
2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) 

BCE: a Privacy-preserving Common-friend 

Estimation Method for Distributed Online Social 

Networks Without Cryptography 

Yongquan Fu and Yijie Wang 
National Key Laboratory for Parallel and Distributed Processing, College of Computer Science 

National University of Defense Technology 

Hunan province, China, 410073 

Email: yongquanf@nudt.edu.cn.wangyijie@nudt.edu.cn 

Abstract-Distributed online social networks (DOSN) have 
emerged recently. Nevertheless, recommending friends in the 
distributed social networks has not been exploited fully. We 
propose BeE (Bloom Filter based Common-Friend Estimation), 
a scalable and privacy-preserving common-friend estimation 
scheme that estimates the set of common friends without the 
need of cryptography techniques. First, BeE denotes each user 
using the identifiers created by the Peer-to-Peer underlay that 
are robust against the dictionary attacks. Second, BeE uses a 
Bloom filter to represent a friend list for scalability. Third, BeE 
estimates common friends of two users using the intersection 
of Bloom filters computed by one of their common friends, 
which ensures the privacy of friend lists against unknown users. 
Our privacy analysis shows that BeE hides the privacy of each 
user with a high probability. Simulations over real-world social
network data sets confirms that BeE is both accurate and 
scalable. 

I. INTRODUCTION 

Distributed online social networks e.g., Safebook [1], Lo

tusNet [2], Cuckoo [3], diaspora [4], Peerson [5], Vis-a

Vis [6] have been proposed to better protect users' privacy 

based on decentralized infrastructures. Friendship relationships 

in the distributed social networks are based on real-world 

friends. People independently store their personal data into 

decentralized machines, and enforce strict access policies to 

their data for friends. 

Most decentralized social networks enforce that the com

munication between users must follow the links of friends 

in order to establish the trust on data communications. As 

a result, when people want to publish or query data on the 

decentralized social networks, the messages are forwarded 

between friends in a hop-by-hop manner, in order to hide 

the source and destination users. To do that, a Peer-to-Peer 

substrate is usually constructed to forward the messages. 

This work is supported by the National Grand Fundamental Research 
973 Program of China under Grant No.20 II CB30260 I; the National Natural 
Science Foundation of China under Grant No.60873215; the Natural Science 
Foundation for Distinguished Young Scholars of Hunan Province under Grant 
No. S201OJ5050; Specialized Research Fund for the Doctoral Program of 
Higher Education under Grant No.200899980003; the National High Tech
nology Research and Development Program of China (863 Program) under 
Grant NO.2011AAOIA202. 

An open question for the distributed social networks is how 

to recommend future friends for users. To do that, we need to 

quantify the degree of friendship between two users that have 

not been friends. A common practice by centralized social 

networks is to use the common conditions to measure the 

possibility of being friends, such as the list of common friends, 

common social groups or common interests. The common 

conditions between people are natural reasons for establishing 

friendships confirmed by pioneering researchers [7], which are 

also simple to be implemented assuming the complete social 

graph is stored in a centralized site. 

In this paper, we choose the common friends as an exam

ple of the common conditions. Measuring pairwise common 

friends in a decentralized setting, is however, a challenging 

task, since the friends of a user is sensitive personal in

formation, which should be protected against curious users. 

Furthermore, measuring common friends should scale well 

with increasing friend lists. 

In the decentralized setting, we are aware that Talash [8] di

rectly computes the common items of two friend lists in order 

to obtain the common friends. Unfortunately, transmitting the 

friend lists does not scale well and exchanging friend lists to 

unknown users may leak the privacy of friends' information, 

which is not desirable for the DOSNs. Therefore, we need 

a scalable and dynamic common-friend estimation scheme 

that protects the privacy of friend lists and scales well with 

increasing friends. 

We propose a distributed common-friend estimation scheme 

BCE (Bloom Filter based Common-Friend Estimation) that 

estimates common friends scalably without disclosing the 

content or the size of the friend list of a user. 

Our key insight is that, since most Peer-to-Peer underlays 

of the DOSN allocate each user a unique identifier created by 

cryptographic hash functions like SHA-l hash functions from 

a wide range of space (e.g., 160-bit strings), these identifiers 

are robust against dictionary attacks by curious users. For 

example, for 160-bit strings created by SHA-l hash functions, 

a curious user must iterate 2160 strings to completely pick out 

the friends of a user, which is computationally difficult for off

the-shelf machines. As a result, The identifiers hide the privacy 

212 978-1-4673-2699-5/12/$31.00 © 2012 IEEE 



of users, by decoupling the DOSN from the real-world identity 

of a person. 

BeE uses the identifiers to represent each friend to mitigate 

the dictionary attacks. Unfortunately, the size of the friend 

list may still leak the personal information that may reflect 

the social popularity of a user, which may be sensitive for 

users. To hide the size of the friend list and scale well with 

increasing friends, we use the well-known Bloom filter to 

represent the friends. Due to the dynamics of friends, each user 

independently maintains his (or her) Bloom filter to control the 

false positives of the Bloom filters that may report a user that 

is not in the set to be in the set. 

Unfortunately, sending the Bloom filters to unknown users 

may still leak personal information. For example, a user can 

query a Bloom filter using a set of crawled identifiers from 

the DOSN. Therefore, some items in the friend list may be 

found by the query process. However, completely obtaining 

the items represented by a Bloom filter is infeasible, due to 

the resilience of dictionary attacks by the identifiers. 

In order to hide the privacy leakage of the Bloom filter, we 

could use the cryptographic techniques to encrypt the Bloom 

filters. However, the computation and the communication 

overhead will increase significantly. In this paper, we use 

the intersection of Bloom filters to represent the common 

items and hide the non-common items. Our theoretical analysis 

shows that the intersection of Bloom filters hides the presence 

of any non-common items. A user that is not the common 

friend of two users is always able to claim he (or she) is not 

in the friend list of a user. 

To compute the intersection of Bloom filters for users A 
and B without disclosing the Bloom filters to users that are 

not friends of A or B, we select common friends of two users 

A and B to be responsible for the computation. Since each 

user allows his ( or her) friend to visit his ( or her) friend list, 

a user can transmit his (or her) Bloom filter to his (or her) 

friend without leaking the friend privacy. 

Suppose that two users A and B are not friends and have 

common friends. We can see that users A and B must be 

friends of friends, which implies that these two users are 

two hops away on the DOSN. Fig 1 shows an example. To 

estimate common friends, each user periodically pushes his (or 

her) Bloom filter to his (or her) friends. Furthermore, each user 

periodically computes the intersection of two Bloom filters for 

any pair of friends and pushes the intersection to this friend 

pair. Finally, when a user A receives the intersection of his (or 

her) Bloom filter with another Bloom filter of user B, user A 
can query the intersection to obtain the estimated common 

friends. Simulation results show that BeE can accurately 

estimate common friends with modest bandwidth cost, which 

indicate that BeE is feasible for common-friend measurements 

on a highly decentralized environment. 

The rest of the paper is organized as follows. Section II 

summaries related work on common-friend measurements. 

Section III introduces the background information for the 

common-friend measurement. Section IV presents the basic 

idea of BeE. Section V shows the Bloom filter based friend 

........ Friendship link 
- Forward link 

o·�··· .. ·�·o .. � .. ·· .. �·o 
Alice Bob Caven 

Fig. 1. Measuring common friends between two-hop neighbors Alice and 
Caven. 

representation. Section VI shows how to compute the inter

section of Bloom filters. Section VII analyzes the privacy 

protection of the Bloom filters and the intersection of Bloom 

filters. Section VIII evaluates the common-friend-estimation 

performance. Finally, Section IX concludes the paper. 

II. RELATED WORK 

Talash [8]caIculates the common friends by exchanging two 

friend lists, which however, does not scale well with increasing 

friends; meanwhile, Talash also discloses sensitive personal 

information to unknown entities. 

The Private Set Intersection (PSI) or private matching 

problem [9] aims to compute the intersection of two sets with 

privacy protection. Freedman et al. [9] introduce the two-party 

private matching problem and propose a seminal protocol for 

private matching. Later, several variants [10]-[12] of private 

matching protocols have been proposed in order to reduce the 

communication and computation overhead. 

Song et al. [13] estimate diverse proximity metrics between 

users through a matrix factorization process, which needs 

a centralized storage of adjacency relations between users. 

However, the centralized assumption no longer holds for 

distributed online social networks. Besides, the dynamics of 

social networks requires the proximity metrics to be frequently 

updated that also increases the computation overhead of the 

factorization. Based on [13], Dong et al. [14] develop a secure 

and privacy-preserving dot product protocol to estimate social 

proximity in mobile social networks. 

III. BACKGROUND 

A. Distributed Online Social Network 

Let a user be an online entity that participates in the DOSN. 

A friend B of a user A is a user B that establishes the social 

link or friendship link with user A on the DOSN. A social 

link is a logical edge that connects two users A, B that means 

that users A, B can access the profiles and friend lists of each 

other. Furthermore, we call the set of users and the social links 

as a social graph. The number of hops between users A, B 
on the DOSN is the shortest path length between users A, B 
on the social graph. The common friends S AB of two users 

A, B denote the subset of users that are friends to user A and 

B at the same time. Finally, each user A has a friend list SA 
of a set of friends of user A and a profile that represents a 

set of personal records such as the personal status, or personal 

interests, etc. 

213 



B. Adversary Model 

The goal of the privacy preservation is not to disclose a 

user's friend list to users that are not his (or her) friends. On 

the other hand, each user is able to request the friend list of 

his (or her) friend , since each user trusts his (or her) friends 

(denoted as the one-hop trustiness) and allows their friends 

to visit his ( or her) friend list. 

We assume that users are semi-honest [15]: users may be 

curious to learn the friend lists of users on other users, but do 

not claim fake friends about the friend lists of stored users. 

Particularly, each user follows the common-friend measure

ment protocol, but is able to eavesdrop on the communication 

links to or from him (or her). 

C. Assumptions 

Assume that each user is assigned a system-wide unique 

identifier when the user registers into the DOSN. The identi

fier is a randomized string (e.g., 160 bits by default) created 

by a cryptographic hash function like SHA-l. Due to the 

security of the hash functions, a curious user is unable to guess 

the identifier of a user due to the overwhelming computation 

overhead. For example, it is well known that finding two inputs 

with the same hashed strings is difficult for the SHA-l hash 

function. 

D. Bloom Filter 

Given a set S of n elements, a standard Bloom filter BF(S) 
represents S with a bit array J of the length m. Each bit 

J[i] is initialized to zero for i E [I, m]. When we insert an 

element y in to the set S, we use k independent hash functions 

hI, ... , hk to map the element y into k random numbers within 

the interval [I, m], such that each bit J[hdy]] is set to 1 for 

i E [I, k]. The Bloom filter supports the query "is yES?" 
by testing whether each bit J[h;[y]] is 1 for i E [I, k]: if so, 

then y is assumed to be in the set, otherwise not. A Bloom 

filter may incur the false positive problem: if the k bits for 

the element z not in the set S have already been set by other 

elements in the set S, then the Bloom filter always returns that 

z is in the set S. 
After we insert n elements into the set S, the false positive 

probability for an element not in S can be asymptotically 

computed by assuming that the hash functions are perfectly 

random [16]. Let p be the probability that a random bit in the 

Bloom filter is 0, then p = (1 - IjmtXk � e-nk/m [16]. 

Consequently, the false positive of the Bloom filter becomes: 

FP = (1 - p/ � (1 - e-nk/m)k (1) 

Furthermore, the optimal number of hash functions k that 

minimizes 1 with respect to a fixed nand m is given as [16] 

k = log 2 x (: ) (2) 

In fact, k should be a positive integer. So k is chosen as an 

integer slightly smaller than 2 for computational efficiency. 

The corresponding minimized false positive probability with 

respect to the optimal number of hash functions is [16] 

0.6185m/n (3) 

The standard Bloom filter does not support deleting stored 

items. Fortunately, it is not likely that an online user frequently 

deletes his (or her) friends. Therefore, we can use the standard 

Bloom filters to represent the friend lists. 

IV. BCE 

We present the common-friend estimation process in this 

section. First, we introduce the intersection of Bloom filters. 

Second, we present the common-friend estimation process 

using the common friends of a user pair. 

A. Intersection of Bloom Filter 

As discussed in the introduction section, we can use the 

identifiers of users to mitigate the dictionary attacks. Further

more, using the Bloom filters to represent the set of friends' 

identifiers can hide the number of friends and scale much 

better than transmitting the identifier lists. 

BCE estimates common friends of users based on the 

intersection of Bloom filters (IBF). Suppose two users own 

the set SA, SE, and construct the Bloom filter BF(A), 
BF(B) with the same m and k, respectively. The IBF 

BF(A) n BF(B) is defined as the bitwise AND result of 

BF(A) and BF(B): 

BF (A) n BF (B) = BF (A ) [i] x BF (B) [i] (4) 

for i E [I, m]. To estimate common friends, user A and B 

simply query items hashed into the IBF BF (A) n BF (B) 
using SA and SE, respectively and take these items as the 

estimated common friends. 

Since common friends must be hashed into the same loca

tions in Bloom filters BF (A) and BF (B ), the intersection 

of Bloom filters BF (A) n BF (B ) is similar with the Bloom 

filter BF (A n B) that is constructed using the ground-truth 

set intersection SA n S E. As a result, the estimated com

mon friends is quite close to the correct results. However, 

BF (A) n BF (B ) may differs a bit from BF (A n B) , since 

some bits in BF (A ) n BF (B) could be set by keys not in the 

set intersection. 

B. Common Friends Estimation with One-hop Communication 

To compute the intersection of Bloom filters, a naive ap

proach is to exchange the Bloom filters between two two-hop 

users. However, disclosing a user's Bloom filter to non-friend 

users may disclose partial friends of a user. Suppose user C 
has two friends A and B. Users A and B own the set SA, SE, 

and construct the Bloom filter BF (A) , BF (B) , respectively. 

For example, a user A can query another user B's Bloom 

filters using a set of crawled identifiers over the DOSN to 

obtain a number of user B's friends. 

First, to avoid the partial leakage of friends' information, 

each pair of friends only exchanges their own Bloom filters 

to each other. As a result, each user caches the Bloom filters 

of all his (or her) friends. As a result, user A and B only 

exchanges his (or her) Bloom filter with user C; while user 

C exchanges Bloom filters with user A and B. 

214 



Second, each user computes the IBF for each friend pair 

using cached Bloom filters. For example, user C computes 

the intersection of Bloom filters BF(A) n BF(B) for A and 

B, and pushes BF(A) n BF(B) to A and B, respectively. 

Then, user A and B can determine the set of common friends 

between each other without the need of knowing the other's 

Bloom filter. Fig 2 summarizes the above common-friend 

measurement process. 

0::·:·:·:�@��·�·��·�·�·��® 
: i i Exchange intersections of 
I j .- Bloom filters 
b' �--� Exchange Bloom filter ® .............. Friend link 

Fig. 2. Common-friend measurements. 

V. DYNAMIC FRIENDSHIP REPRESENTATION 

Based on the above discussions, we represent a friend list 

with a Bloom filter for scalability. However, for a static Bloom 

filter, its false positive rate keeps increasing with increasing 

friends, due to the dynamics of friend links between users. 

To control the false positive rate of the Bloom filter despite 

of the friend dynamics on the DOSN, we adaptively tune 

the size m of the Bloom filters. On the other hand, we 

experimentally verify that a wide number of hash functions 

lead to similar false positive rates. As a result, we can fix the 

number k of hash functions to be constant for Bloom filters 

with variable lengths. 

Suppose that two users A, B represents sets SA, SE with 

Bloom filters FA, FE independently. Let T be the pre-specified 

false positive threshold. We know the minimal size of the 

Bloom filter m needs to be at least 

-nk 
m(n,k,r) = ( " ) 

In 1 - Tk 
(5) 

in order to limit the false positive rate to be below the threshold 

T. Therefore, we periodically set the size of the Bloom filter 

As a result, we adaptively tune the size m of the Bloom 

filter as 

• Let the default size of m be 1 KBytes. 

• When the false positive F P of the Bloom filter exceeds 

T, we increase the Bloom filter as (m(n,k,r) + 1024 * 8). 
• We reconstruct the Bloom filter for the updated friend list 

with m and k. 
Furthermore, we compute the hash functions with the SHA

cryptographic functions and set the hash value as the 

seeds. Algorithm 1 shows the hash process. As a result, each 

user immediately learns how to compute the hash values by 

knowing number of hash functions k of another Bloom filter. 

VI. COMPUTING THE INTERSECTION OF TWO 

VARIABLE-LENGTH BLOOM FILTERS 

To compute the intersection of two variable-length Bloom 

filters, we can map the larger Bloom filter to a smaller Bloom 

Algorithm 1 Computing the hash values for an element key. 
1: function HAsH(key, k, m) 
2: seed +- O. 
3: for i = 1 -+ k do 
4: seed +- SH AIH ash(key, seed). 
5: result[i] +- Iseed mod mi. 
6: return result. 

filter and compute the intersection using two small Bloom 

filters that are of the same length. However, if the size of two 

Bloom filters varies a lot, then mapping the large Bloom filter 

will incur a much higher false positive rate. 

Therefore, we have to transform the small Bloom filter to 

a larger Bloom filter for accuracy. To that end, each user 

maintains a large Bloom filter BFO in the memory with a 

length of S bytes(say 1 MBytes). Then, similar to the Buffalo 

[17], the user can flexibly create a new Bloom filter that of 

any length below 1 MBytes without the need of recreating the 

whole Bloom filter. 

For two Bloom filters with size ml and m2 (ml > m2). 
Let the number of hash functions be k. Let 

Let BF3 be a new Bloom filter with ml bits and k hash 

functions. Then, the i-th bit in BF3 should be the module 2 

sum of the bits at the i, 2i, ... , ci -th bits in BFO. 

VII. PROBABILISTIC PRIVACY OF THE BLOOM FILTER 

Assume that an attacker maintains a dictionary of identifiers 

crawled over the DOSN. Intuitively, the attackers can not 

know exactly whether an identifier is indeed in the set, since 

the Bloom filter is a probabilistic data structure with a false 

positive probability for a query. Since the false positives are 

statistical valid for any query, a user is always able to deny 

that he (or she) is a friend of another user due to the false 

positive. 

Particularly, we first show that a Bloom filter provides some 

kind of probabilistic privacy, where each item can claim that it 

does not belong to the set. To do that, we show the sensitivity 

of a Bloom filter to a specific identifier. We construct two 

Bloom filters using two sets that differ in only one item. If 

these Bloom filters are quite similar to each other; then, an 

adversary can not distinguish whether a item is in the set. 

Our probabilistic protection of the queried results is similar 

to the recent advances of the differential privacy [18], which 

adds noises to the query results. However, we argue that adding 

noises may be inappropriate for the Bloom filter. Since the 

Bloom filter is represented by a 0-1 string, replace 1 with 

other non-zero value is meaningless; while replacing 0 with 

non-zero values will significantly increase the false positives 

of the Bloom filter, which makes the Bloom filter less useful. 

A. Sensitivity for Intersection of Bloom Filter 

Instead of exchanging the Bloom filters, we release the 

intersection of Bloom filters to each other. As a result, we have 

to show the sensitivity of the intersection of Bloom filter with 

215 



respect to a particular identifer. If the sensitivity is quite low, 

we can conclude that the intersection of Bloom filters provides 

high privacy protection, since adding or removing a specific 

identifer does not change the intersection of the Bloom filters. 

As a result, when an adversary node obtains the intersection 

of two Bloom filters, the node is not sure about whether an 

identifier is in the set or not. 

Let fr : (S3, S4) ---+ 1BF be a function that maps two sets 

S3, S4 to the intersection of two Bloom filters that are con

structed by these two sets. Given two sets S3 = {Xl, ... ,Xn}, 
S� = {xl, ... ,xn,xn+d that differ in only one identifier 

Xn+l. We compute the Ll difference of the mapping function 

fr over two intersection of Bloom filter: 

m 

g (S3, S' 3, S4) ---+ L 1IBF(S3,S4)[i]#BF(S'3,S4)[i] (6) 

i=l 
(1) Upper bound: g (S3, S'3, S4) = k; 
(2) Lower bound: g(S3,S'3,S4) = 0; 
(3) Expectation: Let the bit arrays of the IBF BF(S3) n 

BF(S4)' BF(S�) nBF(S4) be h h respectively. Since the 

sets S3 and S� differ in only one item, the only chance that 

the i-th bits in IBF 1di] and 14[i] differ is that h[i] = 0 and 

14 [i] = 1. Due to the independence of the false positives of the 

IBF BF(S3) n BF(S4)' BF(S�) n BF(S4)' the probability 

P(h[i] =01\14[i] = 1) that the i-th bit of BF(S3) is zero 

and that of BF(S4) is 1 can be written as: 

P (h[i] = 0 1\ 14[i] = 1) 
= P (h[i] = 0) x P (I4[i] = 1) 
= e-

n;;,k (
1 _ e-

n:,k) 
Let Zl be the indicator function for the event that h[ad = 0 

and 14 [ad = 1 for the l-th bit out of k hash positions 

{al, ... ,ak } , where al E [I,m]: 

Z = { I 13 [ad = 01\14 [ad = 1 
l 0 else 

Let Z be the random variable of the number of different 

bits in two IBFs: 

(7) 

l=l 
Due to the linearity of the expectation, we can write the 

expectation of the number of different bits as: 

E [Z] = E [
l
� Zal ] 

k 
= L E [Zal ] 

l=1 
k 

= L ( 1 x P (h[ad = 01\ 14 [ad = 1)) 
l=l 

k ( n3k ( n4k)) 
= L 1 x e---;;;;:- 1 - e---;;;;:-

l=1 
= k x e-

n
;;,

k (
1 _ e-

n
!

k) 
As a result, the ex0ected number of different bits for two 

. 22:ll.!:. �) . 
IBFs IS k x e- = 1 - e- = . Fig 3 plots the expected 

number of different bits with increasing number of items. We 

can see that the expected number of different bits is less than 

one, which implies that two IBFs are identical in most cases. 

Furthermore, we can see that increasing the number of items 

in two Bloom filters also decreases the number of different 

bits in two Bloom filters. 

0.2 

'20.15 
:0 
..c Q) � 0.1 
� 
wO.05 

-n2 = 50, m=5000 
._.n2 = 100, m=5000 

........ --n2 = 50, m=10000 
........ ............ ..; • • •  n2 = 100, m=10000 

....... ... -... ---

--------------------_ .. 

O+---�--�--�--��--� 
o 200 400 600 800 1 000 

n1 

Fig. 3. Expected number of different bits for the IBF with increasing items 
n. 

B. Summary 

Intuitively, if a Bloom filter is the same as before after we 

insert an identifier into it, then any identifier can claim that 

it is not represented by that Bloom filter, since the Bloom 

filter is insensitive to an identifier. To do that, we compute 

the Ll distance of two Bloom filters that are constructed by 

two sets that differ in only one item. We found that the number 

of different bits of two Bloom filters decreases quickly with 

increasing items, but is still bigger than 1 in most cases. 

Therefore, directly exchanging the Bloom filters may leak the 

information of a specific identifier. 

On the other hand, we also compute the L1 distance of 

two intersections of Bloom filters that differ in only one item. 

We found that the number of different bits is less than 0.2 in 

most cases and decreases quickly with increasing items. As 

a result, the intersection of Bloom filters is insensitive to a 

specific identifier, which implies that it preserves the privacy 

much better than exchanging the Bloom filters. 

VIII. EVALUATION 

We represent each user with a 160-bit randomized string 

generated with a SHA-1 cryptographic hash function. The 

experiments are repeated in ten times and we report the mean 

results and the corresponding standard deviations. We analyze 

the characteristics of the friends on the real-world OSNs. We 

choose three representative social graphs that are all collected 

by the online social networks research group in the Max 

Planck Institute for Software Systems [19]-[21]. 

We compute the Percentage of correct intersection as the 

percentage of correct common-friend results by the Bloom 

filter based common-friend probing process as well as the 

bandwidth cost of transmitting the Bloom filter. 

216 



" 
o 

.� � � 0.9 

� ,3 09 
'0 
13 

1 

9 

8 

.. .. .. Fn·DW n·· 
• Facebook 

. YouTube 

D Flickr 

7 0.. 0.9 
1e-2 1e-4 1e-6 1e-81e-101e-12 

False Positive 

(a) Accuracy 

.t:: 

� 5 
"0 
" 
'" 

.D 

(b) Bandwidth 

Fig. 4. Accuracy and bandwidth costs by tuning the threshold of false positive 
threshold T. 

ILJ IU 
I" DB 

Dp 
PE 

-BF 

Facebook YouTube Flickr 

Fig. 5. Comparing the accuracy of different methods. The y-axis is plotted 
in log scale. 

We first test whether there exists a suitable false positive 

threshold T for the Bloom filter, such that the common-friend 

probing results are accurate and the probing bandwidth is 

also modest. Fig 4 show the dynamics of the accuracy and 

bandwidth costs by tuning the false positive threshold T of the 

Bloom filters. We can see that most common-friend results are 

accurate as the threshold T decreases. For example, when T is 

no larger than 10-6, more than 99% of all probing results are 

accurate, and further accuracy improvement is negligible. On 

the other hand, decreasing T does not significantly increase the 

mean bandwidth costs, but increases the differences of probing 

bandwidth for different users, which causes imbalance probing 

bandwidth costs. As a result, we choose the false positive 

threshold T to be 10-6 to trade off the bandwidth costs and 

the probing accuracy. 

We compare our method (denoted as BF) with the matrix 

factorization based estimation method [13] (denoted as PE). 

We compute the Normalized �ean Absolute Error (NMAE) 

between the estimated number Yij of common friends and Yij, 
the ground-truth number of common friends: 

L(ij) I Yij - fij i 
N M AE = ---::'=-'------'L(i,j) Yij (8) 

Smaller NMAE values correspond to higher prediction accu

racy. From Figure 5, we see that the Bloom filter outperforms 

the proximity embedding method in orders of magnitudes, 

which is consistent with Figure 4. The proximity embedding 

method however, incurs much higher errors since the number 

of common friends is not strictly low-dimension. 

IX. CONCLUSION 

We propose the problem of estimating common friends 

in distributed social networks in order to recommend new 

friends without disclosing personal information. To that end, 

we propose a Bloom filter based common-friends prediction 

scheme that protects the privacy of users' friends and balances 

the communication and computation loads. Since exchanging 

the Bloom filters may partially leak the privacy of some 

friends, each user computes the intersection of Bloom filters 

for two-hop users that are both their friends. We provide 

a detailed analysis for the probabilistic privacy protection. 

Finally, simulation results on real-world data sets confirm the 

accuracy and efficiency of the common-friend estimation. 

REFERENCES 

[I] L. A. Cutillo, R. Molva, and T. Strufe, "Safebook: Feasibility of 
Transitive Cooperation for Privacy on a Decentralized Social Network," 
in Proc. of IEEE WOWMOM'09, pp. 1-6. 

[2] L. M. Aiello and G. Ruffo, "LotusNet: Tunable Privacy for Distributed 
Online Social Network Services," Comput. Commun., voL 35, pp. 75-88, 
2012. 

[3] T. Xu, Y. Chen, 1. Zhao, and X. Fu, "Cuckoo: Towards Decentralized, 
Socio-aware Online Microblogging Services and Data Measurements," 
in Proc. of HotPlanet 'JO, pp. 4:1-4:6. 

[4] Diaspora, "Diaspora Alpha," https: //joindiaspora.com/, September 2011. 
[5] S. Buchegger, D. Schiiiberg, L.-H. Vu, and A. Datta, "PeerSoN: P2P 

Social Networking: Early Experiences and Insights," in Proc. of SNS 
'09, 2009, pp. 46-52. 

[6] A. Shakimov, H. Lim, R. Caceres, L. P. Cox, K. A. Li, D. Liu, and 
A. Varshavsky, "Vis-a-Vis: Privacy-preserving Online Social Networking 
via Virtual Individual Servers," in Proc. of COMSNETS'll, 2011, pp. 
1-10. 

[7] D. Liben-Nowell and 1. Kleinberg, "The Link Prediction Problem for 
Social Networks," in Proc. of CIKM '03, pp. 556-559. 

[8] R. Dhekane and B. Vibber, "Talash: Friend Finding In Federated Social 
Networks," in Proc. of LDOW2011. 

[9] M. 1. Freedman, K. Nissim, and B. Pinkas, "Efficient Private Matching 
and Set Intersection," in Proc. of EUROCRYPT 2004, pp. 1-19. 

[10] E. D. Cristofaro, P. Gasti, and G. Tsudik, "Fast and Private Computation 
of Set Intersection Cardinality," Cryptology ePrint Archive, Report 
20111141, 2011, http://eprint.iacr.org/. 

[11] L. Kissner and D. Song, "Privacy-Preserving Set Operations," in Proc. 
of CRYPTO 2005, pp. 241-257. 

[12] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung, "Efficient 
Robust Private Set Intersection," in Applied Cryptography and Network 
Security, 2009, voL 5536, pp. 125-142. 

[13] H. H. Song, T. W. Cho, Y. Dave, Y. Zhang, and L. Qiu, "Scalable 
Proximity Estimation and Link Prediction in Online Social Networks," 
in Proc. of IMC '09, pp. 322-335. 

[14] W. Dong, Y. Dave, L. Qiu, and Y. Zhang, "Secure Friend Discovery in 
Mobile Social Networks," in Proc. of IEEE INFOCOM'll. 

[15] O. Goldreich, Foundations of Cryptography. Cambridge University 
Press, 2004, voL 2: Basic Applications. 

[16] A. Z. Broder and M. Mitzenmacher, "Network Applications of Bloom 
Filters: A Survey," Internet Mathematics, voL I, no. 4, 2003. 

[17] M. Yu, A. Fabrikant, and 1. Rexford, "BUFFALO: Bloom Filter For
warding Architecture for Large Organizations," in CoNEXT, 2009, pp. 
313-324. 

[18] c. Dwork, "A Firm Foundation for Private Data Analysis," Commun. 
ACM, voL 54, no. I, pp. 86-95, 2011. 

[19] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, "On the 
Evolution of User Interaction in Facebook," in Proc. of WOSN '09, pp. 
37-42. 

[20] M. Cha, A. Mislove, and K. P. Gummadi, "A Measurement-Driven 
Analysis of Information Propagation in the Flickr Social Network," in 
Proc. of W W W  '09, pp. 721-730. 

[21] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat
tacharjee, "Measurement and Analysis of Online Social Networks," in 
Proc. of IMC'07. 

217 


