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Abstract—Latency-sensitive multiparty applications involve in-
tensive communication between multiple participating nodes.
Relays are usually adopted for matchmaking end hosts, filtering
unwanted traffics, bypassing routing outages and so on. Speeding
up the relay-communication becomes increasingly important to
improve the QoE of clients. Currently, no rigorous guarantees
have been made for the latency-optimal relay communication.
We propose a novel framework to truthfully represent the relay
communication in the latency space. Real-world data sets show
that nearly 90% of node triples obey the average triangle
inequality, while our new model allows for the asymmetry and
triangle inequality violations to occur. We propose the general
triangle to rigorously locate a candidate relay closer to multiple
nodes, with which we systematically analyze the feasibility of
finding an optimal relay node for arbitrarily sized groups. Our
results show that distributed greedy methods are able to locate
optimal relays with modest communication overhead and small
search hops.

Index Terms—Latency-sensitive applications; relay communi-
cation; inframetric model; greedy algorithm; concentric ring;
average triangle inequality violation

I. INTRODUCTION

A lot of multiparty communication applications among

Internet-wide users have become a typical class of latency-

sensitive applications, e.g., Web proxies, Voice-over-IP, multi-

player network games. In these applications, participating

users have stringent requirements on the Quality of Experi-

ences (QoE) [1], [2], [3]. Users set up communication groups

and then communicate with each other within the same group,

as a result, each user needs to send/receive timely messages

to/from other users in the same group.

To efficiently forward network traffic for the group com-

munication, a popular approach is to set up service nodes

as relays to process and forward real-time messages, which

forms a star-like communication topology where the service

node is the hub or switch. Further, with the fast penetration of

cloud computing and Peer-to-Peer computing, researchers and

application developers usually increase the number of nodes

that serve as relays for the relay communication, in order to

scale well with increasing end hosts.

In large-scale multiparty systems, the relays can be dy-

namically managed via unstructured overlays to offer better

scalability over centralized maintenance. Then for each group-

communication request, the relay is dynamically selected over

the pool of candidate relays. As many multiparty applications

are latency-sensitive, the communication latency between relay

nodes and the users dominates users’ online experiences.

Unfortunately, selecting the relays with minimal network la-

tencies towards end hosts is challenging: First, the overhead

is high, as applications need to measure the network latencies

between candidate relay nodes and each end host, taking a

lot of available bandwidth resources of relays and end hosts.

Second, the search takes long periods, since the probing

process needs to be completed before selecting relays, as a

result, the period for establishing the network connections is

prolonged.

Selecting relay nodes using on-demand latency measure-

ments like Meridian [4] bypasses the latency distortions, but

is usually trapped at poor local minima because of the triangle

inequality violation (TIV) and the clustering in the delay space

[5], [6]. While network-coordinate based methods such as

PeerWise [7] and IRS [8] select low-latency relays using the

coordinate distances, which avoid direct probing costs, but are

usually trapped at local minimum due to the coordinate errors.

In this paper, we provide a unifying analytical framework to

rigorously study the latency-optimal distributed relay selection

problem. Our framework comprises two models:

• The metric space model that assumes the triangle inequal-

ity and symmetry to hold. We present the average triangle

inequality that bounds the latencies between the relays

and the group of targets. This metric holds for nearly

90% of nodes based on the real-world data sets.

• We propose a generalized inframetric model [9] that

allows for asymmetric RTTs and accommodates for a net-

work delay space with violations of the average triangle

inequality. Since the latency may be asymmetric [10].

We propose a distributed greedy method called RelayGreedy

that extends our previous work on selecting nearest nodes for

one target [6]. Upon receiving a relay selection request, Re-

layGreedy selects candidate relay nodes by sampling log(N)
(N stands for the number of service nodes) service nodes and

recursively forwards the request to a candidate nearer to the

targets. The key contribution of this work is on the theoretical

analysis of RelayGreedy’s performance. We rigorously show

that RelayGreedy is able to find the optimal relays for varied

numbers of hosts with high probability (w.h.p for short) 1 in

both metric space and inframetric space models.

Our optimal relay-selection results can be useful in many

popular user-facing cloud services:

1The event happens with a probability 1−N−c, where N represents the
number of service nodes and c ≥ 1



• Wide-area Web proxy: Each Web proxy is a relay that

receives clients’ http requests, determines the destina-

tion’s address, and redirects http messages to the destina-

tion, and forwards the http responses to the clients. Since

Web surfing is highly sensitive to end-to-end latencies,

selecting a latency-optimized proxy is important to ensure

smooth Web experiences.

• Voice-Over-IP: VoIP applications usually adopt the re-

lays to connect the end hosts that are behind NATs

or firewalls. For example, Skype maintains a two-level

overlay, where the top level consists of stable nodes

called supernodes that provide rendezvous-relay service

for decentralized hosts, the bottom level involves ordinary

hosts that connect to one or several supernodes for the

VoIP service.

• Mutiplayer network game: Network games typically

establish interest groups for clients by matchmaking al-

gorithms [11]. Clients must send game updates fast to all

players in the same group. To meet the latency bound of

updating game states, DonnyBrook [12] organizes high-

bandwidth hosts as relays to forward latency-sensitive

messages to group players.

• Privacy communication: Since relays decouple the con-

nections between senders and receivers, linking the mes-

sages with the sources becomes difficult. For example,

SplitX [13] places privacy-analysis proxies for redirecting

clients’ messages to analysts. To ensure real-time com-

munication, clients send messages to a latency-optimized

proxy, and the proxy relays messages to analysts as soon

as possible.

In summary, our main contributions include:

• We present a unifying theoretical framework to rigorously

analyze the latency-optimized relay selection problem.

Our model relaxes the symmetry and triangle inequality,

suiting the real-world data sets.

• We present a distributed greedy relay-selection algorithm

RelayGreedy and provide rigorous theoretical analysis,

we prove that RelayGreedy is able to find approximately

optimal relays with modest maintenance overhead and

small search hops.

The rest of the paper is organized as follows. Section II

formalizes the problem of finding distributed relays. Section

III then presents the intuitions and theoretical model to rep-

resent the relay-selection problem. Section IV then presents

the distributed relay-search method. Then section V provides

rigorous theoretical analysis. Section VI shows simulation

results. Finally, section VII concludes the paper.

II. PROBLEM MODEL

We next motivate the problem of selecting relays for dis-

tributed networking applications.

A. System Model

Relays passively receive messages for a group of nodes,

process the messages, and forward messages to nodes in this

group. Relays may be fixed (e.g., Web proxy) or dynamically

TABLE I
NOTATION USED.

Notation Meaning

T Relay-communication clients

L Number of targets

V All nodes

SV Candidate relays

N Total nodes

d Pairwise delays of nodes in V
β Latency-reduction threshold

ρ Inframetric parameter

selected from a set of candidate nodes. The relay then stores

necessary contacting addresses of hosts in the same group.

Selecting from a pool of dynamic relays scales well with

increasing applications or end hosts.

B. Scalable Latency-optimized Relay Selection

To provision real-time message delivery over relays, we

need to reduce the latencies of the relay communication. We

refer to the nodes for which we need to find the closest

relay as the targets. The targets are those nodes that need to

communicate with each other. These targets are usually placed

at the edges of the Internet, which have variable delays (tens

or hundreds of milliseconds) between each other. The service

nodes are those relays that can relay messages for a set of

decentralized targets. To assure a good quality of experience,

selecting a latency optimal relay is important. As a result, the

service nodes should be placed in geo-distributed data centers,

rather than in one location. Table I lists key notations in the

paper.

We state the relay-selection problem as follows: For a

service node P and a group T of L targets, we propose to use

the average delay d̄PT from node P to the set of targets T

d̄PT =
1

L

∑

j∈T

dPj (1)

as the proximity metric for quantifying the performance of

the relays for the targets T, since the average delay is able

to characterize the expected completion time of spreading

messages to all targets from the relay.

We next formalize the relay-selection problem, which seeks

to find the service node that has the smallest average delay

to targets T. A distributed algorithm for selecting the relay is

more suitable for large-scale platforms because of the relaxed

requirements of collecting the all-pair latencies between the

service nodes and the groups of targets. Therefore, we propose

the distributed relay-selection problem as follows:

Definition 1: (Distributed Relay Selection, DRS) Given a

set of targets ST and a set of service nodes SC , the problem

is to select a node P∗ from the set SC as the relay for the

set ST via distributed algorithms, where the relay P∗ has the

minimal average RTT to the targets in ST

P∗ = argmin
P∈SC

d̄PST
(2)

where d̄PST
denotes the average RTT value from node P to

nodes in set ST.



The targets that require the relay communication are usually

dynamically formed. As a result, DRS processes should be

online. Further, the online relay selection has to satisfies

several requirements: (i) Accuracy, to find a service node

with the lowest delay in order to increase the quality of

experiences of users. (ii) Scalability, to incur low bandwidth

cost with increasing system size. (iii) Speed: to obtain the

nearest service node quickly.

C. Related Work

Relay selection: Existing works usually focus on selecting

a relay to forward messages for two nodes. In the network

layer, the detour routing studies forward real-time network

traffic among two end nodes in order to decrease the pairwise

latency and to improve the route availability. Detour [14] and

RON [15] choose the optimal relay nodes using timely probes

in order to round off the effects of routing disconnection or

congestions. Nakao et al. [16] use the AS topology and the

geographical distance information to determine the relays for

scalability.

In the application layer, the overlay routing studies seek to

minimize the latency of forwarding overlay messages among

two participating nodes. SOSR [17] chooses a random relay

node from a set of online nodes, which does not optimize the

end to end delays. Skype maintains an overlay of superpeers

that serve as relays for bootstrapping the network connections

for end hosts that are behind NATs. Su et al. [18] show that

Akamai redirects users’ requests mainly based on the network

conditions and then propose a one-hop relay policy using the

redirection conditions of the Akamai CDN networks. PeerWise

[19] and IRS [20] construct routing overlays via a triangle

inequality heuristic: each peer selects neighbors as those peers

that can mutually reduce the network delays to some Internet

nodes.

We generalize the relay-selection problem to multiple par-

ticipating nodes. Our results provide a unifying framework to

select latency-optimized relays for both network and applica-

tion layers.

Metric and Inframetric Model: There exist two most re-

lated works with our study. Meridian [4] proposes the concen-

tric ring structure to organize decentralized service nodes as

an latency-aware overlay. Meridian proposes a general process

to search the nearest node towards one or multiple targets

by greedily forwarding among neighbors on the overlays.

Meridian provides an interesting theoretical analysis in the

metric space for one target, but does not generalize to multiple

targets. Further, the metric space analysis does not match the

latency metric that may contain asymmetry or TIVs.

HybridNN [6] generalizes Meridian to locate a node that

is nearest to one target in a relaxed inframetric model. The

inframetric model allows for asymmetry and triangle inequal-

ity violations for the pairwise latency, but can not model the

average latency from one node to multiple targets. As a result,

HybridNN’s theoretical results are not suitable for the relay-

selection problem.
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Fig. 1. The generalized triple u, v,T.

III. RELAY-SELECTION IN LATENCY SPACE

We first study the average latency in the metric space model.

We next propose a relaxed model to adapt to general settings

when the metric-space assumption does not hold.

A. Relay Selection in the Metric Space

Given a set V of nodes, the distance function d is called

a metric space if d satisfies the identity of indiscernibles

d(u, u) = 0, symmetry d(u, v) = d(v, u), and triangle

inequality d(u, v) + d(v, T ) ≥ d(u, T ), for u, v, T ∈ V . We

propose a metric that helps find the set of service nodes that

are close to a group of targets T = {T1, . . . , TL}. Prior work

has shown that the wide-area latency can be approximately

represented in the metric space [4].
1) Average Latency Triangle: We model the average la-

tency in a general triple (u, v,T), where the set T is regarded

as a general vertex. Let the latency value
(

duv, d̄uT, d̄vT
)

be

three edges in this triple. Figure 1 illustrates this model.

We define the average triangle inequality for each general

triple (u, v,T):

gu,v,T = max

{

duv
d̄uT + d̄vT

,
d̄uT

duv + d̄vT
,

d̄vT
d̄uT + duv

}

≤ 1

(3)

and

min

{

duv
∣

∣d̄uT − d̄vT
∣

∣

,
d̄uT

∣

∣duv − d̄vT
∣

∣

,
d̄vT

∣

∣d̄uT − duv
∣

∣

}

≥ 1 (4)

The maximum and minimum inequality generalizes the trian-

gle inequality in the metric space model. We can trivially see

that for metric-space model, the above inequalities both hold

for each general triple.

Based on the above inequality equations, we can determine

the closer nodes having smaller average latency towards the

targets in T. As a result, we can find a latency-optimized relay.

Lemma 3.1: For a service node u, if there exists a node v
such that d̄vT ≤ βd̄uT, where β ∈ (0, 1], then the delay duv
between u and v must be within the bounds

[

(1− β) d̄uT, (1 + β) d̄uT
]

(5)

Proof: By the average triangle inequality of the triple

(u, v,T) and d̄vT ≤ βd̄uT, we have

duv ≤ d̄uT + d̄vT ≤ (1 + β) d̄uT
duv ≥ d̄uT − d̄vT ≥ (1− β) d̄uT

(6)

which implies that (1− β) d̄uT ≤ duv ≤ (1 + β) d̄uT. The

proof is complete.
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Fig. 2. The CCDF of the average triangle inequalities for the RTT data sets.

2) Suitability of the Metric-Space Assumption: We use two

popular delay data sets to evaluate the relaying performance:

• Mat2500, a symmetric RTT matrix between 2500 DNS

servers collected by the Meridian project [4] with the

King method [21].

Host479. A RTT delay matrix among Vuze BitTorrent

clients [10]. The delay pairs dAB and dBA differ by more

than a factor of four in about 40% of the cases [10].

We next study the triangle inequalities for real-world data

sets. Figure 2 plots the Complementary Cumulative Distribu-

tion Function (CCDF) of the average triangle inequality. We

see that for nearly 90% of all triples, the average triangle

inequality is not larger than one, which implies that most

triples obey the average triangle inequality. While in Host479,

there are fewer triples having average triangle inequality

below one than those in Mat2500. Since Host479 violates the

symmetry of the metric space assumption.

Intuitively, the above procedure immediately leads to a

greedy algorithm for recursively locating the relays minimiz-

ing the average RTT value to the targets by the objective (2).

Unfortunately, if there exists a violation of the average triangle

inequality, some local minimum may be found, since the node

nearest to the targets may be out of the interval of (5).

B. Relay Selection in Inframetric Space

To relax the triangle inequality for a node triple consisting

of three nodes, the inframetric model [9] is defined over each

triple (u, v, T ), where d(u, T ) ≤ ρmax {d (u, v) , d (v, T )}
for ρ ≥ 1. Unfortunately, the inframetric model does not suit

the violations of the average triangle inequality for the average

RTTs. We therefore extend the inframetric model to repre-

sent asymmetric distances and average-triangle-inequality-

violations among nodes.

For a set SC of service nodes from the set V . Let Bu(r) be

a closed ball centered at node u covering the set of service

nodes whose distances to node u are at most r:

Bu(r) = {v|d(u, v) ≤ r, u, v ∈ SC} (7)

where r denotes the radius.

We next introduce the extended inframetric model:

Definition 2: Let a distance function d : V × V → ℜ+

denote the pairwise RTT values between nodes in V . Let

T ⊂ V denote a set of targets. Let a function d̄ denote the

average RTT from service nodes to the targets in T. The

distance function d is called a (T, ρ)-inframetric (where

ρ ≥ 1), iff d satisfies the following conditions:

(1) For any pair of nodes u1 and u2, where u1, u2 ∈ V ,

d(u1, u2)=0, then u1=u2;

(2) For a triple (u, v,T), where u, v ∈ V and the targets in T,

duv ≤ ρmin
{

max
{

d̄uT, d̄Tv

}

,max
{

d̄uT, d̄vT
}}

d̄uT ≤ ρmin
{

max
{

duv, d̄vT
}

,max
{

duv, d̄Tv

}}

d̄vT ≤ ρmin
{

max
{

dvu, d̄uT
}

,max
{

dvu, d̄Tu

}}

(8)

hold.

The inframetric parameter ρ is defined for each generalized

triple (u, v,T). Different triples may have varying ρ values

by Eq (8). When the RTT values among u, v and T are

asymmetric, the minimum ρ for the triples (u, v,T) and

(v, u,T) may also differ.

We next show that the inframetric model is able to bound

the set of nodes close to the targets. For a set T of target

nodes, let the set BT (y) be those nodes whose average RTTs

to targets in T are at most y as:

BT (y) =
{

v
∣

∣d̄vT ≤ y, v ∈ SC

}

(9)

Given a candidate relay u, we would like to obtain the set

of candidate relays that are closer to the targets T than node

u.

Lemma 3.2: Let d̄uT = r. Assume that there exists a

service node v that is at least β (β ≤ 1) times closer to targets

T:

d̄vT ≤ βd̄uT (10)

Then node v must be included in the closed ball Bu(ρr).
Proof: Since d̄vT ≤ βr, node v is included by the set

BT (βr) =
{

x
∣

∣d̄xT ≤ βr, x ∈ SC

}

. By the definition of the

inframetric model, Node v is also covered by the ball

Bu(ρr) = {x|d(u, x) ≤ ρr, u, x ∈ SC}, since

duv ≤ ρmin
{

max
{

d̄uT, d̄Tv

}

,max
{

d̄uT, d̄vT
}}

≤ ρmax
{

d̄uT, d̄vT
}

≤ ρd̄uT = ρr
(11)

As a result, the closed ball Bu(ρr) contains the node v.

We can see that the Lemma 3.2 generalizes the previous

Lemma 3.1 that assumes the average triangle inequality to

hold. Since β ≤ 1 implies that (1 + β)r ≤ 2r, if we set

ρ ≥ 2, the nodes in the interval
[

(1− β) d̄uT, (1 + β) d̄uT
]

are all covered by the ball Bu(ρr). Therefore, in each step,

the inframetric model considers more nodes at candidates for

the closest relay node.

Analysis of the Inframetric-ness of the Internet We em-

pirically analyze the above inframetric model. Given a set of

targets, we compute the minimal ρ that satisfies Eq (8). Figure

3 plots the CCDF of the inframetric parameter ρ of the RTT

data sets. By varying the number L of targets, we see that

the average RTT to a group of targets is comparable to the

pairwise RTT values: most of the ρ values of the triples are

lower than two. Therefore, selecting ρ = 3 is quite reasonable

to model most of the triples.
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Fig. 3. The CCDF of inframetric parameter ρ for the RTT data sets.

Implications Given Eq (11), if each node u obtains all nodes

from the ball Bu(ρr), then node u is either able to find a

node v that is β times closer to the targets, or node u must be

the closest relay to the targets. Following the above recursive

procedure at each intermediate node u, we are able to locate

a relay that has the minimal average latency to the targets.

C. Growth in the Inframetric Model

We next define a generalized grid dimension to represent

the average distances to a set of targets.

Definition 3: For a set of targets T, assume that α satisfies

|BT (2r)| ≤ 2α |BT (r)| (12)

where BT (r) denotes the set of service nodes whose average

delay to the targets T is not larger than r. Then we call the

smallest α when (12) holds is the generalized grid dimension.

The generalized grid dimension bounds the cardinality of

nodes whose delays to targets T are within certain intervals,

which is especially suitable to represent nodes close to the

targets.

We next extend the grid dimension in the metric space to

the growth metric in the inframetric space that is more general

to represent the latency space. The growth metric represents

the ratio between the number of nodes covered by two sets

BT (ρr) and BT (r) with respect to a set T of targets:

Definition 4 (Growth [9]): Given a (T, ρ)-inframetric

model, for any r ∈ ℜ+, (γρ)
T

∈ ℜ+ and u ∈ SV , if

|BT (ρr)| ≤ (γρ)
T
|BT (r)|, the (T, ρ)-inframetric model is

said to have a growth value (γρ)
T
≥ 1.

A low growth value (γρ)
T

means that the number of nodes

covered by the set BT(ρr) is comparable to the number of

nodes covered by BT(r) of smaller radius. As we expand the

radius of the set centered for a set of targets, new nodes in

BT “come into view” at a constant rate. This implies that each

node can find a node that is closer to the targets than node u
by uniformly sampling a modest number of nodes.

For any node u, we compute the growth by determining

the ratio of the cardinality between the set BT(ρr) and the

set BT(r) for a variable r. We compute the median and 90th

percentile growth values for 25%, 50% and 100% of nodes

from the whole data sets. From Figure 4, the median growth

of both data sets is relatively small, and declines quickly

with increasing radii. As a result, we can choose a modest

growth value to represent common growth trends. On the other

hand, the 90th percentile growth shows divergent dynamics

for different data sets. Therefore, outliers exist for the growth

dynamics in the (T, ρ)-inframetric model.
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Fig. 4. The distributions of the growth metric (γρ)
T for the RTT data sets.

The number of targets L = 2.

Having defined the growth, we are able to quantify the

differences of the cardinality of balls with identical centers

but different radii.

Lemma 3.3: Given a (T, ρ)-inframetric with growth γT

ρ ≥
1, for any x ≥ ρ, r > 0 and any node u, the cardinality of the

set BT (r) is at most xαρ times smaller than that of the ball

BT (xr), where αρ ∈
[

logργ
T

g , 2logργ
T

g

]

.

IV. RELAYGREEDY: GREEDY IS OPTIMAL

We propose RelayGreedy, a method for selecting the relay

near to the targets based on the intuitions of the average

triangle inequality and the inframetric model. RelayGreedy

guarantees the accuracy and scalability of the relay-selection

procedure.

RelayGreedy manages the closed balls via the concentric

ring [4], [6]. Each node u’s concentric ring provides multi-

level closed balls centered at each node u. When each node

receives a request of selecting relays, this node obtains candi-

date neighbors that may be closer to the targets Then this node

recursively selects the neighbor that has the lowest average

RTT to the targets. The search terminates when no such better

nodes can be found. Finally, the found relay is returned for

delivering messages for the group of targets. Algorithm 1

summarizes the steps.

A. Summary of Theoretical Results

We first define the approximation ratios to quantify the

accuracy of the found relays.

Definition 5: Let d̄∗ denote the minimum average delay

from the optimal service node u∗ to a set of targets T. If

the average delay d̄AT from the found service node A to T is

smaller than ωd̄∗, the found nearest service node A is called

an ω-approximation (ω ≥ 1).

The smaller ω, the closer the found node is to the optimal

relay for the targets. We next show that in RelayGreedy, each

node u is able to find one node v that is β times closer to the

targets w.h.p.

Theorem 4.1: Let Bui be the ball Bu

(

2i
)

. Let Sui =
Bui\B(u,i−1) be the i-th ring in the concentric ring. Given

a (T, ρ)-inframetric d with growth (γρ)
T

≥ 1, a node u,



Algorithm 1: Basic steps of locating the relay.

1 Relay(u, T, ρ, β)
input : Current node u, the set of targets T, the inframetric

parameter ρ, the latency-reduction threshold β.
output: The next-hop node that is closer to T.

2 Obtain the RTT values from node u to targets;
3 Compute the average RTT value r from node u to targets:

r ← d̄uT;
4 Node u selects neighbors, denoted as Su, from rings numbered

within [1, ⌈log
2
(ρr)⌉] in its own concentric ring;

5 Node A← the closest neighbor to T from the concentric ring;

6 if d̄AT ≤ βr then
7 Relay(A, T, ρ, β);
8 else
9 return A;

10 end

and targets T. Let r = d̄uT. The number of nodes in each

ring is O (log (N)). There exists a ring whose number is in

[1, ⌈log2 (ρr)⌉] satisfying that selecting all neighbors on that

ring will find one node covered by BT (βr) with at least a

probability (1−N−c), where N denotes the number of service

nodes, c > 1.

Theorem 4.1 is proved in section V-A. We next characterize

the accuracy and efficiency of Algorithm 1 as follows.

Theorem 4.2: Given a set of targets T, Algorithm 1 stops

in at most log 1

βreal

(∆d) steps, where βreal < 1 denotes the

average delay reduction per step and ∆d is the ratio of the

maximum delay to the minimum delay in the delay space.

Algorithm 1 has an 1
β -approximation with a probability 1 −

N−c2 , N denotes the number of service nodes and c2 > 1.

Theorem 4.2 is proved via the following corollaries 5.4

and 5.5. Our results show that RelayGreedy is optimal and

terminates quickly with modest requirements. As a result,

RelayGreedy efficiently solves the relay-selection problem.

Parameter recommendation: Based on the analysis, we

set RelayGreedy’s delay reduction threshold β to 1 by default,

in order to obtain the best possible relays. Further, since we

only need O (log (N)) neighbors for each ring to find closer

neighbors towards the targets, we set the default number of

neighbors in each concentric ring to 8.

V. THEORETICAL FRAMEWORK

Having presented the ideas of the distributed relay-search

process, we next derive performance guarantees under our pro-

posed models for the latency metric. The building block of the

analysis is locating a node that is closer to the targets with high

probability in a distributed environment based on the random

sampling process. We next analyze the number of required

samples required to find a neighbor closer to the targets with

high probability. Finally, we obtain the performance bounds

for Algorithm 1.

A. Sampling a Node that is Closer to the Targets

We next analyze how many neighbor nodes a node u needs

to sample to find w.h.p at least one node that lies in the set

BT (βr).

Let a constant r = βd̄uT. In order to reduce the average

distance to the targets by at least β times, each distributed

relaying step needs to sample at least a node from the set

BT (r), where the set BT (r) be the set of nodes whose

average delays to targets T are not larger than r.

Theorem 5.1 bounds the number of required samples to find

a node in the BT (r) in the metric space.

Theorem 5.1: Let the constants β ∈ (0, 1], α > 1, c >
1, r > 0. Let N be the number of nodes. Assume that the

current node is u. The targets are represented by T. When

we sample O(lnN) nodes from the ball Bu

(

2j
)

, where j =
⌈

log
(

d̄uT (1 + β)
)⌉

, with a probability at least 1−1/N c (i.e.,

w.h.p), we can locate at least a node v whose average distance

to the targets T is at most β times of that from the current

node u to the targets T.

Proof: We show the relation between the set BT (r) and

the ball with the center at node u. First, we select the smallest

j that satisfies BT (r)

d̄uT + r ≤ 2j (13)

In other words, the integer j is

j =
⌈

log
(

d̄uT (1 + β)
)⌉

(14)

Therefore, we have

d̄uT + r ≥ 2j−1 (15)

Furthermore, since for any node v ∈ BT (r), it holds that

d̄vT ≤ r (16)

Therefore, we can see that

duq ≤ d̄uT + d̄vT
≤ d̄uT + r
≤ 2j

(17)

which implies that BT (r) is covered by the ball Bu

(

2j
)

:

BT (r) ⊆ Bu

(

2j
)

(18)

We next bound the cardinality between the ball Bu

(

2j
)

and

that of BT (r). First, for any node v ∈ Bu

(

2j
)

, i.e., duv ≤ 2j ,

by the average triangle inequality, we have

d̄vT ≤ duv + d̄uT
≤ 2j + d̄uT

(19)

As a result, we can see that

Bu

(

2j
)

⊂ BT

(

2j + d̄uT
)

(20)

Second, by d̄uT = 1
β r and (15), we can bound the coverage

relation as

BT

(

2j + d̄uT
)

⊂ BT

(

2j+1 − r
)

⊂ BT

((

r
β + r

)

× 4− r
)

= BT

((

3 + 4
β

)

r
)

= BT (γr)

(21)

where γ = 3 + 4/β. Therefore, we have

Bu

(

2j
)

⊂ BT (γr) (22)



By the generalized grid dimension, we know that

|BT (γr)| ≤ γα |BT (r)| (23)

As a result, by combining (20), (21) and (23), we can compute

the cardinality relation between the ball Bu

(

2j
)

and the set

BT (r) as:
∣

∣Bu

(

2j
)∣

∣ ≤ γα |BT (r)| (24)

Then, suppose that we randomly sample a node from the

ball Bu

(

2j
)

, this node is covered by the set BT (r) with a

probability at least

|BT (r)|

|Bu (2j)|
≥

|BT (r)|

|BT (γr)|
≥

1

γα
(25)

As a result, when we select k nodes uniformly at random

from the ball Bu

(

2j
)

, the failure probability pf that all k
nodes are not in the set BT (r) is at most

pf = (1− 1/γα)
k

(26)

Suppose that we need to control the failure probability pf
to be under 1/N c for c > 1, i.e., pf = N−c, we need to

ensure the size k to fulfill the constraint

k = −c lnN/ ln (1− 1/γα)
= O (lnN)

(27)

which ensures to find a β times closer neighbor at each relay

search step.

For the inframetric space, we next analyze how many

neighbor nodes a node u needs to sample to find w.h.p at

least one node that lies in the set BT (βr).
We first show the inclusion relation of balls with different

centers, which generalizes the inclusion of balls around a node

pair in the metric space [22].

Lemma 5.2 (Sandwich lemma): Given a (T, ρ)-inframetric

model, for any pair of nodes u and v, and duv ≤ r, then

BT (r) ⊆ Bu (ρr) ⊆ BT

(

ρ2r
)

(28)

Proof: For any node v ∈ BT (r), node v satisfies

duv ≤ ρmax
{

d̄uT, d̄vT
}

≤ ρr (29)

which follows that

BT (r) ⊆ Bu (ρr) (30)

For any node y ∈ Bu (ρr), we have

d̄yT ≤ ρmax
{

d̄uT, dyu
}

≤ ρ2r (31)

which implies that

Bu (ρr) ⊆ BT

(

ρ2r
)

(32)

Next with the Sandwich lemma 5.2, we are able to analyze

how many neighbor nodes a node u needs to sample to find

w.h.p at least one node lies in the set BT (βr).
Theorem 5.3 (Sampling in balls): Given a (T, ρ)-

inframetric d with growth γT

ρ ≥ 1, a node u and targets T

satisfying d̄uT ≤ r. For any β ∈ (0, 1], let N denote the

number of service nodes, and c > 1. If u selects O (lnN)
nodes uniformly at random with replacement from the ball

Bu (ρr), then with a probability larger or equal than 1−N−c

one of sampled nodes will lie in BT (βr).
Proof: From Lemma 5.2, we have BT (βr) ⊆ BT (r) ⊆

Bu (ρr). Nodes in the set BT (βr) are also covered by the ball

Bu (ρr). Therefore, we only need to sample enough nodes in

Bu (ρr) in order to sample a node located in BT (βr).

Since |Bu (ρr)| ≤
∣

∣BT

(

ρ2r
)∣

∣ =
∣

∣

∣
BT

(

ρ2

β βr
)
∣

∣

∣
, we have

|Bu (ρr)| ≤

∣

∣

∣

∣

BT

(

ρ2

β
βr

)∣

∣

∣

∣

≤

(

ρ2

β

)αρ

|BT (βr)| (33)

where αρ ∈
[

logργ
T

g , 2logργ
T

g

]

.

Therefore, the probability of uniformly sampling a node

from Bu (ρr) that lies in the set BT (βr) is:

|BT (βr)|

|Bu (ρr)|
≥

|BT (βr)|
(

ρ2

β

)αρ

|BT (βr)|
=

1
(

ρ2

β

)αρ
(34)

Let γ = (ρ2/β). Let the number of samples be l. The

probability of failing to sample a node in the set BT (βr)
is at most

(1− 1/γαρ)l

In order to obtain the failure probability to be within N−c,

where c > 1, i.e., (1 − 1/γαρ)l ≤ N−c, the number l of

samples must be at least

l = − c
ln(1−1/γαρ ) lnN

= − c
ln(1−(β/ρ2)αρ ) lnN

= O (lnN)

As a result, with a probability of at least (1−N−c), the current

node is able to locate a neighbor that lands in the set BT (βr).

We next extend the sampling conditions to the concentric-

ring settings, proving Theorem 4.1:

Proof: Assume that each ring contains O (lnN) nodes

and the nodes at each ring are uniformly sampled from the

whole set of nodes that fall into that ring. Let

r∗ = βr (35)

We select the minimum positive integer i such that

ρmax {r, r∗} = ρr ≤ 2i (36)

holds. As a result, the inequality

ρr > 2i−1 (37)

also holds, because otherwise, (i − 1) will become the min-

imum integer satisfying Eq (36). Besides, we can see that

i = ⌈log2 (ρr)⌉.

For a node j from the set BT (r∗), i.e.,

d̄Tj ≤ r∗ (38)

By Definition 2, we know that

duj ≤ ρmax
{

d̄uT, d̄Tj

}

≤ ρmax {r, r∗} = ρr
Eq(36)

≤ 2i

(39)



Therefore, node j is covered by the ball Bui. As a result, the

set BT (r∗) is covered by Bui, i.e.,

BT (r∗) ⊆ Bui (40)

In other words, in order to obtain a sample from the set

BT(r∗), we only need to select sufficient nodes from the ball

Bui.

(1) By multiplying two at both sides of Eq (37), we have

2i < 2ρr (41)

Therefore, by multiplying ρ at both sides of Eq (41), it follows

that

BT

(

ρ2i
)

⊂ BT (ρ (2ρr)) (42)

Moreover, for any node j ∈ Bui, we know that

d̄Tj ≤ ρmax
{

d̄uT, duj
}

≤ ρmax
{

r, 2i
}Eq(36)

= ρ2i (43)

by the Definition 2. As a result, the ball Bui is covered by the

set BT

(

ρ2i
)

:

Bui ⊆ BT

(

ρ2i
)

(44)

Combining Eq (42) and Eq (44), we know that Bui is

covered by BT (ρ (2ρr)):

Bui ⊂ BT (ρ (2ρr)) (45)

Since r = r∗
β based on Eq (35), Eq (45) can be transformed

to be:

Bui ⊂ BT((2ρ
2/β)r∗) (46)

By the definition of the growth metric, we calculate the car-

dinality difference between the ball Bui and BT((2ρ
2/β)r∗)

as follows:

|Bui| <
(

2ρ2/β
)α

|BT (r∗)| (47)

As a result, the probability of uniformly sampling a node

from Bui that lies in the ball BT (r∗) is:

|BT (r∗)|

|Bui|
>

|BT (r∗)|

(2ρ2/β)
α
|BT (r∗)|

=
1

(2ρ2/β)
α (48)

(2) Suppose that the size of the ring is

(

2ρ2/β
)α

log (N/N−c)
= (c+ 1) (ρ/β)

α
log (N)

= O (log (N))

By Theorem 4.1 in [4], we can see that some node from a ring

Sul, l ≤ i lands in the set BT(r∗) with a failure probability

(N−c) /N2 < N−c. The proof is complete.

For a set of targets T , Theorem 4.1 shows that we only

need O (log (N)) neighbors per ring to find at least one node

that lies in the closed set BT (βr) w.h.p.

B. Algorithm Analysis

Having proven the number of samples required at each step,

we can prove Algorithm 1’s performance. We first derive an

upper bound on the number of hops.

Corollary 5.4: Algorithm 1 stops in at most log 1

βreal

(∆d)

steps, where βreal < 1 denotes the average delay reduction

per step and ∆d is the ratio of the maximum delay to the

minimum delay in the delay space.

Corollary 5.4 follows the similar proofs of Theorem 4.4 in

[6], since both relay on the β-times-closer greedy optimization.

Next, we prove that Algorithm 1 locates approximately

optimal relays as the threshold β approaches 1. When β = 1,

Algorithm 1 locates the optimal results w.h.p.

Corollary 5.5: Algorithm 1 locates an 1
β -approximation re-

lays with respect to the optimal relay node for any set of targets

with a probability 1−N−c2 , where N denotes the number of

service nodes and c2 > 1.

Proof: Suppose that u∗ is the ground-truth nearest server

to the targets T. Suppose that a node u forwards the relay

request to another node v by Algorithm 1, the progress of the

relay process is calculated as the ratio of d̄uT

d̄vT

, which is at least
1
β by Theorem 4.1 in the inframetric space (or by Theorem

5.1 in the metric space).

First, let p be the probability of finding a neighbor v that is

β times closer to the targets at a step. Based on the sampling

conditions of Theorem 4.1, p ≥ 1 − N−c. As a result, the

failure probability of l steps is at most

1− pl =
(

1− (1−N−c)
l
)

≈ 1− e−l/Nc

≈ 1− (1− l/N c)
≈ (N−c2)

(49)

due to the Taylor’s expansion, where c2 = c− logN l > 1 since

the number l of search steps satisfies l ≪ N by the corollary

5.4. As a result, the probability of finding a neighbor satisfying

the sampling condition in Theorem 5.3 after l steps is at least

1−N−c2 , i.e., w.h.p.

Second, assume that Algorithm 1 locates a node ux as the

nearest server and has an approximation ratio larger than 1
β

i.e., d̄uxT
> 1

β d̄u∗T
. We disprove the approximation ratio by

contradiction.

Since β ≤ 1, we see that d̄uxT
> d̄u∗T

. As a result, we

can locate a new node β times closer to the targets than ux

w.h.p. As a result, the search process can be continued, which

contradicts the fact that the search process stops at node ux.

Therefore, the approximation ratio of the found node must be

at most 1
β , which completes the proof.

VI. SIMULATION

In this section, we compare RelayGreedy’s performance

with state-of-art methods.

Experimental Setup We have implemented a simulator.

The simulator randomly selects a set of nodes as the service

nodes (800 by default) and randomly selects nodes in the data

sets as the targets that need to select the relay to forward



messages sent and received between targets. In the simulator,

for each relaying request, we sample a set of targets uniformly

at random from the whole set of nodes and choose a service

node to receive the request for these targets. The simulation

consists of 10,000 relay requests for different sets of targets.

We repeat the above simulation five times.

Comparison We compare the absolute error of different

methods:

∣

∣d̄pT − d̄P∗T

∣

∣ =
1

L

∣

∣

∣

∣

∣

∣

L
∑

j=1

∣

∣dPTj

∣

∣−

L
∑

j=1

∣

∣dP∗Tj

∣

∣

∣

∣

∣

∣

∣

∣

where L denotes the number of targets, P denotes the

estimated relay, P ∗ is the ground-truth optimal relay, and

(T1, . . . , TL) represents the set of targets. We also evaluated

the sensitivity of parameters for RelayGreedy, which is rea-

sonably robust against the parameter choices. The simulator

compares RelayGreedy with the following methods: (i) SOSR

[17], selects a node uniformly at random from the whole

set of nodes as the relay; (ii) Meridian [4], recursively

locates a neighbor with concentric rings managed with gossip

protocols. For fair comparison, we select Meridian’s candidate

neighbors based on the same rules as RelayGreedy; (iii) IRS

[20], constructs a routing overlay where each node serves

as the relay for its neighbors. Neighbors are selected via

gossip protocols as those have the highest embedding errors,

corresponding to those causing TIVs in the latency space.

We report the comparison results for all methods in Figure

6. We see that the SOSR method has the largest absolute

errors among all methods, since the relay node nearest to the

targets may be orders of magnitude closer to the targets than a

randomly sampled node because of the clustering structure of

the network latency space. IRS incurs relatively high absolute

errors. This is because embedding errors are also caused

by poor convergence or inherent embedding distortions [23].

RelayGreedy outperforms other methods by orders of magni-

tudes. In more than 60% of all tests, RelayGreedy is able to

find the ground-truth nearest relay nodes to the targets. Further,

for more than 90% of all experiments, RelayGreedy’s absolute

error is less than 10 ms. Comparatively, Meridian yields much

worse performance than RelayGreedy, since Meridian’s ring

maintenance process converges quite slowly because of the

clustering phenomenon in the network latency space [6], which

makes the relay search process be trapped at much poorer local

minima.

We next analyze the scalability of the methods with increas-

ing service nodes. We fix the number of neighbors at each

ring for both Meridian and RelayGreedy. Figure 6 (a) shows

the accuracy of found relays by Meridian and RelayGreedy.

Meridian has steady accuracy since it is able to find stable local

minimum with O (logN) samples, where N denotes the size

of service nodes. RelayGreedy decreases the absolute errors

with increasing service nodes, since relays are placed in wider

areas in the network latency space, so that RelayGreedy is able

to find relays that are closer to the targets.

We next test the performance of finding the relays as we
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Fig. 5. The CCDF distributions of the absolute errors for relay selection
methods.
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Fig. 6. The mean absolute errors of the found relays as we vary the number
of targets and the number of service nodes.

vary the size of targets. Figure 6 (b) plots the mean absolute

errors. RelayGreedy has orders of magnitudes lower absolute

errors compared to Meridian, since RelayGreedy employs

several performance-guaranteed techniques to avoid bad local

minimums. We see that RelayGreedy significantly decreases

the mean absolute errors until number L of targets reaches 10.

This is because increasing targets reduces the ρ numbers of the

extended inframetric model, ’ which increases the probability

of finding suitable candidates to find good relays according

to Algorithm 1. The absolute errors increases moderately for

RelayGreedy when the number L of Targets is beyond 10, due

to higher errors of RTT prediction with network coordinates.

We next compare the messaging costs between our method

and Meridian, which is defined as the sum of the sizes of

the recursive-search messages exchanged among neighbors

and the delay probe messages from service nodes to targets:
L
∑

l=1

(|mq
l |+ |mp

l |), where L represents the number of search

steps, |mq
l | and |mp

l | denote the sizes of the search messages

and delay probe messages of the l-th hop, respectively. For

simplicity, we set the size of each message to 50 bytes. We

record the messaging costs of 10,000 relay search procedures.



From Figure 7, we see that RelayGreedy requires higher

messaging costs than Meridian when the number of targets is

10, since RelayGreedy have much larger number of candidate

neighbors to probe. While Meridian’s concentric ring may

have insufficient neighbors for some rings, resulting in lower

messaging costs than those of RelayGreedy.
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Fig. 7. Query messaging costs of RelayGreedy and Meridian on the Mat2500
data set.

VII. CONCLUSION

We have addressed the problem of selecting the latency-

optimal relay to forward real-time messages to multiple target

nodes. We rigorously formalize the problem of finding the

relay that is nearest to the targets, with both metric space and

the inframetric models. Our metric space model is suitable

for modelling most of the triples in the latency space, while

our refined inframetric model is general enough to allow for

asymmetric distances and the triangle inequality violations.

We next present a simple greedy algorithm to find the optimal

relay node with high probability, by recursively sampling a

modest number of nodes in a distributed manner. We believe

that our theoretical and algorithmic results are general enough

for diverse user-facing cloud services.
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