
Cooperative Repair Based on Tree Structure for Multiple
Failures in Distributed Storage Systems with Regenerating

Codes

Xiaoqiang Pei, Yijie Wang, Xingkong Ma, Yongquan Fu, Fangliang Xu
Science and Technology on Parallel and Distributed Processing Laboratory

College of Computer, National University of Defense Technology
Changsha, Hunan, P. R. China, 410073

{xiaoqiangpei, wangyijie, maxingkong, yongquanf, xufl89}@nudt.edu.cn

ABSTRACT
Regenerating codes have been proposed to achieve an op-
timal trade-off curve between the amount of storage space
and the network traffic for repair. However, existing repair
schemes based on regenerating codes are inadequate to meet
the requirements of small network traffic cost and high ef-
ficiency when repairing multiple failures. In this paper, we
propose a cooperative repair scheme based on tree structure
for multiple failures with regenerating codes, called CTREE.
For generality, we propose a two-layer repair framework to
support both repairs for single and multiple failures. For
high repair efficiency, a parallel tree-structured data trans-
mission technique is proposed to organize the data trans-
missions between the providers and newcomers. For small
network network traffic cost, a core-based data exchange
technique is proposed to organize the data exchanges be-
tween the coordinator and the other newcomers. To evalu-
ate the performance of CTREE, we conduct experiments on
both 30 physical and 200 virtual servers. Numerical anal-
ysis and extensive experiments confirm that CTREE can
support both single and multiple failure repairs, significant-
ly reduces the network traffic cost and improves the repair
efficiency compared with the state-of-the-art approaches un-
der various parameter settings.

Keywords
Regenerating Codes, Multiple Failures, Network Traffic Cost,
Repair Efficiency

1. INTRODUCTION
Distributed storage systems aim to provide a reliable s-

torage environment for large scale data over long periods,
with applications like social network, document archiving
and video sharing. While the storage nodes deployed in
distributed storage systems are individually unreliable and
node failures become normal, but not the exception as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CF’15 May 18-21, 2015, Ischia, Italy
Copyright 2015 ACM 978-1-4503-3358-0/15/05 $15.00
http://dx.doi.org/10.1145/2742854.2742869.

number of storage nodes increases. To ensure the data re-
liability, erasure coding has been adopted to provide orders
of magnitude more reliability with the same storage cost
compared with replication [19] [16] [14]. To maintain the
redundancy level, it is necessary to trigger the repair for re-
constructing the lost data when failures happen. Each new
node (denoted as newcomer) needs to download k blocks
from the survival nodes (denoted as providers) and repair
the lost block for a (n, k) code. This is very costly because
it will download the entire file to create a lost block, with a
network traffic of M . To alleviate the network traffic cost,
Dimakis et al. [5] propose regenerating codes, which could
achieve the optimal tradeoffs between storage efficiency and
repair bandwidth consumption.

However, the repair schemes mentioned above mainly fo-
cus on single node failure. While there are situations of mul-
tiple failures in distributed storage systems. For instance,
Total Recall [2] adopts the lazy repair scheme, which triggers
the repair when the number of lost blocks reaches a given
threshold. Besides the lazy repair, many real systems often
face the situations of large percent of node failures from n-
ode leaving or power off. Furthermore, a large number of
nodes may leave the network at the same time [4] and it is
difficult for the system to detect every failure [18] .

These characteristics of failures require the repair of the
distributed storage systems to be with high repair efficiency,
small network traffic and generality. Firstly, the repair must
be with high efficiency to minimize the possibility of further
failures during the repair process. The key is to improve
the data transmission efficiency and reduce the data volume
transmitted between nodes. Secondly, the repair must be
with small network traffic cost to support the various kinds
of network-intensive applications. With the increasing num-
ber of applications in the data center, it is necessary to re-
duce the total network traffic cost. Otherwise, the repair
process will degrade the performance of the applications.
Meanwhile, the repairs should be completed at the back-
ground, which should not cause performance degradation.
Thirdly, it’s quite necessary to provide a general framework
to support the repair of both single and multiple failures.

To address these challenges, researchers try to improve the
repair efficiency by various techniques. However, existing re-
pair approaches are inadequate to satisfy the requirements
of high repair efficiency, small network traffic and general-
ity [21]. This mainly steps from the following two reasons.
Firstly, most schemes designed for single failure repair with

star structure [3] may suffer from the low data transmission
efficiency, where the repair efficiency is limited by the bot-
tleneck of the available bandwidth of the newcomer. Most
schemes designed for single failure repair with tree structure
[12] suffer from the high network traffic cost as multiple fail-
ures are repaired independently with each other. Second-
ly, most schemes designed for multiple failure repair with
star structure [13] [8] suffer from the repair bottleneck as
the relayer needs to complete the tasks of data forwarding
and data reconstructions. Most schemes designed for mul-
tiple failure repair with tree structure [22] suffer from the
high network traffic as multiple failures are repaired inde-
pendently or it consumes much network traffic during the
data exchanges between newcomers. [20]
To this end, this paper presents a cooperative repair scheme

based on tree structure with regenerating codes, called C-
TREE, for both single and multiple failures. Specifically, we
mainly focus on three questions: (1) how to construct a gen-
eral repair framework for both single and multiple failures?
(2) how to improve the repair efficiency and reduce the re-
pair time? (3) how to reduce the network traffic cost when
repairing the multiple failures? We provide the following
contributions in this paper:
1. We propose a general two-layer repair framework to

support the repair of both single and multiple failures.
2. To improve the repair efficiency and reduce the repair

time, we propose a parallel tree-structured data transmis-
sion technique to organize the data transmission between
the providers and the newcomers.
3. To reduce the network traffic cost, we propose a core-

based data exchange technique to organize the data ex-
changes between the newcomers. Meanwhile, we adopt the
lazy repair within a stripe to further the network traffic cost.
4. We conduct extensive experiments for both single fail-

ure repair and multiple failure repairs under different param-
eter settings to confirm the low repair time and low network
traffic cost of our approach.
The remainder of the paper is organized as follows. In

Section 2, we introduce a two-layer repair framework, and
present how CTREE improves the repair efficiency and re-
duce the network traffic cost. Section 3 compares CTREE
with other typical repair schemes from both numerical and
simulation comparisons. In Section 4 we introduce the re-
lated work. Finally, Section 5 concludes this paper.

2. COOPERATIVE REPAIRS
Our study focuses on the repair for multiple failures where

the newcomers cooperatively complete the repair. In this
section, we firstly present a two-layer repair framework to
support both single and multiple failure repair. Then we in-
troduce how to construct parallel trees for the failed blocks.
Further, we introduce how the parallel tree-structured da-
ta transmission technique improves the data transmission
efficiency and how core-based data transmission technique
between newcomers reduces the network traffic cost. Fi-
nally, we introduce the encoding scheme for CTREE. The
notations used in this paper are illustrated in Table 1.

2.1 Framework of CTREE
In this section, we propose a general repair framework

GRF (n, k, r) to support repairs of both single and multiple
failures, illustrated in Figure 1. In GRF (n, k, r), the da-
ta object is divided into k blocks and then encoded into n

Table 1: Parameter notations.
Symbols Representations

N Total number of nodes
M Data object size

(n, k, r) Coding parameters
Xi The ith storage node
Yi The ith newcomer
Ti The ith regeneration tree
ei The ith edge
ωei Weight of ei

blocks (denoted as (X1, . . . , Xn)), which are stored at n s-
torage nodes to maximize the data reliability. When there
are r nodes fail, the system needs to find another r newcom-
ers (denoted as (Y1, . . . , Yr)) to reconstruct the failed blocks
to keep the same level of redundancy.

Y1

XgX1

X11 X1i Xg1 Xgi

…

… ……

Yj

XgX1

X11 X1i Xg1 Xgi

…

… ……

Yr

XgX1

X11 X1i Xg1 Xgi

…

… ………

…

…

…

T1 TrTj

Core Layer

Tree Layer

Yi

Xj

Newcomer

Provider

Figure 1: An illustration of GRF (n, k, r).

At a high level, GRF (n, k, r) consists of two layers: the
tree layer and the core layer. The tree layer is responsible
for data transmission between providers along the regener-
ation trees. At this layer, there are r regenerating trees
(T1, . . . , Tr) covering the providers and the newcomers. In
each regenerating tree Ti, 1 ≤ i ≤ r with the newcomer as
the root and providers as the children, each non-leaf node
encodes the received block with its stored block into a tem-
p block, which is sent to its parent. The transmission is
pipelined and the packet is the unit transmitted between
nodes. Each node starts transmitting the packets as it com-
pletes the encoding operations. Thus, the bottleneck is the
edge with the least available bandwidth in the tree.

The core layer is responsible for data exchanges between
newcomers to reduce the network traffic cost. At this lay-
er, there is a coordinator Yc among all the r newcomers
(Y1, . . . , Yr) and the data exchanges consist of three steps.
Firstly, each newcomer Yi receive data from the correspond-
ing regeneration tree Ti and encodes the received data into
a temp block ti, which is sent to the selected coordinator Yc.
Secondly, the coordinator Yc receives r temp blocks (includ-
ing itself) (t1, . . . , tr) and encodes these temp blocks into r
new partial blocks (t′1, . . . , t

′
r). These encoded partial blocks

are sent to the other r−1 newcomers, with t′i to Yi. Finally,
there are two blocks ti and t′i in each newcomer Yi, and Yi en-
codes them into the required block bi with bi = ci∗ti+c′i∗t′i,
where ci and c′i are the coefficients.

To sum up, the two-layer framework GRF (n, k, r) coop-
eratively completes repairs of the r lost blocks. The de-
tail techniques related above mainly consist of the selection
of newcomers, construction of parallel regeneration trees,
transmission scheme of CTREE and encoding scheme of C-
TREE. we specify these techniques in the following sections.

2.2 Selection of Newcomers
Newcomers are nodes, which are the roots of the regen-

eration trees and where the new reconstructed data stores.
Different selection of newcomers will bring different repair
performance. In GRF (n, k, r), there is one special newcom-
er, called coordinator, which is the core exchanging data with
other newcomers. Naturally, it will achieve the best repair
performance if we can select the newcomer with the high-
est available bandwidth. However, it is difficult to detect the
highest available bandwidth as the environment changes and
the total node number in the data center increases. Further-
more, it may cause the performance skew if we try to select
the newcomers with the highest available bandwidth. Thus,
assume there are N storage nodes in total, we randomly
select r newcomers among N − n nodes, avoiding the possi-
bility that there are blocks stored in the selected newcomers.
As the coordinator needs to exchange data with all the oth-
er r − 1 newcomers, we try to find the newcomer with the
highest available bandwidth with other newcomer. Assume
the available bandwidth between Yi and Yj is denoted as
avai,j , the average available bandwidth between Yi and oth-

er newcomers could be represented as avai =
∑r

j=1,j ̸=i avai,j

(r−1)

. Thus, Yc is the newcomer with highest average available
bandwidth avac = max{ava1, . . . , avar}.
Meanwhile, each newcomer needs at least k providers a-

mong the n− r survival nodes to complete the repair. It is
proved that [5] will reduce the repair network traffic cost as
the provider number increases for regenerating codes. Thus,
it is natural to set all the n − r survival nodes (denoted as
(X1, . . . , Xn−r) without loss of generality) as providers.

2.3 Construction of Parallel Regeneration Trees
During the repair process, CTREE needs to construct r

parallel regeneration trees. In each regeneration tree Ti, the
non-leaf providers receive data from their children nodes,
encode the received data with the data they store, and relay
the encoded data to their parent nodes packet-by-packet. A
regeneration tree (noted as Ti) is a tree, where the root is
the newcomer Yi, 1 ≤ i ≤ r and covers n − r providers as
child nodes [12].
CTREE aims to construct r parallel optimal regeneration

trees with the highest available bandwidth and repair the
r lost blocks cooperatively and simultaneously. In this sec-
tion, we propose a edge-shared tree construction technique,
called ED-TREE, to construct the r regeneration trees in
parallel. Each regeneration tree Ti covers a newcomer and
n−r providers. ED-TREE completes the construction of re-
generation trees by two steps. Firstly, ED-TREE constructs
r regeneration trees with the Kruskal’s algorithm to opti-
mize the available bandwidth. Secondly, ED-TREE adjusts
some of the edges to maximize the available bandwidth. We
specify these two steps as follows.
Regeneration tree construction with Kruskal’s al-

gorithm. The Kruskal’s algorithm constructs a maximum
spanning tree starting from the root inductively to optimize
the bottleneck bandwidth. If the root has been selected, in
the (n− r)th step of Kruskal’s algorithm, there are n− r+1
nodes in the regeneration tree, whose bottleneck bandwidth
is optimal among all the regeneration trees in GRF (n, k, r).

Theorem 1. After (n − r)th step, the regeneration tree
T ∗ constructed by Kruskal’s algorithm is an optimal regen-
eration tree in GRF (n, k, r).

Proof. T ∗ is a regeneration tree of GRF (n, k, r). As-
sume T is a different regeneration tree with T ∗, the defini-
tion of T could be defined as follows if T ∗ is not the optimal
regeneration tree of GFR(n, k, r):

f(T) = min{i\ei ∈ T}. (1)

Select one optimal regeneration tree T0 to maximize f(T0).
Assume f(T0) = k, e1, e2, . . . , ek−1 are in T0 and T ∗ at the
same time. However ek is not in T0. There is only one circle
C in T0 + e + k, and there is at least one edge e′k in C but
not in T ∗.

T ′ = (T0 + ek)− e′k (2)

Namely, T ′ is a connected graph with p(G)−1 edges. Thus,
T ′ is the regeneration tree of GRF (n, k, r) and we can get
Eq. 3.

W (T ′) = W (T0) + ω(ek)− ω(e′k) (3)

Since the selected edge ek by Kruskal’s algorithm is the edge
that makes (e1, e2, . . . , ek) no circuit graph with the least
weight. (e1, e2, . . . , ek−1, ek) is a subgraph with no circuit.
Thus, we can get Eq. 4.

ω(e′k) ≥ ω(ek) (4)

Combining Eq. 3 and Eq. 4, we can get Eq. 5.

ω(T ′) ≤ ω(T0) (5)

Thus, T ′ is also a optimal regeneration tree of GFR(n, k, r).
However, as {e1, e2, . . . , ek} ⊆ E(T ′)}, We can get Eq. 6.

f(T ′) > k = f(T0) (6)

This leads to the contradiction with the selection of T0.
Thus, T ∗ is a optimal regeneration tree of GFR(n, k, r).

The bottleneck bandwidth of an optimal regeneration tree
T is the largest bottleneck bandwidth. However, as the con-
struction process of r regeneration trees is serial by Kruskal’s
algorithm, where the former constructed regeneration trees
may occupy all the available bandwidth between nodes, it is
possible there is little available bandwidth when construct-
ing the following regeneration trees. Thus, we need to adjust
the edges of constructed regeneration trees to maximize the
available bandwidth.

Edge adjustment. Assume the r constructed regener-
ation trees are (T1, . . . , Tr). ED-TREE tries to figure out
the bottleneck edges shared by multiple regeneration trees.
We set the sharing threshold as t (default as r/2) and edges
shared by more than t regeneration trees as (e1, . . . , es), it
may cause performance degradation if we ignore the edges
shared by multiple regeneration trees. The available band-
width (ω1, . . . , ωs) of the shared edges (e1, . . . , es) is dilut-
ed to (ω1/t, . . . , ωs/t), where the data transmission time is
determined by min(ω1/t, . . . , ωs/t). In fact, there may be
some edges with higher available bandwidth that are not u-
tilized. Thus, ED-TREE tries to adjust the shared edges to
edges with less transmission burden to alleviate the burden
of the shared edges. It is true that ED-TREE may not trans-
mit the burden of all the shared edges to the edges with the
higher available bandwidth, but it is possible to improve the
data transmission efficiency by increasing the minimum bot-
tleneck bandwidth min(ω1/t, . . . , ωs/t). Namely, the bottle-
neck available bandwidth min(ω′

1/t, . . . , ω
′
s/t) after the ad-

just may be larger than that before, i.e.,min(ω′
1/t, . . . , ω

′
s/t) ≥

min(ω1/t, . . . , ωs/t).

Algorithm 1: Construction of regeneration trees

Input : Yi: the ith newcomer.
providers: the providers list.

Output: Ti: the ith regeneration;

1 for each Ti, 1 ≤ i ≤ r do
2 add Yi into Ti.
3 add Ti into treeList.

4 for each Ti, 1 ≤ i ≤ r do
5 while node number of Ti is smaller than n− r + 1

do
6 find the providerj in providers with the

maximum bandwidth with the nodes in Ti.
7 add providerj into Ti.
8 delete providerj from providers

Algorithm 1 shows how to construct r optimal regenera-
tion trees. We first construct r optimal regeneration trees
by Kruskal’s algorithm. Then we complete the adjust by
two steps. Firstly, if the degree of the regeneration tree Ti

is invalid, we adjust the edges in the tree by adding the
edge in Eroot inductively. Secondly, we adjust the bottle-
neck edge to the edge with higher available bandwidth if it
does not lead to contradiction with the indegree limitation
of the root.

2.4 Transmission Scheme of CTREE
During the repair process of CTREE, there are two da-

ta flows. One is the data transmission along the regener-
ation trees, and the other is the data exchanges between
the newcomers. In this section, we propose a pipelined data
transmission technique, called PTransmission, to organize
the data transmission along the regeneration trees, and a
cored-based data exchange technique, called, CExchange,
to organize the data exchanges between the newcomers. We
specify these two techniques in the following sections.

2.4.1 Data Transmission along the Regeneration Tree
In this section, we are concerned about the data trans-

mission along the regeneration trees and propose a pipelined
data transmission technique PTransmission. In the tree lay-
er of GRF (n, k, r), there are r parallel regeneration trees.
In each regeneration tree Ti, each leaf provider Xi trans-
mits the required data βi to its parent provider Xj . Each
non-leaf provider Xj receives data (βj,1, . . . , βj,jin) (jin is
the indegree of Xj) from its children, encodes them with

the data βj it stores with β′
j =

∑jin
i=1 cj,i ∗ βj,i + cj ∗ βj , and

relay the encoded data β′
j to its parent node byte-by-byte.

With the relay of non-leaf providers, each newcomer Yi (root
of Ti) will receive a linear combination of iin coded blocks
(βi,1, . . . , βi,iin) from iin child providers. The newcomer Yi

will encode the iin received blocks into a new temp block βi

with βi =
∑iin

j=1 ci,j ∗ βi,j .
As we are concerned about the repair for r lost blocks, ED-

TREE constructs r parallel regeneration trees (T1, . . . , Tr).
During the repair process, the data transmission between
multiple regeneration trees are independent with each oth-
er. Thus, the leaf nodes for all the r regeneration trees s-
tart to transmit the data simultaneously, which enables the
parallel repair for the r lost blocks. The data transmission
time is determined by the bottleneck available bandwidth

of the regeneration tree, which is the edge with the mini-
mum available bandwidth. The data transmission time for
all the r regeneration trees is determined by the regenera-
tion tree with the smallest available bandwidth. Assume the
data transmission time for Ti is timei, the data transmission
time for all the r regeneration trees could be represented by
max{time1, . . . , timer}, illustrated in Algorithm 2.

Algorithm 2: Data Transmission

Input : newcomer: the selected newcomer list.
regenerationTrees: the regeneration tree list.

1 Assume the jth newcomer Yj is the controller for (each
newcomer Y [i] in newcomer, 0 ≤ i < r) do

2 Receive data from providers along the
regenerationTrees[i].

3 if (i == j) then
4 Encode/Decode the data received from

regenerationTrees[j] and get βj,j .

5 while ((
r∨

g=0

signalg) do

6 for (x ∈ [1, r]) do
7 β′

j,x =
∑r

l=1 cx ∗ βl,j .
8 Send the data β′

j,x to the xth newcomer
Yx.

9 if (Data sending completely) then
10 Send the signalj = false to

newcomerx.

11 Store the new generated data β′
j,j locally.

12 else
13 Encode/Decode the data received from

regenerationTrees[i] and send the generated
data βi,j to the controller Yj .

14 if (Data sending completely) then
15 Send the signali = false.

16 while (signalj) do
17 Receive data β′

j,i from the controller Yj .
18 Store the data β′

j,i locally.

2.4.2 Data Exchanges Between Newcomers
In this section, we are concerned about the data exchanges

between the newcomers and propose a core-based data ex-
change technique CExchange. In the core layer ofGRF (n, k, r),
there is a coordinator among the r newcomers, which is
the core newcomer exchanging data with other newcomers.
Based on the analysis of PTransmission, we know that the
data volume transmitted along the regeneration trees is e-
qual to β =. As the newcomers exchange the data received
from the regeneration trees, the data volume transferred be-
tween newcomers is the same as β.

In each regeneration tree Ti, the newcomer Yi combines all
the received blocks from its children into a new temp block
βi, including the coordinator Yc. One of the main charac-
teristics of CTREE is that the data exchanges between new-
comers could reduce the network traffic cost. Thus, the re-
quired blocks for newcomers would be obtained by exchang-
ing the temp blocks. CExchange adopts the core-based data
exchange pattern to organize the data exchange. The data
exchange could be completed by three steps. Firstly, All

the newcomers transmit the combined blocks from the re-
generation trees to the coordinator. Thus, the coordinator
will receive r temp blocks (β1, . . . , βr), r − 1 of them com-
ing from the other r − 1 newcomers, and βc, 1 ≤ c ≤ r is
from its regeneration tree. Secondly, the coordinator Yc will
encode the r temp blocks into r partial blocks (p′1, . . . , p

′
r)

with p′i =
∑r

j=1 ci,j ∗ βj . Thus, the coordinator Yc will
get r partial blocks. Thirdly, the coordinator forwards the
r − 1 partial blocks to the corresponding newcomers, with
p′i for Yi. Each newcomer Yi combines the temp block βi

received from the regeneration tree and the partial block p′i
received from the coordinator into the required block pi by
pi = ci ∗ βi + c′i ∗ p′i.
Different from the data exchange between any two new-

comers in mutually cooperative recovery (MCR) mechanism,
CExchange adopts the core-based data exchanges between
the newcomers, where the other newcomers exchange data
with the coordinator. Thus, CExchange could save much
network traffic cost. It will cost A2

r ∗ β = r ∗ (r − 1) ∗ β
for MCR to complete the data exchange between newcom-
ers, and 2 ∗ (r − 1) ∗ β for CTREE to complete the data
exchange between the coordinator and the other newcomer-
s, where β is the data volume transmitted between nodes.
Thus, MCR consumes more network traffic than CTREE as
r ∗ (r−1) ≥ 2∗ (r−1) if r ≥ 2. It is true that it may cause a
bottleneck as all the newcomers exchange data with the co-
ordinator. However, the number of data exchange between
the coordinator and the newcomers will stay small as r is
a relative small number. Furthermore, CExchange adopts
the pipelined data transmission scheme to improve the data
transmission efficiency, which could alleviate the bottleneck
of coordinator. Thus, the relative small newcomer number
and the pipelined data transmission ensure that the coordi-
nator will not become the bottleneck.

2.5 Encoding Scheme of CTREE
A coding scheme in CTREE is valid if a data object en-

coded by this scheme can be repaired after multiple fail-
ures based on the CTREE transmission scheme. Inspired
from the tree-structured data regeneration with regenerat-
ing codes (RCTREE) [12], CTREE adopts the MSR codes
to reduce the repair time and the number of providers is
variable as the failure number changes. Thus, the encoding
scheme of CTREE should adapt to this. For the repair with
d, k ≤ d ≤ n−r providers, the data object should be divided
into k blocks, and each block should be divided into at least
(d − k + 1) symbols to achieve the lower bound of network
traffic [7] [12]. For each newcomer in CTREE, it receives
data from both the regeneration tree and the coordinator.
It seems that there are n− r providers and r− 1 other new-
comers transmitting data to each newcomer. We could take
it as there are n− 1 providers participating in the repair for
each lost blocks, namely, d = n−1. Thus, the data object is
divided into k(n− k) symbols and each storage node stores
one block consisting of (n− k) symbols. The k(n− k) sym-
bols are encoded into n(n − k) symbols, and these symbols
are stored at n nodes (X1, . . . , Xn), each node storing n− k
encoded symbols. In a regeneration tree with n−r provider-
s, each provider encodes its n−k symbols into a symbol, and
then sends it to its parent nodes. Then each newcomer re-
ceives a total of iin symbols from the regeneration trees and
one symbol from the coordinator, which combines the infor-
mation from other r−1 newcomers, so the newcomer has to

receive data directly from at least n− k− (r− 1) providers.
The traffic on each link is M

k(n−k)
.

3. EVALUATION
In this section, we compare CTREE with RCTREE and

MCR from both numerical analysis and experimental evalu-
ation. The numerical analysis compares the network traffic
cost while the experiments compare the repair time.

3.1 Implementation
To evaluate the repair time of CTREE, we design and

implement the prototype of CTREE, RCTREE and MCR
based on the Openstack-based testbed [15]. To develop the
prototype as modular and portable, we use ICE [1] as the
basic communication platform. Through defining the com-
munication interfaces, ICE supports various communication
patterns among processes, which allows the developers fo-
cusing on the application logic.

The framework of CTREE consists of two layers: core lay-
er and tree layer. Both layers greatly affect the performance
of repair. Existing works focus on either core layer or tree
layer. For example, RCTREE focuses on the tree layer to
improve the data transmission efficiency without any data
exchanges between newcomers. MCR focuses on the data
exchanges between newcomers without considering the op-
timization of data transmission between the providers and
the newcomers. We design and implement RCTREE and
MCR on our testbed to evaluate the performance of them.

RCTREE: It constructs a regeneration tree for each new-
comer and its providers on the tree layer, where the data
transmits along the providers and reaches the newcomer.
Compared with CTREE, there is no data exchange between
the newcomers on the core layer and the multiple failed
blocks are repaired in a serial way.

MCR: It constructs a star structure for each newcomer
and its providers on the tree layer, where all the providers
transmit data to the newcomer directly without any relay.
Meanwhile, each newcomer needs to exchange data with any
other newcomer on the core layer. Compared with CTREE,
the star structure on the tree layer degrades the data trans-
mission efficiency and it consumes more network traffic when
exchanging data on the core layer.

In the following evaluations, we evaluate the performance
of network traffic cost by numerical analysis and repair time
by experiments on both physical and virtual machines.

3.2 Parameters and Metrics
To evaluate the performance of the system, the testbed

contains two kinds of servers: one is the physical machines
(PMs) equipped with two hexa-core Intel Xeon E5-2640 2.5GHz
processors, 48GB RAM, 2TB hard disk and a 1Gb/s Ether-
net card. The other is the virtual machines (VMs) equipped
with a two-core processor, 8GB RAM, 300GB hard disk.
All the physical or virtual servers are homogeneous running
64-bit Ubuntu 14.04 with JDK 1.6.0 37. The physical ma-
chines that these VMs are attached to are connected using
gigabit switches. There are 30 PMs, where each of them
contains about 7 VMs. Each VM performs as a degraded
PMs, which may degrade the repair performance. However,
the experiments are conducted on the same PMs for all the
three repair schemes. Thus, it is fair for all of them when
executing the repair processes.

It is important to note that we are concerned about that

Table 2: Storage Cost and Bandwidth Comparison
of RCTREE, MCR and CTREE

Total storage cost Total network traffic cost

RCTREE (M
k
) · n [n−r

n−r−k+1
] · (M

k
) · r

MCR (M
k
) · n [n−1

n−k
] · (M

k
) · r

CTREE (M
k
) · n r(n−r+2)−2

n−k
· M

k

the network traffic cost and the repair time when repairing
multiple failures. We analyze network traffic cost by numer-
ical comparisons with variation of n, k and r. To evaluate
the repair time, we conduct the experiments on both PMs
and VMs. Total network traffic cost and total repair time
are two main metrics we are concerned about. Total network
traffic cost is the total data volume transmitted between n-
odes during the repair process. The total repair time is the
duration from the start of the first repair to the end of the
last repair. We expect both as small as possible.

3.3 Numerical Comparisons
In this section, we compare CTREE with RCTREE and

MCR from numerical comparisons in storage overhead and
network traffic cost. Assume the original data object (de-
noted as its size of M) is divided into k blocks, and encoded
into n blocks. Each of the storage nodes stores M/k bytes
data. After some time, there are r storage nodes fail, and
the repair is triggered. Based on the scenario above, we
analyze the storage overhead and repair bandwidth cost of
RCTREE, MCR and CTREE .
RCTREE: In [12], when using RCTREE, if a newcomer

is allowed to access to d active providers, it needs to store
M
k

and cost a traffic of [d
d−k+1

] · (M
k
) to repair the data.

So the storage cost is (M
k
) · n, and the repair bandwidth is

[d
d−k+1

] · (M
k
) · r.

MCR: In [8], when using MCR, if a newcomer is allowed
to access to d active providers, it needs to store M

k
and cost

a traffic of γMCR = (n − 1)rβ and β = M
[k(n−k)]

to repair

the data. So the storage cost is (M
k
) · n, and the repair

bandwidth is [n−1
n−k

] · (M
k
) · r.

CTREE: From the above analysis in this paper, when
using CTREE with αCTREE = M

k
, γCTREE = (n−r)rβ+2β

and β = M
[k(n−k)]

, the storage cost is (M
k
) · n and the total

network traffic is n−r+2
n−k

· M
k

· r.
It is proved that [5] we could get better tradeoff of storage

cost and repair bandwidth if d increases for regenerating
codes. When there are r storage node failures, the maximum
number of d is n−r, so we set d = n−r, the data transmitted
between nodes is β = Md

k(d−k+1)
, and the total maintenance

bandwidth for repair r lost blocks is [d
d−k+1

] · (M
k
) · r for

RCTREE. And MCR could not only access data from n− r
providers, but there are data exchanges between newcomers,
so the maximum d for each newcomer is n−1, which includes
n − r providers and r − 1 newcomers. Thus we set d =
n−1, the data transmitted between nodes is β = M

k(n−k)
and

the total maintenance bandwidth for repair r lost blocks is
[n−1
n−k

] · (M
k
) · r for MCR. While in CTREE, each newcomer

could access data from d = n − r providers, and there are
data exchanges between newcomers and the root newcomer,
so we set d = n− 1, the data transmitted between nodes is
β = M

k(n−k)
and the total maintenance bandwidth for repair

Table 3: Parameter Values
Symbols Range Default

n {10,11,12,13,14} 14
k {3, 4, 5, 6, 7, 8, 9, 10} 6
r {1, 2, 3, 4} 3

b (MB) {32, 64, 128, 256} 64
pkg (KB) {16, 32, 48, 64} 48

r lost blocks is n−r+2
n−k

· M
k
· r for CTREE. The storage costs

and total maintenance bandwidths of different redundancy
recovery schemes are illustrated in Table 2.

3.4 Experimental Results
In this section, we compare CTREE with RCTREE and

MCR from both physical machines and virtual machines
with the variation of parameters illustrated in Table 3. For
RCTREE, we construct r regeneration trees and the data
flows along the regeneration tree, until reaching the root.
Since RCTREE repairs multiple failures serially, the r re-
generation trees are constructed in a serial way. For MCR,
we construct the star structure with each newcomer and it-
s providers, and exchange data between any two of the r
newcomers. For CTREE, we construct r regeneration trees
and exchange data between newcomers, where each newcom-
er contacts with the coordinator, which receives data both
from its regeneration tree and other newcomer. Finally, the
coordinator sends the encoded data back to the other new-
comers. We specify the experimental results as follows.

0

1

2

3

4

5

32 64 128 256

To
ta

l R
ep

air
 T

im
e (

s)

(a) Size of Data Block (MB)

CTREE
RCTREE
MCR

0

1

2

3

4

16 32 48 64
To

ta
l R

ep
air

 T
im

e (
s)

(b) Size of Package (KB)

CTREE
RCTREE
MCR

Figure 2: Repair time comparisons of CTREE, RC-
TREE and MCR with data block size and package
size on PMs.

0

1

2

3

4

10 11 12 13 14

To
ta

l R
ep

air
 T

im
e (

s)

(a) Number of n on PMs

CTREE
RCTREE
MCR

0

1

2

3

4

10 11 12 13 14

To
ta

l R
ep

air
 T

im
e (

s)

(b) Number of n on VMs

CTREE
RCTREE
MCR

Figure 3: Repair time comparisons of CTREE, RC-
TREE and MCR with n on PMs and VMs.

3.4.1 Results on PMs
Figure 2(a) shows that the repair time of CTREE, RC-

TREE and MCR increases as the data block size increases
from 32MB to 256MB, since larger block consumes more
time to complete the transmission and encoding. Figure
2(b) shows that the repair time decreases as the package size

increases from 16KB to 48KB, but increases as the package
size continuously increases to 64KB. Since larger package
size reduces the package number, which improves the data
transmission efficiency. However, as the data packets are
transmitted with TCP connection, where each TCP pack-
age is smaller than 64KB. Each TCP package will be divided
into two TCP packages as the total volume of data package
and the TCP header is larger than 64KB when the data
package size is larger than 48KB. Thus, the repair time in-
creases as the package size continuously increases from 48KB
to 64KB. Figure 3(a) shows the repair time decreases as n
increases from 10 to 14, since larger n increases the provider-
s participating in the repair but reduces the data volume
transmitted between nodes during the repair process. Fig-
ure 5(a) shows the repair time increases as k increases from
3 to 10, since larger k increases the data volume transmitted
between nodes, which consumes more time for repairing the
lost blocks. Figure 6(a) shows the repair time increases as r
increases from 1 to 4, since the repair for more lost blocks
needs to connect more nodes and transmit more data during
the repair process.

0

3

6

9

32 64 128 256

To
ta

l R
ep

air
 T

im
e (

s)

(a) Size of Data Block (MB)

CTREE
RCTREE
MCR

0

1

2

3

4

5

16 32 48 64

To
ta

l R
ep

air
 T

im
e (

s)

(b) Size of Package (KB)

CTREE
RCTREE
MCR

Figure 4: Repair time comparisons of CTREE, RC-
TREE and MCR with data block size and package
size on VMs.

3.4.2 Results on VMs
Figure 4, Figure 3 (b), Figure 5 (b) and Figure 6 (b) show

the total repair time comparisons of CTREE, RCTREE and
MCR on VMs with the varied parameters illustrated in Ta-
ble 3. The experimental results tell us that the repair time
for all the three repair schemes shows the similar trend with
the variation of parameters. However, the repair time on
VMs is larger than that on PMs, since the network band-
width of PMs is shared by the VMs located on it. The
shared network bandwidth may degrade the data transmis-
sion efficiency between VMs. Meanwhile, all the VMs on a
PM share the same hard disk, where the I/O performance of
VMs on a PM is limited by the I/O throughput of the hard
disk. The more number of I/O operations on the hard disk,
the less I/O throughput for the VMs. Thus, the repair time
for all the three repair schemes on VMs is larger than that
on PMs. However, the degraded performance of VMs does
not have impact on the trend of among CTREE, RCTREE
and MCR, where we can treat the VMs as the degraded
PMs. The experimental results on both PMs and VMs tell
us that CTREE shows the least repair time compared with
RCTREE and MCR.

4. RELATED WORK
The optimization of repair performance for erasure coding

has attracted many attentions. Huang et al. [9] proposed
Pyramid codes, which divide the k blocks into groups and

0

1

2

3

4

5

3 4 5 6 7 8 9 10

To
ta

l R
ep

air
 T

im
e (

s)

(a) Number of k on PMs

CTREE
RCTREE
MCR

0

1

2

3

4

5

3 4 5 6 7 8 9 10

To
ta

l R
ep

air
 T

im
e (

s)

(b) Number of k on VMs

CTREE
RCTREE
MCR

Figure 5: Repair time comparisons of CTREE, RC-
TREE and MCR with k on PMs and VMs.

0
0.5

1.5

2.5

3.5

1 2 3 4

To
ta

l R
ep

air
 T

im
e (

s)

(a) Number of r on PMs

CTREE
RCTREE
MCR

0

1

2

3

1 2 3 4

To
ta

l R
ep

air
 T

im
e (

s)

(b) Number of r on VMs

CTREE
RCTREE
MCR

Figure 6: Repair time comparisons of CTREE, RC-
TREE and MCR with r on PMs and VMs.

create local coded blocks and global coded blocks. The Lo-
cal Reconstruction Codes (LRC) proposed in [10], Locally
Repairable Codes (LRC) presented in [17] and Hierarchi-
cal Codes (HC) presented in [6] [11] share the similar idea
with pyramid codes. Compared with the MDS codes, codes
based on degree restriction reduce the repair bandwidth cost
by grouping the blocks at the cost of extra storage cost.

Dimakis et al. [5] introduced network coding into era-
sure codes and propose Regenerating Codes (RC) which use
slightly larger fragments than MDS but have lower overal-
l bandwidth consumption. RC requires that each block in
the storage node needs to be subdivided into fragments and
allows the newcomer could access more than k providers to
download the required data. It is proved that RC could
reduce the overall bandwidth consumption for repair. The
conventional repair schemes connect providers and the new-
comer with a star structure, where the repair time is restrict-
ed by the bottleneck bandwidth between providers and the
newcomer. Jun Li et al. [12] proposed a tree-structured re-
generation scheme and show how the tree-structured scheme
regenerates redundant data at the newcomer. It is proved
that the tree-structured repair scheme can reduce the regen-
eration time by improving the transmission rate.

Hu et al. [8] proposed a mutually cooperative recovery
(named MCR) mechanism for multi-loss recovery, where all
the newcomers repair the lost data cooperatively and simul-
taneously. Each newcomer in MCR chooses n − 1 nodes
(both all the n− r survival nodes and the other r − 1 new-
comers) for recovery, and needs to download less data from
the providers and the other newcomers. Li et al. [13] pro-
pose a system CORE to support both single and concurrent
failure repair, which aims to minimize the repair network
traffic cost by reconstructing all the lost data in one core
newcomer and distributing these constructed data to the
other newcomers. Compared to these studies, this paper fo-
cuses on the optimization of repair time and network traffic
cost for multiple failures.

5. CONCLUSIONS

In this paper, we focus on the optimization of repair net-
work traffic and repair time when repairing multiple fail-
ures, and propose a a cooperative repair scheme based on
tree structure with regenerating codes CTREE. For general-
ity, CTREE presents a two-layer framework to support both
the single and multiple failures. Low network traffic cost is
attained by CExchange to organize the data exchange be-
tween the coordinator and the other newcomers. Low repair
time is achieved by ED-TREE and PTransmission to im-
prove the data transmission efficiency by regeneration trees
and pipeline data transmission. Numerical analysis and ex-
periments based on the real deployment under various pa-
rameter settings revealed that CTREE reduces the repair
traffic cost and the repair time compared with the typical
repair schemes.

6. ACKNOWLEDGMENTS
This work was supported by the National Natural Sci-

ence Foundation of China (Grant No.61379052), the Na-
tional High Technology Research and Development 863 Pro-
gram of China (Grant No.2013AA01A213), the Natural Sci-
ence Foundation for Distinguished Young Scholars of Hu-
nan Province (Grant No.14JJ1026), Specialized Research
Fund for the Doctoral Program of Higher Education (Grant
No.20124307110015).

7. REFERENCES
[1] Zeroc. [online]. available:, http://www.zeroc.com/.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and
G. Voelker. Total recall: System support for
automated availability management. In Proceedings of
the 1st conference on Symposium on Networked
Systems Design and Implementation, volume 1, pages
25–25, 2004.

[3] V. R. Cadambe, C. Huang, and J. Li. Permutation
code: Optimal exact-repair of a single failed node in
MDS code based distributed storage systems. In IEEE
International Symposium on Information Theory
Proceedings, ISIT 2011, St. Petersburg, Russia, July
31 - August 5, 2011, pages 1225–1229, 2011.

[4] O. Dalle, F. Giroire, J. Monteiro, and S. Pérennes.
Analysis of failure correlation impact on peer-to-peer
storage systems. In Peer-to-Peer Computing, 2009.
P2P’09. IEEE Ninth International Conference on,
pages 184–193. IEEE, 2009.

[5] A. Dimakis and P. Godfrey. Network coding for
distributed storage systems. Information Theory,
IEEE Transactions on, 56(9):4539–4551, 2010.

[6] A. Duminuco and E. Biersack. Hierarchical codes:
How to make erasure codes attractive for peer-to-peer
storage systems. In Peer-to-Peer Computing, 2008.
P2P’08. Eighth International Conference on, pages
89–98. IEEE, 2008.

[7] A. Duminuco and E. Biersack. A practical study of
regenerating codes for peer-to-peer backup systems. In
Distributed Computing Systems, 2009. ICDCS’09.
29th IEEE International Conference on, pages
376–384. IEEE, 2009.

[8] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li.
Cooperative recovery of distributed storage systems
from multiple losses with network coding. Selected

Areas in Communications, IEEE Journal on,
28(2):268–276, 2010.

[9] C. Huang, M. Chen, and J. Li. Pyramid codes:
Flexible schemes to trade space for access efficiency in
reliable data storage systems. ACM Transactions on
Storage (TOS), 9(1):3, 2013.

[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in
windows azure storage. In USENIX Annual Technical
Conference (USENIX ATC), 2012.

[11] Z. Huang, E. Biersack, and Y. Peng. Reducing repair
traffic in p2p backup systems: Exact regenerating
codes on hierarchical codes. ACM Transactions on
Storage (TOS), 7(3):10, 2011.

[12] J. Li, S. Yang, X. Wang, and B. Li. Tree-structured
data regeneration in distributed storage systems with
regenerating codes. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9. IEEE, 2010.

[13] R. Li, J. Lin, and P. P. C. Lee. Core: Augmenting
regenerating-coding-based recovery for single and
concurrent failures in distributed storage systems. In
IEEE 29th Symposium on Mass Storage Systems and
Technologies, MSST 2013, May 6-10, 2013, Long
Beach, CA, USA, pages 1–6, 2013.

[14] X. Lu, H. Wang, J. Wang, J. Xu, and D. Li.
Internet-based virtual computing environment:
Beyond the data center as a computer. Future
Generation Computer Systems, 29:309–322, 2011.

[15] L. OpenStack. Openstack: The open source cloud
operating system, 2012.

[16] R. Rodrigues and B. Liskov. High availability in dhts:
Erasure coding vs. replication. Peer-to-Peer Systems
IV, pages 226–239, 2005.

[17] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos,
A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur.
Xoring elephants: Novel erasure codes for big data. In
Proceedings of the 39th international conference on
Very Large Data Bases, pages 325–336. VLDB
Endowment, 2013.

[18] W. Sun, Y. Wang, Y. Fu, and X. Pei. A discrete data
dividing approach for erasure-code-based storage
applications. In Service Oriented System Engineering
(SOSE), 2014 IEEE 8th International Symposium on,
pages 308–313. IEEE, 2014.

[19] Y. Wang and S. Li. Research and performance
evaluation of data replication technology in
distributed storage systems. International Journal of
Computers and Mathematics with Applications,
51(11):1625–1632, 2006.

[20] Y. Wang, X. Li, X. Li, and Y. Wang. A survey of
queries over uncertain data. Knowledge and
information systems, 37(3):485–530, 2013.

[21] Y. Wang and X. Ma. A general scalable and elastic
content-based publish/subscribe service. IEEE
Transactions on Parallel and Distributed Systems
(TPDS), 2014.

[22] S. Weidong, W. Yijie, and P. Xiaoqiang.
Tree-structured parallel regeneration for multiple data
losses in distributed storage systems based on erasure
codes. Communications, China, 10(4):113–125, 2013.

