to control the increment of the storage size.

We next show the detailed variation of performance by
fixing c or m. From Fig. 6(a) and (b), we see that increasing
the upper bound c exponentially increases the false posi-
tive probability of DBF, but decreases the storage size sig-
nificantly. As a result, there is a natural trade off between
the false positive probability and the storage size. From
Fig. 6(c) and (d), increasing the SBF size m exponentially
decreases the false positive probability, but also increases
the storage size. As a result, there are no optimal choices
for DBF’s parameters, we need to select c and m balancing
the false positive probability and the storage size. For the
rest of the paper, we choose c ¼ 100, m ¼ 2000 as the de-
fault parameters of the DBF.
9.2.2. DBF’s accuracy
Having determined the default parameters for the DBF,

we next test DBF’s accuracy in measuring the pairwise NCF
values for two-hop users on the social graph. We compute
the Percentage of incorrect intersection (PII for short) as
the percentage of correct NCF results by DBF.

Table 4 shows the results on three social network topol-
ogies. We see that more than 99% of all tests are correct,
which implies that the Bloom filter based NCF measure-
ments are quite accurate.
9.2.3. DBF’s bandwidth requirements
We next compute the bandwidth requirements of

exchanging DBFs between pairs of two-hop users. From
Fig. 7, we see that the storage sizes of all social network
topologies are quite modest, implying that the Bloom fil-
ters are quite practical for measuring the common friends.
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Table 4
Percentages of incorrect intersection results on
three data sets. DBF is configured with the default
parameters m ¼ 2000, c ¼ 100.

Data sets PII

Facebook 0.000015
YouTube 0.000012
Flickr 0.00842
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Fig. 8. Convergence of CommonFinder on three data sets.
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9.3. Convergence of the coordinates

We next test the convergence of the NCF estimations in
rounds of coordinate updates. Each user selects at most
twenty friends for the coordinate update in Algorithm 2
in each round.

Fig. 8 shows the dynamics of estimation accuracy with
increasing rounds of coordinate updates. The estimation
accuracy is quickly improved as the coordinate update
rounds increase. The coordinates have converged to stable
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positions after ten rounds of coordinate updates. Further
coordinate updates do not significantly improve the esti-
mation accuracy.

Furthermore, we also measure the computation time of
CommonFinder for each user. The averaged computation
time of each user on Facebook, YouTube and Flickr is less
than 0.1 s, which indicates that the coordinate-update pro-
cess is quite efficient.

9.4. Comparison of coordinates based NCF prediction methods

Having confirmed the convergence of the coordinate
computation, we next compare CommonFinder’s coordi-
nate based NCF prediction method with existing methods.
From Fig. 9, we can see that CommonFinder outperforms
LandmarkMDS and ProximityEmbed in several times.
CommonFinder is also consistently accurate on different
social networks. However, we also see that the perfor-
mance on different data sets varies. This is because differ-
ent social networks have varying distributions of common
friends.

9.4.1. Robustness to incomplete measurements
We next test the robustness of the NCF estimations to

incomplete measurements because of offline users. We
randomly set a fraction of pairwise NCF values to be zero.
Then we compare the NCF estimation results of different
methods with the available NCF observations. We set Com-
monFinder’s parameters to be the default values in Table 3.

Fig. 10 plots the dynamics of the accuracy with increas-
ing missing measurements. CommonFinder is stably accu-
rate when the missing fraction is below 0.8, and gracefully
degrades the accuracy as the missing fraction increases to
0.9. Finally, CommonFinder is significantly inaccurate after
90% of NCF probing results are missing. On the other hand,
the proximity embedding approach degrades the accuracy
significantly as the missing fraction increases. We can see
that CommonFinder is quite robust to a wide range of
missing measurements.

9.4.2. Robustness to incorrect measurements
Since some NCF-probing results could be incorrect due

to the false positives of the Bloom filters, we next test
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Fig. 9. Comparing the estimation accuracy of different methods on three
data sets.
the NCF-estimation accuracy with increasing percentage
of incorrect NCF measurements. We select a fraction of
NCF probing results uniformly at random and add an error
constant e (e > 0) to the ground-truth NCF values. We vary
the percentage of erroneous NCF results and the error con-
stant e to verify the robustness against erroneous NCF
observations. We set CommonFinder’s parameters to be
the default values in Table 3.

Fig. 11 shows the results. CommonFinder gracefully de-
grades the accuracy as the error constant e increases. On
the other hand, ProximityEmbed significantly degrades
the accuracy. Furthermore, CommonFinder and Proximity-
Embed are less robust on the Facebook data set than the
rest two data sets. This is because the NCF values on the
Facebook data set are much lower than those on the other
two data sets, which makes the NCF estimation results on
the Facebook data set be more sensitive to erroneous NCF
probing results on the other two data sets.

9.4.3. Accuracy of top-k prediction
We next compare the accuracy of estimating top-k

highest NCF values. For each user i and a constant param-

eter k, we calculate the multiplicative ratio

P
y2bSk

YiyP
x2Sk

Yix
, where

Sk denotes the set of ground-truth top-k users with the

highest NCF values, bSk denotes the set of estimate top-k
users with the NCF prediction methods. We can see that
the ratio values are at most 1 and larger ratios lead to bet-
ter prediction results.

From Fig. 12, we see that CommonFinder significantly
outperforms both ProximityEmbed and LandmarkMDS
methods. The multiplicative ratios for CommonFinder are
mostly larger than 0.9 and become closer to one as we in-
crease the number k of recommended users. This is be-
cause CommonFinder predicts pairwise NCF values much
more accurate than ProximityEmbed and LandmarkMDS.
Further, the ProximityEmbed is much more accurate than
the LandmarkMDS. This is because ProximityEmbed uses
the matrix factorization to adapt the triangle inequality
violations of the NCF values, while LandmarkMDS assumes
the triangle inequality to hold for all triples, which how-
ever does not hold for social data sets.

9.5. Resilience to decentralized nodes

We next test whether CommonFinder is sensitive to
erroneous coordinates due to the decentralization of users.
We divide the overall set of users in the data sets into two
equal halves. Only half users in the data sets are added to
the simulator at the first round, some users’ friends are
in the second half of users and thus may not be added
yet. The other half users join the system after 40 rounds.
After that cycle, all links between friends in the data sets
are present in the simulator. As a result, the erroneous
coordinates are injected into the system after 40 rounds.

To quantify the resilience of the coordinate, we calcu-
late the Coordinate Drift with the L1 norm defined asX2dþL

l¼1

jxi lð Þ � ~xi lð Þj ð22Þ
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Fig. 10. Accuracy comparison by varying the percentage of missing measurements to neighbors.
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Fig. 11. Accuracy comparison by varying the percent of incorrect measurements.
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Fig. 12. Accuracy of selecting two-hop users with the top-k NCF values.
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Fig. 13. The effect of high-error coordinates on the rate of convergence.
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where xi and ~xi denote the updated coordinate and the last-
round coordinate, respectively. We plot the mean coordi-
nate drifts and the mean/standard deviations of the esti-
mation errors in Fig. 13.

The first half users converge to stable coordinates with-
in 20 rounds and keep steady until 40 rounds. Further-
more, the coordinate drifts are reduced to be below 0.1
after the coordinates are stabilized after 20 rounds.

When the other half users join the system after 40
rounds, the overall coordinate errors increase sharply,
since the coordinates of newly-joined users are randomly
initialized and thus may incur high errors. Furthermore,
the coordinate drifts also increase due to the similar rea-
sons. However, the whole set of coordinates converge
within the next 20 rounds to stable positions. The newly
stabilized coordinates have the similar accuracy as those
before 40 rounds. Furthermore, the coordinate drifts also
decrease to similar degrees as those before 40 rounds. As
a result, the coordinate-update process is quite resilient
to erroneous coordinates.
9.6. Parameter sensitivity of optimizing decentralized
coordinate

We then test whether the coordinate adjustment pro-
cess is sensitive to parameter settings. We vary one param-
eter and set the rest of CommonFinder’s parameters to be
the default values in Table 3. We report the mean NMAE
values and the standard deviations.
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9.6.1. Coordinate dimension
Fig. 14(a) plots the accuracy with increasing coordinate

dimensions. CommonFinder accurately predicts NCFs even
with low coordinate dimensions. The standard deviations
are also quite low, which imply that the NCF estimation
is quite stable.

9.6.2. Number of neighbors
Fig. 14(b) shows the dynamics of accuracy with increas-

ing neighbors. CommonFinder becomes more accurate
with increasing neighbors, but keeps stably accurate when
the number of neighbors exceeds 20. Therefore, Common-
Finder is able to predict accurate NCFs with a modest num-
ber of neighbors.

9.6.3. Regularized constant k
Fig. 14(c) plots the accuracy of CommonFinder by

increasing regularized constant k. The accuracy decreases
with increasing k for the YouTube and Flickr data sets,
but keeps stably accurate when we vary k for the Facebook
data set. Therefore, we should choose a smaller k for updat-
ing coordinates.

9.6.4. Choice of neighbors
We next evaluate the choice of neighbors on the

accuracy of CommonFinder. We test four popular neigh-
bor-selection rules: (i) Random, we choose neighbors
uniformly at random from the whole set of friends.
(ii) Closest, we choose neighbors as friends that have the
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as we vary its parameters.
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lowest NCFs. (iii) Farthest, we choose neighbors as friends
that have the highest NCFs. (iv) Hybrid, we select half
neighbors using the Closest based selection and the other
half neighbors using the Farthest based selection.
Fig. 14(d) shows the results. FB, YT and FR denote the Face-
book, YouTube and Flickr data sets, respectively. The Ran-
dom policy provides the highest accuracy, while other
three policies incur much higher errors than the Random
policy, since the randomness in neighbors brings much
higher diversity in the distribution of NCFs, which makes
the optimization process to be robust to bad local minima.

10. Extending the NCF computation to Sybil accounts

10.1. Sybil accounts

Prior work [34,35] broadly group those fake accounts
for spamming or performing privacy attacks as Sybil ac-
counts. To launch the attacks, the Sybil accounts generally
seek to integrate with the social graph by establishing
friend links with normal users. Therefore, they have strong
motivations to use fake friend lists to obtain information
about other users. Further, these Sybil accounts usually
collude together to establish friend links between
themselves.

If Sybil accounts do not establish friend links with nor-
mal users, we can see that the CommonFinder protocol will
not be affected, since each user adjusts its coordinate with
friends. Therefore, our analysis assumes that Sybil ac-
counts have established several friend links with normal
users. We call these normal users as infected ones.

10.2. Learn information about other users

We argue that the CommonFinder protocol does not
leak sensitive privacy information to Sybil accounts. First,
since we enforce the one-hop trustiness, non-infected
users’ friend lists will not be disclosed to Sybil accounts.
Second, during the coordinate adjustment process, disclos-
ing the Bloom filter and the coordinate of a user do not leak
this user’s privacy information due to the randomization
brought by these two data structures.

10.3. Destabilize coordinate system

The coordinate system, however may be sensitive to Sy-
bil accounts, when they inject fake information into the
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Fig. 15. The accuracy of the NCF prediction process as we inc
coordinate computation process. In order to destabilize
the coordinates of normal users, the Sybil accounts need
to have friend links with some normal users and then cre-
ate fake Bloom filters and/or generate fake coordinate
positions.

10.3.1. Fake Bloom filters
Fake Bloom filters bring incorrect NCF measurements.

However, as discussed in the simulation section, Common-
Finder is robust to the incorrect NCF measurements be-
cause of the inaccuracy brought by the Bloom filters. This
is because the decentralized MMMF method used by Com-
monFinder mitigates the problem of overfitting by regular-
izing the coordinates with nuclear norms that is robust to
noises [36].

10.3.2. Fake coordinates
Fake coordinates generally refer to those that are cre-

ated by not following the CommonFinder protocol. Sup-
pose that a Sybil user sends a fake coordinate to a friend
B that is a normal user. As a normal user always has some
other normal users as friends, user B will move its coordi-
nates with both Sybil and normal neighbors. When there is
only a small fraction of Sybil accounts for a normal user,
this normal user’s coordinate will keep to converge to sta-
ble positions since the conjugate gradient optimization
tries to balance the coordinates from Sybil and normal
users.

As it is difficult to model the Sybil nodes’ behaviors. In
this paper, we use a simple model to represent uncertain
coordinates: To simulate the randomness of coordinate er-
rors in decentralized settings, we randomize the coordi-
nates of a set of online nodes. For each round of the
coordinate update process of a node, we randomly choose
a fraction p of neighbors to have random coordinates. By
varying the percent p of random coordinates, we are able
to study impact of the degree of node dynamics on the
coordinate’s accuracy.

Fig. 15 plots the dynamics of CommonFinder’s accuracy
as we increase the percent of randomized coordinates.
Increasing randomized coordinates only smoothly de-
grades the accuracy.

11. Related work

Talash [10] calculates the common friends by exchang-
ing two friend lists, which however, does not scale well
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with increasing friends and also discloses sensitive per-
sonal information to unknown entities.

The Private Set Intersection (PSI) or private matching
method [11–14] computes the intersection of two sets
with privacy protection. Generally, each set is represented
by a list of coefficients of a polynomial. Estimating the
intersection of two sets is implemented as the arithmetic
operations on the coefficients of two polynomials. To im-
prove the privacy protection, the homomorphic encryption
is enforced over the arithmetic operations in order to hide
the coefficients to the other user. Unfortunately, the PSI
methods need a large amount of bandwidth cost and com-
putation cost, which renders them to be less practical for
bandwidth-limited end hosts.

Song et al. [33] estimate diverse proximity metrics be-
tween users through a matrix factorization process that
is computed in a centralized manner, which is impractical
for distributed online social networks. Dong et al. [37] pro-
pose a secure and privacy-preserving dot product protocol
for static coordinates computed by [33], in order to esti-
mate the social proximity in mobile social networks.

Finally, network coordinate methods such as Vivaldi
[29], LandmarkMDS [32] can be used to predict NCF values.
Network coordinates embed hosts into a geometric space
and estimate the pairwise distance of two nodes based
on the corresponding coordinate distance. However, these
decentralized coordinate approaches select neighbors that
are used for updating coordinates uniformly at random
from the whole set of nodes, which could leak the coordi-
nate positions to non-friend users. On the contrary, Com-
monFinder selects neighbors from the friend list of each
user, which avoids the disclosure of coordinates to un-
known users.
12. Conclusion

To estimate common friends in distributed social net-
works scalably with privacy protection, we propose a dis-
tributed common-friends prediction method that
combines the privacy-preserving common-friend mea-
surement by using Bloom filters and the distributed com-
mon-friend estimation with decentralized coordinates.
Simulation results show that our coordinate based method
estimates the NCF values scalably and accurately with
modest transmission costs. Besides, CommonFinder is also
resilient to incomplete NCF measurements and noisy NCF
measurements. We plan to implement our method as a
plugin for distributed social networks.
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