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Abstract—Erasure codes are promising for improving the
reliability of the storage system due to its space efficiency
compared to the replication methods. Traditional erasure codes
split data into equal-sized data blocks and encode strips in
different data blocks. This brings heavy repairing traffic when
clients read parts of the data, since most strips read for
repairing are not in the expected blocks. This paper proposes
a novel discrete data dividing method to completely avoid this
problem. The key idea is to encode strips from the same data
block. We could see that for repairing failed blocks, the strips to
be read are either in the same data block with corrupted strips
or from the encoded strips. Therefore, no data is wasted. We
design and implement this data layout into a HDFS-like storage
system. Experiments over a small-scale testbed shows that the
proposed discrete data divided method avoids downloading
data blocks that are not needed for clients during the repairing
operations.

Keywords-Erasure Codes; Distributed Storage; Data Divid-
ing; Partial Reading; HDFS

I. INTRODUCTION

We have entered the big data era. The past decades
have witnessed ever-growing amounts of data volumes from
all aspects of the society, including high energy physics,
astronomy, bio-informatics, social networks [1], [2], etc.
The large data volumes bring great opportunities for the
storage industry, but also introduce new stringent challenges
on storing and managing the data efficiently with good
performance.

In modern distributed storage systems, the large scales of
nodes and data volumes lead to many challenges. One is the
failure-handling operation, as the failures have been routines
rather than exceptions for large-scale infrastructures [3].

Consequently, redundancy technologies are indispensable
to ensure the data reliability. Replication and erasure codes
are two approaches for improving the reliability. Though the
replication technique has been vastly employed in traditional
distributed storage systems [4], [5] for its simplicity and
high reading/writing efficiency, it is too expensive due to
the low storage efficiency [6], [7], [8]. In contrast, erasure
codes can significantly decrease the storage space, yielding
greener energy consumption, higher reliability, and lower
management cost. Therefore, the erasure-code technique is
promising for large-scale distributed storage systems.

Partial-reading operations arise when consecutively re-
questing only a successive parts of a data object. The partial-
reading is a common file-access pattern in storage system,
taking over 70% of read operations [9]. If a client requests
existing data blocks, the storage system directly responds
the corresponding blocks.

Unfortunately, in a large scale storage applications, fail-
ures occur frequently. Many read accesses are performed
under failure circumstances. The failed blocks can be re-
paired with lazy strategies. However, in order to repair the
requested part, as much as k times of data volumes are
downloaded in order to reconstruct the requested part. Since
the encoded strips are constructed by strips in different
blocks in traditional erasure codes. This procedure not only
decreases the speeds of the read operations, but also wastes
a lot of the infrequent bandwidth resources.

In this paper, we propose a discrete data dividing approach
in order to mitigate the above issue. k successive strips in the
original data block are uploaded into k different blocks in
the storage system, rather than in the same block. Therefore,
these successive k data strips are not only used for repairing
failed strips, but also useful for clients.

Further, the discrete data dividing helps improve the sys-
tem throughput. Firstly, the successive data reading/writing
operations are more efficient in the discrete approach than
those in prior approaches, as the magnetic head movement
and rotation of disks are avoided due to reading adjacent
regions. Secondly, when performing the partial-reading op-
erations, the k successive data strips for repairing are also
requested by clients in the partial-reading. Therefore, the
downloaded data volumes and the decoding computation are
both decreased.

The remainder of this paper is organized as follows. In
Sect. II, we briefly describe the problem of the data dividing,
and analyze the drawbacks of traditional approaches. In
Sect. III, we present the discrete data dividing approach,
together with a detailed analysis of its performance. In
Sect. IV, we present the implementation of a prototyping
distributed erasure-code based storage and report our exper-
iments over a 20-node testbed. We outline our conclusions
and point out some directions for future work in Sect. V.



II. PROBLEM DESCRIPTION

In this section, we provide the basic concepts of erasure
codes at first, and then describe the dividing problem of
data dividing in the erasure-code based distributed storage
applications.

A. Preliminaries

Erasure codes stem from the data communication com-
munity, then were introduced to the storage systems for
their high data reliability and storage efficiency properties.
In the erasure-code based storage applications, each data
object is firstly divided into k equal sized data blocks,
labeled as D0, D1, · · · , Dk−1. Then an encoding process
is performed on these k data blocks to generate m parity
blocks, labeled as P0, P1, · · · , Pm−1. Eventually, all the n
blocks are stored separately in n different storage nodes,
where n = k + m. When reading the original data object,
one needs to download at least k blocks1 from the n blocks
at first, where there are s data blocks and k − s parity
blocks. And then these k downloaded blocks are decoded
to generate k − s data blocks which do not appear in
the downloaded blocks. Eventually, the downloaded k data
blocks and the generated k − s data blocks are merged
to reconstruct the original data object. Fig. 1 and Fig. 2
illustrate the writing and reading process of the erasure-code
based storage applications, respectively.

Practically, the encoding process is executed on some
fine grained pieces of data strips rather than on the w-
hole blocks [11]. Each time, k data strips, noted as
DS0, DS1, · · · , DSk−1, are read from k different data
blocks into the memory. An encoding process is performed
on these k data strips to generate m parity strips, noted
as PS0, PS1, PSm−1. Then these k data strips and m
generated parity strips are upload to k+m different storage
nodes respectively. And the process repeats until all the data
object are encoded. For description simplicity, the k data
strips and m generated parity strips in a single encoding
process are defined as a stripe.

B. Traditional Continuous Data Dividing

Traditional dividing approach is an intuitive and simple
approach, in which the data object is first divided continu-
ously into k equal sized successive data blocks, as shown
in Fig.3. When writing the data object to the distributed
storage system, k data strips are read from k different data
blocks into the memory each time. An encoding process is
performed to generate m parity strips. After that, all these n,
where n = k +m, strips are uploaded to n different nodes
in the distributed storage system. The process repeated until
the whole data object have been encoded and written to the

1Though our approach adapts to all erasure codes, here we only consider
the MDS erasure codes for description simplicity, more information about
erasure codes can be referred to [10].

system.2 If some of the data blocks are lost, at least k data
blocks must be downloaded to perform the decoding process
and reconstruct the original data object. There exist two
significant drawbacks in this continuous dividing approach:
disobey with the principle of locality, and low efficiency of
partial-reading.

1) Data locality: The original locality principle means
that when a program is executed, memory references are
localized temporally and spatially. Because of locality, the
cache and I/O prefetch successive data blocks. Consequent-
ly, successive data access gains higher performance than
random data access. Continuous data dividing disobey with
the locality principles in both the data writing process and
reading process. When writing data to the system, each
time, k strips are read from local disk with non-successive
positions to perform the encoding, which results in magnetic
head movements and rotations. When reading data from the
system to local disk, k data strips from one decoding calcu-
lation must be written to non-successive positions on local
disk. This also incurs magnetic head movement and brings
in much I/O overhead and decrease the system throughput.
If the downloaded data are processed without I/O writing,
locality principles also tell us that non-successive strips will
increase the cache miss rate.

2) Partial Reading: Partial-reading is an important and
common access pattern in storage applications. Unfortunate-
ly, partial-reading is resource-and time-consuming in the
continuous data dividing approach. When there is no data
block failed, partial-reading just read the required data from
corresponding blocks. If there are data block failures, partial-
reading of the lost data part have to download as much as
k times of the requested data volumes, as shown in Fig. 4.
This not only lowers the partial reading throughput, but also
leads to heavy network traffic.

III. DISCRETE DATA DIVIDING

To address the above problems discussed above in con-
tinuous data dividing approach, we propose a discrete data
dividing approach in this section.

A. Working process

We observed that the data strips in a decoding stripe of
continuous approach are non-successive, therefore, not all of
the data strips in each decoding stripe are used to reconstruct
the requested part. In the discrete data dividing approach,
the data object is not divided into continuous data blocks at
first. In contrast, the data object is first divided into logical
data strips. These data strips are divided into groups, each
of which consists of k successive strips. 0s are padded when
necessary to make the data object to be divided by both k
and strip size. Then an encoding process is executed on each

2If the data object size can not be divided by k, the last block is padded
with 0s so that all the blocks are equal sized. Similar operation is performed
to make sure that all the strips are equal sized.
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Figure 1. A general writing process in the
erasure-code based storage system.
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Figure 2. A general reading process in the
erasure-code based storage system.
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data dividing approach.
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continuous data divide approach.
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Figure 5. The writing process of a discrete
data dividing approach.

Ă

Strip

Strip

Strip

ParityStrip

DataStrip

DataStrip

D
ow

nload

Decoding

Requested Part

DataStrip

ParityStrip

Merge

DataStrip DataStripDataStrip Ă

Requested Part

Figure 6. The partial-reading process of the
discrete data divide approach.

group to generate m parity strips, and then all these k +m
strips are distributed to construct k+m different blocks, as
shown in Fig. 5 and Algorithm 1.

Algorithm 1: Algorithm of the discrete data dividing
approach
Input : filesize: size of the data object.

stripsize: size of the strip.
k: number of data blocks in the erasure codes.

Output: blocki, 0 ≤ i < k

1 begin
2 stripNum← ceil[ filesize

stripsize ] ;
3 stripeNum← ceil[fracstripNumk] ;
4 for i← 0 to stripeNum− 1 do
5 for j ← 0 to k − 1 do
6 assign stripi∗k+j to blockj ;
7 end
8 end
9 end

Based on the discrete data dividing approach, the partial-
reading can acquire k successive strips in a single decoding
process, as shown in Algorithm 2.

B. Analysis

In the discrete dividing approach, the stripe consists of
successive strips. When some data blocks are lost, this
successive-strip based stripe can get k successive strips in
one decoding operation. Consequently, both the number of
decoding operations and the downloaded data volumes are

decreased. And the partial-reading performance of the sys-
tem can be upgraded greatly. The discrete dividing approach
gains some advantages as following:

• When reading data from local disk for encoding, the
successive data strips are read consecutively. Thus
magnetic head movement and rotation are avoided, I/O
throughput are improved, as shown in Fig. 5.

• Each time, k successive data strips are acquired in a
single decoding calculation. All these k strips are uti-
lized to compose the request part, except for the start or
the end, as shown in Fig. 6. Therefore, the downloaded
data volumes nearly equal to that of the request data
volumes, rather than k times of that in the continuous
approach. This decreases both the downloaded data
volumes and the decoding calculations.

• When storing data into local disk, k successive strips
are generated in a single decoding calculation in the
discrete data dividing approach, thus the magnetic head
movement and rotation of local disk are also avoided.

IV. EXPERIMENTS AND EVALUATION

A. Implementation

To evaluate the performance of our proposed discrete
dividing approach, we design and implement an prototype
system of erasure-code based distributed storage. The proto-
type owns a similar architecture with GFS [4] and HDFS [5],
[12], and employs the Ice 3.5.1 [13] middle-ware as the
communication service.

The prototype system has a single namenode, which
stores all the meta information of the distributed storage sys-
tem, including the nodes, the encoding parameters, the stored



Algorithm 2: The partial-reading process in the discrete
data dividing approach
Input : offset: the offset of the request content in

the data object.
length: the length of the request content.
liveBlocks: the live block list to read data

from.
stripsize: the size of the strip.
k: the number of data blocks in the erasure

codes.
1 begin
2 decoding ← false;
3 stripesSet← ∅;
4 beginStripeIdx← offset/(stripsize ∗ k);
5 endStripeIdx←

(offset+ length− 1)/(stripsize ∗ k);
6 if k ≥ numberofdatablocksinliveBlocks then
7 decoding = true;
8 end
9 if decoding = true then

10 for index ∈ [beginStripeIdx, endStripeIdx]
do

11 Download stripindex from each block in
liveBlocks to compose stripeindex;

12 Decode stripeindex to get lost data strips;
13 for each downloaded or decoded data strip

stripindex do
14 Write stripindex ∩ requestPart to the

result file;
15 end
16 end
17 else
18 for index ∈ [beginStripeIdx, endStripeIdx]

do
19 Download stripindex from each data block

in liveBlocks;
20 Write stripindex ∩ requestPart to the

result file;
21 end
22 end
23 end

data objects, the blocks, and their mapping relationships,
etc. We can get all kinds of information we need from the
namenode, except for the data content. The prototype system
has a large number of blocknodes, which stores data blocks
and parity blocks. Each blocknode make a registration to the
namenode at the beginning, then they communicate through
heartbeat information. The data object is divide, encoded,
and decoded on the client, thus the dividing approach is
also implemented in the client.

B. Experiments setup
The prototype is deployed on a test bed consists of 20

server nodes, among which there are one namenode and 19
blocknodes. The hardware and software environments are
listed in Table I.

Table I
PARAMETER SETTINGS.

Parameter Value
CPU Type Intel Xeon E-2640
Number of CPUs 4
Number of cores per CPU 6
Memory Size 64GB
Network Card Intel(R) PRO/1000
Operating System Red Hat Enterprise Linux Server 6.1
Kernel version Linux 2.6.32-131.0.15.el6.x86 64
Compiler Java Development Kit 6 64bit
Communication Middle-ware Ice 3.5.1
Number of Server Nodes 20

Without special notation, the encoding parameters are ar-
bitrarily selected, with k = 6, m = 5, and the stripsize=8K.
In the discrete dividing approach, the decoding speed can
reach up to 32MB/s, while in the continuous dividing
approach, the decoding speed is limited within 28MB/s.
The reason we analyzed is that in the continuous dividing
approach, the cache misses are larger than that in discrete
dividing approach.

We perform five experiments both with continuous di-
viding approach and discrete dividing approach, so as to
evaluate different metrics, described as follows.

• Upload experiment, noted as Upload. In this exper-
iment, 10 files sized from 100MB to 2000MB are
uploaded to the distributed storage system, so as to
evaluate the upload speed.

• Download without decoding experiment, noted as
Download-D. In this experiment, 10 file that have been
uploaded are downloaded from the system, so as to
evaluate the download speed. And all the data blocks
of the downloaded file are available, thus the original
data object is merged without decoding.

• Download with decoding experiment, noted as
Download-P. In this experiment, 10 files that have been
uploaded are downloaded from the system, so as to
evaluate the download speed with decoding. Different
number of data blocks, varied from 1 to m, are lost,
thus decoding is necessary to regenerate the original
data object.

• Partial-download without decoding experiment, noted
as Partial-D. In this experiment, 1000 partial-reading
operations for each of the 10 uploaded file are gener-
ated according to a uniform distribution. Each partial-
reading consists of a two random variables, offset and
length. The offset is uniformly distributed in range
[0, filesize), and length is uniformly distributed in
range [0, filesize-offset]. These 10∗1000 corresponding



downloads are performed to evaluate the partial-reading
speed. All the data blocks are available and no decoding
is needed.

• Partial-download with decoding experiment, noted as
Partial-P. In this experiment, 10, 000 partial-reading
operations same to the above are performed, except that
some of data blocks are lost, thus decoding may needed
to regenerate the required data part.

In our experiments, all the evaluations are performed more
than 10 times to get average results.

C. Evaluation Results and Analysis

We first calculate the number of average strips down-
loaded in the reading operations, as shown in Fig. 7. The
results is evaluated with a file sized of 1GB. We plot three
bars at each X-axis scale, which represent the number of
failed data blocks. The first bar denotes the number of strips
that the partial-reading requests, the bottom part represents
the number of failed strips, and the top part represents the
active strips. The total number of strips that are downloaded
in the continuous approach is denoted by the second bar,
the bottom part of which represents the number of strips
that are used for decoding, and the top part represents
the number of strips that do not participate the decoding
operation. The third bar denotes the number of strips that
are downloaded in the discrete approach. Fig. 7 indicates
that the number of downloaded strips in the continuous
approach is far larger than the number of requested strips.
Moreover the number strips in the continuous grows fast
as the number of failed data blocks increases, and most
of the strips are downloaded for decoding. In the discrete
approach, the number of downloaded strips almost equals
to the number of requested strips, and all of the strips are
utilized for decoding.

Fig. 8 shows the speed distribution in all the repeated
experiments. The bottom and top of each box are the first
and third quartiles, the band inside the box is the median,
and the whiskers denote the minimum and maximum value.
The left gray box represents the continuous data dividing
approach, and the right green box represents the discrete
data dividing approach. From the figure, we can see that the
discrete data dividing approach outperforms the continuous
approach in all the five experiments. Fig. 9 shows that when
there are some data blocks failed, the discrete approach can
improve the partial-download speed about 80%. And in other
experiments, the speeds are also improved a little.

In Fig. 10, we depict the average download speeds of the
continuous and discrete data dividing approaches when the
number of failed data blocks varies from 0 to 5, respectively.
The speedup is in the right axis. In Fig. 11, we draw the
average partial-download speeds of continuous and discrete
data dividing approach when the number of failed data
blocks varies from 0 to 5. The speedup is depicted in the

right axis. These two figures demonstrate that the speedup
increases as the number of failed data blocks grows.

The transferred data volumes are demonstrated in Fig.12
as the number of failed data blocks varies from 0 to 5. The
figure shows that in the continuous data dividing approach,
the transferred data volumes are larger than the required data
volumes, and grows dramatically as the number of failed
data blocks grows. In the discrete approach, the size of
transferred data volumes almost equal to the required data
volumes, and is far less than the continuous approach.

V. CONCLUSIONS AND FUTURE DIRECTIONS

To improve the efficiency of the erasure-code based
distributed storage, we propose a discrete data dividing
approach to avoid wasted reads in repairing failed blocks
during the partial-read periods. We implement our method
in a prototype system and deploy the system in a 20-
nodes testbed. Compared to the continuous approach, our
proposed discrete approach improves the upload speed and
the download speed. Data volumes downloaded in the
partial-reading operation are decreased significantly. The
discrete data dividing approach decreases the transferred
data volumes in the partial-reading process. However, it
brings little improvements for the data regeneration. Further
efforts are required to explore the trade offs.
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